JP2003166013A - Method for recovering converter gas - Google Patents

Method for recovering converter gas

Info

Publication number
JP2003166013A
JP2003166013A JP2001367324A JP2001367324A JP2003166013A JP 2003166013 A JP2003166013 A JP 2003166013A JP 2001367324 A JP2001367324 A JP 2001367324A JP 2001367324 A JP2001367324 A JP 2001367324A JP 2003166013 A JP2003166013 A JP 2003166013A
Authority
JP
Japan
Prior art keywords
gas
converter
hydrogen
carbon monoxide
converter gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001367324A
Other languages
Japanese (ja)
Inventor
Kazuaki Hara
一晃 原
Kazunari Adachi
一成 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001367324A priority Critical patent/JP2003166013A/en
Publication of JP2003166013A publication Critical patent/JP2003166013A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To recover a converter gas as a fuel gas having high gas calorie. <P>SOLUTION: This method comprises mixing the converter gas with a coke- oven gas containing hydrogen abundantly, and reducing carbon dioxide in the converter gas into carbon monoxide with hydrogen, to greatly increase the gas calorie. Then, the gas can be recovered as the fuel gas, because a carbon monoxide content increases. The method comprises charging and mixing the coke-oven gas, particularly just after a start of and just before and end of operation of the converter, when having the high carbon-dioxide content and the low carbon-monoxide content. An oxygen content is made to be 0.5% or less for the purpose of preventing explosion. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、転炉で発生する転
炉ガスを効率よく回収する方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for efficiently recovering converter gas generated in a converter.

【0002】[0002]

【従来の技術】転炉ガスの回収方法としては、例えば特
開昭55−127127号公報に記載されるものがあ
る。この転炉ガス回収方法は、転炉ガスにコークス炉ガ
スを混合し、下記1式の反応を用いて、特に転炉排ガス
中の二酸化炭素を一酸化炭素に還元し、その一酸化炭素
ガスと共に顕熱を回収するものである。 CH4 +CO2 →2CO+2H2 ー1660kcal/Nm3 ……… (1)
2. Description of the Related Art As a method for recovering converter gas, for example, there is one described in JP-A-55-127127. In this converter gas recovery method, a coke furnace gas is mixed with the converter gas, and carbon dioxide in the converter exhaust gas is reduced to carbon monoxide by using the reaction of the following formula 1, and the carbon monoxide gas is mixed with the carbon monoxide gas. It recovers sensible heat. CH 4 + CO 2 → 2CO + 2H 2 -1660 kcal / Nm 3 ……… (1)

【0003】[0003]

【発明が解決しようとする課題】ところで、前記1式
は、下記2式及び3式の二段階の反応を一つの式で表し
たものである。 CH4 →C+2H2 ……… (2) C+CO2 →2CO ……… (3) しかしながら、1400℃以下の温度では、前記2式の
平衡定数の方が前記3式の平衡定数よりも大きい。つま
り、転炉ガス中へのCH4 の吹込みはCの析出、即ちす
すの発生となり、熱量的にはC析出分だけ熱ロスとな
り、有効ではない。
By the way, the above formula 1 represents the two-step reaction of the following formulas 2 and 3 by one formula. CH 4 → C + 2H 2 (2) C + CO 2 → 2CO (3) However, at a temperature of 1400 ° C. or lower, the equilibrium constant of the above formula 2 is larger than the equilibrium constant of the above formula 3. In other words, blowing CH 4 into the converter gas causes the precipitation of C, that is, the generation of soot, which causes a heat loss corresponding to the amount of C precipitation and is not effective.

【0004】本発明は前記諸問題を解決すべく開発され
たものであり、転炉ガスの成分を有効活用し、ガスカロ
リーが十分に高く、且つ一酸化炭素の多い状態で回収す
ることができる転炉ガス回収方法を提供することを目的
とするものである。
The present invention was developed to solve the above-mentioned problems, and it is possible to effectively utilize the components of the converter gas to recover the gas in a state where the gas calories are sufficiently high and carbon monoxide is high. It is intended to provide a converter gas recovery method.

【0005】[0005]

【課題を解決するための手段】上記諸問題を解決するた
め、本発明者等は鋭意検討を重ね、以下の知見を得た。
即ち、前記従来技術で着目される反応は、確かに吸熱反
応であるが、その反応熱は極めて小さく、ガスカロリー
を高めて回収するという性質のものではない。一方、二
酸化炭素を水素で還元すると、その吸熱反応に関与する
反応熱は、前記従来技術のそれを大きく上回る。勿論、
防爆の面から、酸素が混入するのは避けなければならな
いが、回収する前に、水素を含有するガスを転炉ガスに
混合すれば、二酸化炭素を水素で一酸化炭素に還元し、
高いガスカロリーを得ることができる。つまり、本発明
は転炉ガスの顕熱回収として、 CO−H2 →CO2 ーH2 O+450kcal/Nm3 (低
位発熱量) の反応に着目したものであり、Cの析出過程をとらない
ため、すすの発生(Cロス)なく、転炉ガスの顕熱を化
学エネルギとして回収できる。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present inventors have conducted extensive studies and obtained the following findings.
That is, the reaction of interest in the above-mentioned prior art is certainly an endothermic reaction, but its reaction heat is extremely small, and it is not of the nature of increasing and recovering gas calories. On the other hand, when carbon dioxide is reduced with hydrogen, the heat of reaction involved in the endothermic reaction greatly exceeds that of the prior art. Of course,
From the aspect of explosion protection, it is necessary to avoid mixing oxygen, but if a gas containing hydrogen is mixed with the converter gas before recovery, carbon dioxide will be reduced to carbon monoxide with hydrogen,
You can get high gas calories. That is, the present invention focuses on the reaction of CO—H 2 → CO 2 —H 2 O + 450 kcal / Nm 3 (lower heating value) as the sensible heat recovery of the converter gas, and does not take the precipitation process of C. The sensible heat of the converter gas can be recovered as chemical energy without the generation of soot (C loss).

【0006】而して、本発明のうち請求項1に係る転炉
ガス回収方法は、水素を含有するガスを転炉ガスに混合
し、当該転炉ガス内の二酸化炭素を水素によって一酸化
炭素に還元し、その状態のガスを、ガスカロリーの高い
状態で回収することを特徴とするものである。また、本
発明のうち請求項2に係る転炉ガス回収方法は、前記請
求項1の発明において、転炉の操業中にあって、転炉ガ
ス中の一酸化炭素含有量が少ないときに、前記水素を含
有するガスを転炉ガスに混合することを特徴とするもの
である。
Thus, in the converter gas recovery method according to claim 1 of the present invention, a gas containing hydrogen is mixed with the converter gas, and carbon dioxide in the converter gas is converted into carbon monoxide by hydrogen. And recovering the gas in that state in a state of high gas calories. Further, the converter gas recovery method according to claim 2 of the present invention is, in the invention of claim 1, when the converter gas is operating and the carbon monoxide content in the converter gas is low, The gas containing hydrogen is mixed with a converter gas.

【0007】また、前記従来技術では、前記メタンと二
酸化炭素との反応を促進すべく、酸化鉄を積極的に残す
ように(除去しないように)記している。しかしなが
ら、本発明の前記二酸化炭素を水素と反応させて一酸化
炭素を得る反応において、酸化鉄に含まれる酸素は、そ
の反応に関与する水素を水(水蒸気)に酸化してしまう
ので、酸化鉄はむしろ邪魔である。而して、本発明のう
ち請求項3に係る転炉ガス回収方法は、前記請求項1又
は2の発明において、転炉ガスから酸化鉄を除去するこ
とを特徴とするものである。
Further, in the above-mentioned prior art, in order to promote the reaction between the methane and carbon dioxide, iron oxide is positively left (not removed). However, in the reaction of reacting the carbon dioxide with hydrogen of the present invention to obtain carbon monoxide, oxygen contained in iron oxide oxidizes hydrogen involved in the reaction into water (steam). Is rather an obstacle. The converter gas recovery method according to claim 3 of the present invention is characterized in that, in the invention of claim 1 or 2, iron oxide is removed from the converter gas.

【0008】また、本発明のうち請求項4に係る転炉ガ
ス回収方法は、前記請求項1乃至3の発明において、前
記水素を含有するガスに、コークス炉ガスを用いること
を特徴とするものである。前記従来技術と同様に、結果
的にはコークス炉ガスを用いる。これは、コークス炉ガ
スが多量の水素を含有しているためである。後述するよ
うに、前記従来技術での反応に関与するメタンは、実は
コークス炉ガスには、さほど多量に含有されていない。
製鉄操業において、水素を多量に含有していて、最も実
用に供し易いのがコークス炉ガスであるという意味であ
る。
Further, the converter gas recovery method according to claim 4 of the present invention is characterized in that, in the invention of claims 1 to 3, a coke oven gas is used as the gas containing hydrogen. Is. As in the prior art, coke oven gas is eventually used. This is because the coke oven gas contains a large amount of hydrogen. As will be described later, the coke oven gas does not actually contain a large amount of methane involved in the reaction in the above-mentioned conventional technique.
It means that the coke oven gas contains a large amount of hydrogen and is most easily put to practical use in the steelmaking operation.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。図1(a)は、本発明の転炉ガス回収方法
の一実施形態を示す概略構成図である。図中の符号1は
転炉である。転炉1内で発生した転炉ガスは、ガス管路
2内を通過するうちに冷却し、更に冷却シャワー3で冷
却された後、ガス内の一酸化炭素が少ない場合、つまり
燃料ガスが少ない場合には燃焼設備4で燃焼排却され
る。逆に、ガス内の一酸化炭素、つまり燃料ガスが多い
場合にはガスホルダ5に回収される。なお、ガス管路2
の転炉1側にはボイラ6が設けられている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. FIG. 1A is a schematic configuration diagram showing an embodiment of the converter gas recovery method of the present invention. Reference numeral 1 in the figure is a converter. The converter gas generated in the converter 1 is cooled while passing through the gas pipeline 2 and further cooled by the cooling shower 3, and then when the carbon monoxide in the gas is small, that is, the fuel gas is small. In some cases, it is burned and discharged in the combustion facility 4. On the contrary, when there is a large amount of carbon monoxide in the gas, that is, the fuel gas, it is recovered by the gas holder 5. In addition, the gas pipeline 2
A boiler 6 is provided on the converter 1 side.

【0010】図1(b)は、転炉1とガス管路2との接
続部付近の詳細図である。図中の符号7はランスであ
る。転炉1で発生する転炉ガスは、殆ど排ガスであり、
二酸化炭素を多量に含んでいる。但し、所謂1チャージ
の操業で、転炉1内の温度が十分に高くなると、燃料ガ
スである一酸化炭素の含有量が多くなる。つまり、二酸
化炭素の含有量が多いのは、主に操業の開始直後と、終
了直前である。そこで、本実施形態では、この操業の開
始直後及び終了直前、つまり転炉ガス内に二酸化炭素含
有量が多く、相対的に一酸化炭素含有量が少ないとき
に、ガス管路2の転炉1側に設けられた投入管8から、
当該ガス管路2内に水素含有ガス、具体的にはコークス
炉ガスを投入し、両者を混合させて、高いガスカロリー
と多含有量の一酸化炭素とを回収する。
FIG. 1 (b) is a detailed view of the vicinity of the connecting portion between the converter 1 and the gas pipeline 2. Reference numeral 7 in the drawing is a lance. The converter gas generated in the converter 1 is almost exhaust gas,
It contains a large amount of carbon dioxide. However, when the temperature inside the converter 1 becomes sufficiently high in the so-called 1-charge operation, the content of carbon monoxide as the fuel gas increases. In other words, the carbon dioxide content is high mainly immediately after the start of operation and immediately before the end of operation. Therefore, in the present embodiment, the converter 1 of the gas pipeline 2 is provided immediately after the start and immediately before the end of the operation, that is, when the converter gas has a large carbon dioxide content and a relatively low carbon monoxide content. From the injection pipe 8 provided on the side,
A hydrogen-containing gas, specifically, a coke oven gas is introduced into the gas pipeline 2 and mixed with each other to recover a high gas calorie and a high content of carbon monoxide.

【0011】次に、本実施形態の原理について説明す
る。コークス炉ガスには、一般に、水素が60%程度、
一酸化炭素が10%程度、メタンが25%程度含有され
ている。一方、コークス炉ガス中の酸素含有量は極めて
少ない。ここで、以下の二つの反応式から、前述した反
応を導出する。 CO+1/2O2 →CO2 +3020kcal/Nm32 +1/2O2 →H2 O+2570kcal/Nm3 (低
位発熱量) なお、低位発熱量とは、水が水蒸気であるときの熱量を
示す。
Next, the principle of this embodiment will be described. Generally, about 60% hydrogen is contained in the coke oven gas,
It contains about 10% carbon monoxide and about 25% methane. On the other hand, the oxygen content in the coke oven gas is extremely low. Here, the above-mentioned reaction is derived from the following two reaction equations. CO + 1 / 2O 2 → CO 2 +3020 kcal / Nm 3 H 2 + 1 / 2O 2 → H 2 O + 2570 kcal / Nm 3 (Lower calorific value) The lower calorific value means the calorific value when water is water vapor.

【0012】1/2O2 を消去して、 CO−H2 →CO2 ーH2 O+450kcal/Nm3 (低
位発熱量) 移項して、 CO2 +H2 →CO+H2 Oー450kcal/Nm3 (低
位発熱量) このように、二酸化炭素と水素が吸熱反応して、よりガ
スカロリーの大きい状態の一酸化炭素と水(水蒸気)に
変化する。この状態にしてから、全体を回収すれば、回
収効率が向上する。
After erasing 1 / 2O 2 , CO-H 2 → CO 2 -H 2 O + 450 kcal / Nm 3 (lower calorific value) is transferred to CO 2 + H 2 → CO + H 2 O-450 kcal / Nm 3 (lower level). Calorific Value) In this way, carbon dioxide and hydrogen undergo an endothermic reaction to change into carbon monoxide and water (water vapor) in a state where the gas calories are larger. If the whole is recovered after this state, the recovery efficiency is improved.

【0013】一方、転炉ガス中には、粉体の酸化鉄が混
入している。この酸化鉄は、下記の反応によって、前述
の反応に重要な水素を水(水蒸気)に変えてしまう。 FeO+H2 →Fe+H2 O そこで、本実施形態では、前記投入管8より更にガス管
路2の転炉1側に酸化鉄除去装置9を取付けている。こ
の酸化鉄除去装置9により、前記投入管8より転炉1側
で転炉ガスを吸引・導入し、当該酸化鉄除去装置9で、
転炉ガス中に混入している酸化鉄を除去し、投入管8よ
り後方で酸化鉄を除去した転炉ガスをガス管路2中に戻
すことにより、前記二酸化炭素と水素との反応が低下し
ないようにしている。
On the other hand, powdered iron oxide is mixed in the converter gas. This iron oxide converts hydrogen, which is important for the above reaction, into water (steam) by the following reaction. FeO + H 2 → Fe + H 2 O Therefore, in the present embodiment, the iron oxide removing device 9 is attached to the converter 1 side of the gas pipeline 2 further than the charging pipe 8. By this iron oxide removing device 9, the converter gas is sucked and introduced from the charging pipe 8 to the converter 1 side, and the iron oxide removing device 9
The reaction between carbon dioxide and hydrogen is reduced by removing the iron oxide mixed in the converter gas and returning the converter gas from which the iron oxide has been removed after the charging pipe 8 into the gas pipeline 2. I try not to.

【0014】また、前記転炉ガス中にはCn m の炭化
水素ガスが20〜30%程度含まれており、転炉ガス中
に投入する場合は、すすの発生を抑制するために、図に
示すようなチタン系触媒或いは白金系触媒10を投入部
分(混合部)に設置するのが望ましく、これにより炭化
水素ガスの析出を防止して、有効に転炉ガスカロリーア
ップを図ることができる。図2には、1チャージの転炉
操業における一酸化炭素含有量(濃度)を示す。実線
は、前記水素を含有するコークス炉ガスを混合しない場
合であり、一点鎖線がコークス炉ガスを混合した場合で
ある。この例では、ガス中の一酸化炭素濃度、つまり燃
料ガス濃度が25%以上で前記ガスホルダ5にガスを回
収し、それ以下では前記燃焼設備4で燃焼する。前述の
ように、コークス炉ガスにも一酸化炭素が含有されてい
るが、単に転炉ガス内の一酸化炭素とコークス炉ガス内
の一酸化炭素とを足しただけでは、図の二点鎖線のよう
にしか一酸化炭素濃度は増加しない。しかしながら、本
実施形態では、前記二酸化炭素が水素によって一酸化炭
素に還元される反応を利用しているため、全体での一酸
化炭素濃度は図の一点鎖線のように増加するのである。
これにより、例えば一酸化炭素濃度が25%以下で、前
記燃焼設備4で燃焼排却される操業開始からの時刻t2
までの時間を操業開始から時刻t1 までの時間に短縮
し、同時に時刻t3 から操業終了までの時間を時刻t4
から操業終了までの時間に短縮している。
Further, the converter gas contains about 20 to 30% of C n H m hydrocarbon gas, and when introduced into the converter gas, in order to suppress generation of soot, It is desirable to install a titanium-based catalyst or platinum-based catalyst 10 as shown in the drawing at the charging portion (mixing portion), whereby the precipitation of hydrocarbon gas can be prevented and the calorie of the converter gas can be effectively increased. it can. FIG. 2 shows the carbon monoxide content (concentration) in one charge converter operation. The solid line shows the case where the coke oven gas containing hydrogen is not mixed, and the alternate long and short dash line shows the case where the coke oven gas is mixed. In this example, the gas is collected in the gas holder 5 when the carbon monoxide concentration in the gas, that is, the fuel gas concentration is 25% or more, and is burned in the combustion equipment 4 when it is less than that. As described above, the coke oven gas also contains carbon monoxide, but if the carbon monoxide in the converter gas and the carbon monoxide in the coke oven gas are simply added, the two-dot chain line in the figure The carbon monoxide concentration increases only as in. However, in the present embodiment, since the reaction of the carbon dioxide to be reduced to carbon monoxide by hydrogen is utilized, the total carbon monoxide concentration increases as shown by the alternate long and short dash line in the figure.
As a result, for example, when the carbon monoxide concentration is 25% or less, the time t 2 from the start of operation when the combustion equipment 4 is burned and discharged
To the time from the start of operation to time t 1 , and at the same time the time from the time t 3 to the end of operation at time t 4
It is shortened from the time to the end of operation.

【0015】図3aには、転炉ガス温度とガスカロリー
との関係を示す。図中の改質とは、コークス炉ガスの水
素で二酸化炭素を一酸化炭素に還元することを意味す
る。前記二酸化炭素を水素で一酸化炭素に還元する反応
が吸熱反応であることから、転炉ガスの温度が高いほ
ど、反応が促進し、ガスカロリーが高まっていることが
分かる。そのため、本実施形態では、前記ガス管路2の
転炉1側に設けたボイラー6で転炉ガスを加熱するよう
にし、反応を促進してガスカロリーを高めてもよい。
FIG. 3a shows the relationship between converter gas temperature and gas calorie. Reforming in the figure means reducing carbon dioxide to carbon monoxide with hydrogen in the coke oven gas. Since the reaction of reducing carbon dioxide to carbon monoxide with hydrogen is an endothermic reaction, it can be seen that the higher the temperature of the converter gas is, the more the reaction is promoted and the gas calories are increased. Therefore, in the present embodiment, the converter gas may be heated by the boiler 6 provided on the converter 1 side of the gas pipeline 2 to promote the reaction and increase the gas calorie.

【0016】図3bには、このようにしてガスカロリー
を高め、回収した実施例の燃料ガスとしてのガス回収量
を、従来例を1としたときの標準値で示した。同図から
明らかなように、本実施例によれば燃料ガスとしてのガ
ス回収量を大幅に増加することができる。なお、前述の
ようにコークス炉ガスには酸素の含有量が極めて少ない
が、防爆のために、酸素の含有量は0.5%以下が望ま
しい。
In FIG. 3b, the amount of gas recovered as the fuel gas of the embodiment thus recovered by increasing the gas calorie is shown as a standard value when the conventional example is 1. As is clear from the figure, according to this embodiment, the amount of recovered gas as fuel gas can be greatly increased. Although the oxygen content of the coke oven gas is extremely small as described above, the oxygen content is preferably 0.5% or less for explosion protection.

【0017】また、本実施形態では、水素を含有するガ
スとしてコークス炉ガスを用いたが、その他にも、水素
を必要量含有するガスであれば、種々のガスを用いるこ
とができる。
Further, in this embodiment, the coke oven gas is used as the hydrogen-containing gas, but other various gases can be used as long as they contain the required amount of hydrogen.

【0018】[0018]

【発明の効果】以上説明したように、本発明のうち請求
項1に係る転炉ガス回収方法によれば、水素を含有する
ガスを転炉ガスに混合し、当該転炉ガス内の二酸化炭素
を水素によって一酸化炭素に還元し、その状態のガス
を、ガスカロリーの高い状態で回収することとしたた
め、ガスの回収効率が向上すると共に、燃料ガスとして
の回収量も向上する。
As described above, according to the converter gas recovery method of the first aspect of the present invention, the gas containing hydrogen is mixed with the converter gas, and the carbon dioxide in the converter gas is mixed. Is reduced to carbon monoxide with hydrogen and the gas in that state is recovered in a state of high gas calories, so that the recovery efficiency of the gas is improved and the recovery amount as the fuel gas is also improved.

【0019】また、本発明のうち請求項2に係る転炉ガ
ス回収方法によれば、転炉の操業中にあって、転炉ガス
中の一酸化炭素含有量が少ないときに、水素を含有する
ガスを転炉ガスに混合することとしたため、特に操業開
始直後や操業終了直前での燃料ガスの回収量を向上する
ことができる。また、本発明のうち請求項3に係る転炉
ガス回収方法によれば、転炉ガスから酸化鉄を除去する
こととしたため、二酸化炭素を一酸化炭素に還元するた
めの水素が水に酸化されるのを抑制防止し、もって二酸
化炭素を一酸化炭素に還元する反応を確保することがで
きる。
Further, according to the converter gas recovery method of the second aspect of the present invention, when the converter gas is in operation and the carbon monoxide content in the converter gas is low, hydrogen is contained. Since the mixed gas is mixed with the converter gas, the recovery amount of the fuel gas can be improved particularly immediately after the start of operation and immediately before the end of operation. Further, according to the converter gas recovery method of claim 3 of the present invention, since iron oxide is removed from the converter gas, hydrogen for reducing carbon dioxide to carbon monoxide is oxidized into water. It is possible to secure the reaction of reducing carbon dioxide to carbon monoxide.

【0020】また、本発明のうち請求項4に係る転炉ガ
ス回収方法によれば、水素を含有するガスとしてコーク
ス炉ガスを用いることとしたため、製鉄操業において、
水素を多量に含有していて、最も実用に供し易い。
Further, according to the converter gas recovery method of the fourth aspect of the present invention, the coke oven gas is used as the gas containing hydrogen.
Since it contains a large amount of hydrogen, it is the easiest to put to practical use.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の転炉ガス回収方法を適用した転炉及び
周辺設備の構成図である。
FIG. 1 is a configuration diagram of a converter and peripheral equipment to which a converter gas recovery method of the present invention is applied.

【図2】図1の回収方法によって得られた一酸化炭素濃
度の説明図である。
FIG. 2 is an explanatory diagram of carbon monoxide concentration obtained by the recovery method of FIG.

【図3】図1の回収方法によって得られた燃料ガスのガ
スカロリーとガス回収量の説明図である。
FIG. 3 is an explanatory diagram of gas calories and fuel recovery amount of fuel gas obtained by the recovery method of FIG.

【符号の説明】[Explanation of symbols]

1は転炉 2はガス管路 3は冷却スプレー 4は燃焼設備 5はガスホルダ 6はボイラ 7はランス 8は投入管 9は酸化鉄除去装置 1 is converter 2 is a gas pipeline 3 is a cooling spray 4 is combustion equipment 5 is a gas holder 6 is a boiler 7 is Lance 8 is an input pipe 9 is an iron oxide removal device

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K056 AA02 DB01 DB11 4K070 CA01 CA11    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4K056 AA02 DB01 DB11                 4K070 CA01 CA11

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水素を含有するガスを転炉ガスに混合
し、当該転炉ガス内の二酸化炭素を水素によって一酸化
炭素に還元し、その状態のガスを、ガスカロリーの高い
状態で回収することを特徴とする転炉ガス回収方法。
1. A gas containing hydrogen is mixed with a converter gas, carbon dioxide in the converter gas is reduced to carbon monoxide by hydrogen, and the gas in that state is recovered in a high gas calorie state. A converter gas recovery method characterized by the above.
【請求項2】 転炉の操業中にあって、転炉ガス中の一
酸化炭素含有量が少ないときに、前記水素を含有するガ
スを転炉ガスに混合することを特徴とする請求項1に記
載の転炉ガス回収方法。
2. The hydrogen-containing gas is mixed with the converter gas during the operation of the converter when the carbon monoxide content in the converter gas is low. The converter gas recovery method described in.
【請求項3】 転炉ガスから酸化鉄を除去することを特
徴とする請求項1又は2に記載の転炉ガス回収方法。
3. The converter gas recovery method according to claim 1, wherein iron oxide is removed from the converter gas.
【請求項4】 前記水素を含有するガスに、コークス炉
ガスを用いることを特徴とする請求項1乃至3の何れか
に記載の転炉ガス回収方法。
4. The converter gas recovery method according to claim 1, wherein coke oven gas is used as the hydrogen-containing gas.
JP2001367324A 2001-11-30 2001-11-30 Method for recovering converter gas Pending JP2003166013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001367324A JP2003166013A (en) 2001-11-30 2001-11-30 Method for recovering converter gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001367324A JP2003166013A (en) 2001-11-30 2001-11-30 Method for recovering converter gas

Publications (1)

Publication Number Publication Date
JP2003166013A true JP2003166013A (en) 2003-06-13

Family

ID=19177087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001367324A Pending JP2003166013A (en) 2001-11-30 2001-11-30 Method for recovering converter gas

Country Status (1)

Country Link
JP (1) JP2003166013A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139488A1 (en) * 2008-05-16 2009-11-19 Jfeスチール株式会社 Process for reforming exhaust gas from metallurgical furnace, process for cooling the exhaust gas, and apparatuses for both processes
JP2010100876A (en) * 2008-10-22 2010-05-06 Jfe Steel Corp Method and apparatus for modifying and heat-increasing exhaust gas produced from metallurgical furnace
JP2010202953A (en) * 2009-03-05 2010-09-16 Jfe Steel Corp Apparatus for reforming exhaust gas from metallurgical furnace
JP2010255087A (en) * 2008-05-16 2010-11-11 Jfe Steel Corp Method for reforming exhaust gas generated from metallurgical furnace, reforming apparatus and method for producing reformed gas
JP2011102680A (en) * 2009-11-11 2011-05-26 Jfe Steel Corp Method for recovering sensible heat of exhaust gas and method of cooling exhaust gas
US9005570B2 (en) 2011-01-13 2015-04-14 Siemens Aktiengesellschaft Method for treating a carbon dioxide-containing waste gas from an electrofusion process
CN105371670A (en) * 2015-12-07 2016-03-02 王立臣 Reducing and reusing device for multi-oxygen combustion smoke of industrial kiln and operation method thereof
CN111961796A (en) * 2020-09-16 2020-11-20 攀钢集团研究院有限公司 Method for increasing CO content in vanadium extraction converter gas
JP2021054706A (en) * 2019-09-24 2021-04-08 積水化学工業株式会社 Gas production apparatus, gas production system and gas production method
CN114657317A (en) * 2022-03-24 2022-06-24 鞍山市恒成设备制造有限公司 Low-carbon metallurgy method
CN114774622A (en) * 2022-04-27 2022-07-22 马鞍山钢铁股份有限公司 Steelmaking equipment based on low-carbon emission for steelmaking

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2278031A4 (en) * 2008-05-16 2013-05-29 Jfe Steel Corp METHOD FOR REFORMING WASTE GASES FROM A METALLURGICAL FURNACE, METHOD FOR COOLING WASTE GASES AND APPARATUSES FOR BOTH PROCESSES
JP2010255087A (en) * 2008-05-16 2010-11-11 Jfe Steel Corp Method for reforming exhaust gas generated from metallurgical furnace, reforming apparatus and method for producing reformed gas
US8765087B2 (en) 2008-05-16 2014-07-01 Jfe Steel Corporation Method for reforming exhaust gas generated from metallurgical furnace, method for cooling exhaust gas and apparatus therefor
EP2278031A1 (en) * 2008-05-16 2011-01-26 JFE Steel Corporation Process for reforming exhaust gas from metallurgical furnace, process for cooling the exhaust gas, and apparatuses for both processes
CN102027140A (en) * 2008-05-16 2011-04-20 杰富意钢铁株式会社 Process for reforming exhaust gas from metallurgical furnace, process for cooling the exhaust gas, and apparatuses for both processes
AU2012203242B2 (en) * 2008-05-16 2012-11-29 Jfe Steel Corporation Method for cooling exhaust gas and apparatus therefor
WO2009139488A1 (en) * 2008-05-16 2009-11-19 Jfeスチール株式会社 Process for reforming exhaust gas from metallurgical furnace, process for cooling the exhaust gas, and apparatuses for both processes
JP2010100876A (en) * 2008-10-22 2010-05-06 Jfe Steel Corp Method and apparatus for modifying and heat-increasing exhaust gas produced from metallurgical furnace
JP2010202953A (en) * 2009-03-05 2010-09-16 Jfe Steel Corp Apparatus for reforming exhaust gas from metallurgical furnace
JP2011102680A (en) * 2009-11-11 2011-05-26 Jfe Steel Corp Method for recovering sensible heat of exhaust gas and method of cooling exhaust gas
US9005570B2 (en) 2011-01-13 2015-04-14 Siemens Aktiengesellschaft Method for treating a carbon dioxide-containing waste gas from an electrofusion process
CN105371670A (en) * 2015-12-07 2016-03-02 王立臣 Reducing and reusing device for multi-oxygen combustion smoke of industrial kiln and operation method thereof
CN105371670B (en) * 2015-12-07 2017-11-03 王立臣 A kind of Industrial Stoves polyoxy combustion product gases reduction reuse means and its operation method
JP2021054706A (en) * 2019-09-24 2021-04-08 積水化学工業株式会社 Gas production apparatus, gas production system and gas production method
JP7497243B2 (en) 2019-09-24 2024-06-10 積水化学工業株式会社 Gas production device, gas production system, and gas production method
CN111961796A (en) * 2020-09-16 2020-11-20 攀钢集团研究院有限公司 Method for increasing CO content in vanadium extraction converter gas
CN114657317A (en) * 2022-03-24 2022-06-24 鞍山市恒成设备制造有限公司 Low-carbon metallurgy method
CN114774622A (en) * 2022-04-27 2022-07-22 马鞍山钢铁股份有限公司 Steelmaking equipment based on low-carbon emission for steelmaking
CN114774622B (en) * 2022-04-27 2023-07-28 马鞍山钢铁股份有限公司 Steelmaking-based low-carbon-emission steelmaking equipment

Similar Documents

Publication Publication Date Title
JP3142565B2 (en) Improved clean power generator
JP2003166013A (en) Method for recovering converter gas
RU2012107293A (en) METHOD OF RESTORING BASED ON REFORMING GAS WITH REDUCED NOX EMISSIONS
TW202237861A (en) Smart hydrogen production for dri making
US9005570B2 (en) Method for treating a carbon dioxide-containing waste gas from an electrofusion process
JP2000212615A (en) RECOVER OF ENERGY FROM EXHAUST GAS IN IRON-work EQUIPMENT
JP5453760B2 (en) Method and apparatus for reforming and increasing heat of exhaust gas generated from metallurgical furnace
JP4712082B2 (en) Coal gasification and direct iron making method and system
JP5581658B2 (en) Exhaust gas sensible heat recovery method and exhaust gas cooling method
JP5540658B2 (en) Thermal energy recovery method for exhaust gas generated from metallurgical furnace
JP2002069456A (en) Method for recovering sensible heat of coke oven gas
US4604268A (en) Methods of desulfurizing gases
JP2010223573A (en) Method and device of cooling exhaust gas generated in metallurgical furnace
US20140013665A1 (en) Method for treating carbon dioxide-containing waste gas
CN115125347A (en) Preparation method of gas-based shaft furnace reducing gas by taking hydrocarbon-rich gas as raw material gas
JP2003254085A (en) Blast furnace air supply heating method of ironmaking coproduction
JP5581657B2 (en) Heat energy recovery method and apparatus for converter exhaust gas
JP2002212566A (en) Coke dry fire extinguisher and fire extinguishing method using the same
JP2005089797A (en) Method and apparatus for producing hydrogen and reduced iron
RU79977U1 (en) INSTALLATION FOR THE BURNING OF SOLID FUELS IN A CHEMICAL CYCLE WITH GASIFICATION AND USING CIRCULATING PARTICLES OF METAL OXIDES AS OXYGEN TRANSFERS
JP2006315926A (en) Processing method of converter by-product gas
JP2010196141A (en) Method for reforming exhaust gas produced in metallurgical furnace and reforming apparatus therefor
JPH07135016A (en) Power generation method using converter gas
JP2001270706A (en) Method for recovering sulfur from gas containing hydrogen sulfide, and sulfur recovering apparatus
CN115571855A (en) Converter gas resource utilization method