JP2000101113A - Manufacture of solar battery substrate - Google Patents

Manufacture of solar battery substrate

Info

Publication number
JP2000101113A
JP2000101113A JP10286042A JP28604298A JP2000101113A JP 2000101113 A JP2000101113 A JP 2000101113A JP 10286042 A JP10286042 A JP 10286042A JP 28604298 A JP28604298 A JP 28604298A JP 2000101113 A JP2000101113 A JP 2000101113A
Authority
JP
Japan
Prior art keywords
substrate
resin
carbon
mold
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10286042A
Other languages
Japanese (ja)
Inventor
Kazumi Kokaji
和己 小鍛治
Kojiro Ota
幸次郎 太田
Takayuki Suzuki
孝幸 鈴木
Mikiaki Taguchi
幹朗 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Sanyo Electric Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP10286042A priority Critical patent/JP2000101113A/en
Publication of JP2000101113A publication Critical patent/JP2000101113A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Ceramic Products (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily form a solar battery substrate whose photoelectric conversion efficiency is high, in which the peeling of a transparent conductive film or an amorphous silicon thin film does not peeled, and which has minute rugged structure and is formed of glass-like carbon. SOLUTION: Liquid thermosetting resin whose viscosity is 0.5-5 poises is injected into a frame where a plate, in which an uneven surface is formed is arranged on one face and is cured. Alternatively, the frame is peeled, the obtained resin cured plate is burnt and is made into glass-like carbon or the frame, where the substrate in which the uneven surface is formed is arranged on one face is filled with powder-like thermosetting resin. It is hot-pressed and molded with a pressure of 0.2-20 Ton/cm2, and the resin cured plate is generated. After that, the frame is peeled, the obtained resin cured plate is burnt, and it may be made into glass-like carbon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池基板の製
造方法に関する。
The present invention relates to a method for manufacturing a solar cell substrate.

【0002】[0002]

【従来の技術】アモルファスシリコン等のアモルファス
半導体材料を用いた太陽電池として、ガラス上にSnO
2、ITO等の透光性を有する導電性酸化物からなる透
明電極層を堆積した基板を用い、この基板上にプラズマ
CVD法を用いてアモルファス半導体層を形成したもの
が知られている。そして、従来より光閉じ込め効果を用
いて変換効率の向上を図るために、透明電極層は堆積条
件を適当な範囲に制御することにより、表面に多数の凹
凸を備えた形状とされている。しかしながら、斯かる表
面形状を有する透明電極層を堆積するにあたっては、5
50℃程度の熱CVDプロセスで形成するために製造コ
ストに占める割合が高く、アモルファス太陽電池の低コ
スト化を妨げていた。
2. Description of the Related Art As a solar cell using an amorphous semiconductor material such as amorphous silicon, SnO on glass is used.
2. It is known to use a substrate on which a transparent electrode layer made of a light-transmitting conductive oxide such as ITO is deposited, and form an amorphous semiconductor layer on the substrate by a plasma CVD method. Conventionally, in order to improve the conversion efficiency by using the light confinement effect, the transparent electrode layer is formed into a shape having many irregularities on the surface by controlling the deposition conditions within an appropriate range. However, when depositing a transparent electrode layer having such a surface shape, 5
Since it is formed by a thermal CVD process at about 50 ° C., it accounts for a large proportion of the manufacturing cost, which hinders the cost reduction of the amorphous solar cell.

【0003】また、特開平1−246816号公報に記
載されるように一般の炭素材料を太陽電池の基板として
使用するなどの検討が行われてきたが、炭素材料自身か
ら脱離する炭素粉が太陽電池製造の際に歩留まりを低下
させる要因となる欠点があった。また、一般の炭素材料
を基板に用いた場合、光閉じ込め効果を向上させるため
に形成される凹凸構造(テクスチャー構造)が形成不可
能なため、得られた光電変換効率が低く、太陽電池とし
て性能に劣り、実用化することは困難であった。
[0003] Further, as described in Japanese Patent Application Laid-Open No. 1-246816, the use of a general carbon material as a substrate for a solar cell has been studied. There is a drawback that causes a reduction in yield in the production of solar cells. In addition, when a general carbon material is used for the substrate, a concavo-convex structure (texture structure) formed to improve the light confinement effect cannot be formed, so that the obtained photoelectric conversion efficiency is low and the performance as a solar cell is low. And it was difficult to put it to practical use.

【0004】さらに、一般の炭素材料を太陽電池用基板
として用いると、アモルファスシリコンをCVDで堆積
する際に炭素材料自身から脱離する炭素粉がダストとな
ってアモルファスシリコン薄膜に取り込まれるため、太
陽電池の歩留まりが低い。また、炭素基板の表層部にダ
ストがあると、CVD薄膜の基板への密着性が悪く、形
成された薄膜が炭素基板から剥離し易く、信頼性低下の
要因となる。
Further, when a general carbon material is used as a substrate for a solar cell, the carbon powder detached from the carbon material itself when depositing amorphous silicon by CVD becomes dust and is taken in the amorphous silicon thin film. Battery yield is low. Further, if dust is present on the surface layer of the carbon substrate, the adhesion of the CVD thin film to the substrate is poor, and the formed thin film is easily peeled off from the carbon substrate, causing a reduction in reliability.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記した課題
を解決するものである。即ち本発明は、光電変換効率が
高く、透明導電膜やアモルファスシリコン薄膜の剥離が
生じない、精密な凹凸構造を有するガラス状炭素製の太
陽電池基板を、容易に形成できる製造方法を提供するも
のである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems. That is, the present invention provides a manufacturing method that can easily form a glassy carbon solar cell substrate having a high degree of photoelectric conversion efficiency and a precise uneven structure without peeling of a transparent conductive film or an amorphous silicon thin film. It is.

【0006】[0006]

【課題を解決するための手段】本発明は、凹凸状の表面
を形成した板を一面に配置した型枠に、粘度が0.5〜
5ポイズの液状の熱硬化性樹脂を注型して硬化させた
後、型枠を剥離し、得られる樹脂硬化板を焼成してガラ
ス状炭素化することを特徴とする太陽電池基板の製造方
法に関する。また本発明は、前記の凹凸状の表面を形成
した基板を一面に配置した型枠に、粉末状の熱硬化性樹
脂を充填し、0.2〜20Ton/cm2の圧力で熱圧成型し
て樹脂硬化板を作成した後、型枠を剥離し、得られる樹
脂硬化板を焼成してガラス状炭素化することを特徴とす
る太陽電池基板の製造方法に関する。
SUMMARY OF THE INVENTION The present invention relates to a mold in which a plate having an uneven surface is arranged on one surface and has a viscosity of 0.5 to 0.5.
A method for manufacturing a solar cell substrate, comprising casting and curing a 5-poise liquid thermosetting resin, peeling off a mold, and firing the resulting resin-cured plate to form a glassy carbon. About. The present invention also provides a mold in which a substrate having the above-mentioned uneven surface is formed on one surface, a powdery thermosetting resin is filled, and hot-pressed at a pressure of 0.2 to 20 Ton / cm 2. The present invention relates to a method for manufacturing a solar cell substrate, comprising: after forming a cured resin plate by heating, removing a mold, and firing the resulting cured resin plate to form a glassy carbon.

【0007】[0007]

【発明の実施の形態】本発明によって製造される太陽電
池基板は、その太陽電池を形成する基板の表面に凹凸構
造が形成されたガラス状炭素からなるものである。ガラ
ス状炭素は、一般の炭素材料が有する軽量、耐熱性、耐
食性、電気伝導性、高純度化が可能である等の性質を備
えているほか、ガス不透過性で硬度が高い、発塵性が低
い等の特徴を持っていることから、エレクトロニクス産
業、原子力産業、航空産業等各種の分野での広範な用途
に使用されつつある。上記の凹凸構造は、この上に形成
されるアモルファスシリコン膜中での光の光路長を増加
させることができ、これにより光電変換効率を高めるこ
とができる。凹凸構造の具体的な形としては、特に制限
はなく、例えば、一辺が0.2〜50μmの逆ピラミッ
ド型のくぼみが規則的に又は不規則に無数に配置された
もの、幅が0.2〜50μmの溝がストライプ状又は格
子状に無数に形成されたもの、半球状のくぼみが無数に
形成されたものなどを挙げることができる。凹凸構造が
形成された面における凹凸の段差(高低差)は、0.2
〜50μmであることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION A solar cell substrate manufactured by the present invention is made of glassy carbon having a concavo-convex structure formed on the surface of a substrate forming the solar cell. Glassy carbon has properties such as light weight, heat resistance, corrosion resistance, electric conductivity, and high purity that common carbon materials have. Because of its low characteristics, it is being used in a wide range of applications in various fields such as the electronics industry, nuclear power industry, and aviation industry. The above uneven structure can increase the optical path length of light in the amorphous silicon film formed thereon, thereby increasing the photoelectric conversion efficiency. The specific shape of the uneven structure is not particularly limited. For example, an inverted pyramid-shaped depression having a side of 0.2 to 50 μm is arranged innumerably regularly or irregularly, and has a width of 0.2. There may be mentioned, for example, those in which grooves of up to 50 μm are formed in countless stripes or lattices, and those in which hemispherical depressions are formed innumerably. The unevenness level difference (level difference) on the surface on which the uneven structure is formed is 0.2
It is preferably from 50 to 50 μm.

【0008】材質としてはガラス状炭素からなるが、こ
の材質により、アモルファスシリコンをCVDで堆積す
る際に炭素粉がダストとなって脱離することがなく、太
陽電池の歩留まりを向上でき、また、CVD薄膜の基板
への密着性がよく形成されたアモルファスシリコン薄膜
が基板から剥離しにくく、信頼性が向上する。
The material is made of glassy carbon. By this material, when the amorphous silicon is deposited by CVD, the carbon powder does not become dust and is not desorbed, so that the yield of the solar cell can be improved. The amorphous silicon thin film formed with good adhesion of the CVD thin film to the substrate is less likely to peel off from the substrate, and the reliability is improved.

【0009】前記ガラス状炭素は、熱硬化性樹脂を焼
成、炭素化して得ることができる。ガラス状炭素に前記
凹凸構造(テクスチャー構造)を形成する方法として
は、所望の凹凸構造を転写しうる、相対する凹凸構造を
形成した基板を、太陽電池を形成する面に用いた型枠を
作成し、この型枠を用いて成形することにより行うこと
ができる。
The glassy carbon can be obtained by firing and carbonizing a thermosetting resin. As a method for forming the uneven structure (texture structure) on the glassy carbon, a mold using a substrate on which a concavo-convex structure that can transfer a desired uneven structure is formed on a surface on which a solar cell is formed is formed. However, it can be performed by molding using this mold.

【0010】型枠とする基板に前記凹凸構造を形成する
方法は特に制限はなく、例えば、単結晶シリコン基板を
エッチング液でエッチングして大小さまざまなピラミッ
ド型の突起が無数に形成された基板を用いる方法(図1
にその基板の一例の電子顕微鏡写真を示す)、ガラスや
金属基板に機械的に溝を形成する方法、ガラスや金属基
板の表面を砥粒を用いてサンドブラスト処理を行って凹
凸を形成する方法などが挙げられる。これらの中では、
単結晶シリコン基板をエッチング液でエッチングして大
小さまざまなピラミッド型の突起が無数に形成された基
板を用いる方法が容易で且つ精度良く凹凸構造を形成で
きるので好ましい。エッチング条件に特に制限はなく、
例えば、凹凸構造を形成する単結晶シリコン基板の表面
を、洗浄液で表面洗浄した後、水酸化カリウムを3〜5
%含むようなアルカリ水溶液で70〜80℃の温度で4
0〜80分程度エッチングすることにより形成すること
ができる。
There is no particular limitation on the method of forming the concave-convex structure on a substrate serving as a mold. For example, a single-crystal silicon substrate is etched with an etchant to form a substrate on which a large number of large and small pyramid-shaped protrusions are formed. The method used (Figure 1
Figure 1 shows an electron micrograph of an example of the substrate), a method of mechanically forming grooves in a glass or metal substrate, a method of forming irregularities by sandblasting the surface of a glass or metal substrate using abrasive grains, etc. Is mentioned. Among these,
It is preferable to use a substrate on which a single crystal silicon substrate is etched with an etching solution and an infinite number of large and small pyramid-shaped projections are formed, since an uneven structure can be formed easily and accurately. There are no particular restrictions on the etching conditions,
For example, after cleaning the surface of a single crystal silicon substrate on which a concavo-convex structure is formed with a cleaning liquid,
% At 70-80 ° C.
It can be formed by etching for about 0 to 80 minutes.

【0011】転写するため方法は、熱硬化性樹脂の種類
によって異なり、液状の熱硬化性樹脂(液状の熱硬化性
樹脂自体及び熱硬化性樹脂の溶液)を用いる場合には、
前記基板に注型して転写することができ、又、粉末状の
熱硬化性樹脂の場合は、熱圧成型して転写することがで
きる。熱硬化性樹脂としては特に制限はなく、フェノー
ル樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、フラ
ン樹脂、メラミン樹脂、アルキッド樹脂、キシレン樹脂
等を挙げることができる。また、これらの樹脂の混合物
を用いることもできる。これらの樹脂の中で、特性の良
好なガラス状炭素が得られるので、フラン樹脂、フェノ
ール樹脂またはこれらの混合樹脂を材料とすることが好
ましい。
The method for transferring differs depending on the type of the thermosetting resin. When a liquid thermosetting resin (liquid thermosetting resin itself and a solution of the thermosetting resin) is used,
It can be cast and transferred to the substrate, and in the case of a powdery thermosetting resin, it can be transferred by hot pressing. The thermosetting resin is not particularly limited, and examples thereof include a phenol resin, an epoxy resin, an unsaturated polyester resin, a furan resin, a melamine resin, an alkyd resin, and a xylene resin. Also, a mixture of these resins can be used. Among these resins, it is preferable to use a furan resin, a phenol resin, or a mixed resin thereof because a vitreous carbon having good characteristics can be obtained.

【0012】また、前記熱硬化性樹脂に、p−トルエン
スルホン酸、フェノールスルホン酸、トリクロロ酢酸等
の硬化剤をエタノール、アセトン、エチレングリコール
等の溶媒に溶解して添加すると硬化時間が短縮できるの
で好ましい。硬化剤を用いる場合、その量は前記熱硬化
性樹脂に対して、0.1〜10重量%とすることが硬化
反応の制御の点で好ましい。
Further, when a curing agent such as p-toluenesulfonic acid, phenolsulfonic acid or trichloroacetic acid is dissolved in a solvent such as ethanol, acetone or ethylene glycol and added to the thermosetting resin, the curing time can be shortened. preferable. When a curing agent is used, its amount is preferably 0.1 to 10% by weight based on the thermosetting resin in terms of controlling the curing reaction.

【0013】液状の熱硬化性樹脂を用いる場合、前記凹
凸構造を形成された基板をアルミニウム、鉄等の皿状容
器や型枠の中に、必要に応じて接着剤等を用いて固定す
ることで、型枠の剥離が容易となり、再利用し易くなる
ので好ましい。本発明の製造法においては、液状の熱硬
化性樹脂の粘度(硬化剤を配合する場合はその配合前の
粘度)を0.5〜5ポイズ(25℃)とする。この範囲
外では、凹凸構造を精度よく転写することができない。
同様の観点で好ましい粘度は0.8〜2.5ポイズであ
る。また、この場合、凹凸構造を精度良く転写するに
は、液状の熱硬化性樹脂を注型後、未硬化の段階で好ま
しくは0.01〜10Torrの減圧下に置き、常圧に戻す
事を数回、好ましくは2〜10回、繰り返し行なう方法
が好ましい。減圧下での処理を行なった後、好ましくは
30〜90℃、より好ましくは40〜70℃で、好まし
くは30分〜15時間、樹脂を硬化させる。樹脂を硬化
させた後、シリコン基板から樹脂の硬化物を剥離し、好
ましくは90〜230℃、より好ましくは100〜21
0℃で1〜50時間硬化させる。図2に、図1のシリコ
ン基板を型枠として用いて、液状の熱硬化性樹脂を用い
て製造した樹脂硬化物の一例の電子顕微鏡写真を示す。
When a liquid thermosetting resin is used, the substrate having the uneven structure is fixed in a dish-shaped container or mold made of aluminum, iron, or the like using an adhesive or the like, if necessary. This is preferable because the mold can be easily separated and reused. In the production method of the present invention, the viscosity of the liquid thermosetting resin (when a curing agent is blended, the viscosity before blending) is 0.5 to 5 poise (25 ° C.). Outside this range, the uneven structure cannot be transferred accurately.
From the same viewpoint, a preferable viscosity is 0.8 to 2.5 poise. In this case, in order to accurately transfer the uneven structure, after casting the liquid thermosetting resin, it is preferable that the uncured stage be placed under a reduced pressure of preferably 0.01 to 10 Torr and returned to normal pressure. A method in which the treatment is repeated several times, preferably 2 to 10 times, is preferred. After the treatment under reduced pressure, the resin is cured at preferably 30 to 90C, more preferably 40 to 70C, and preferably for 30 minutes to 15 hours. After the resin is cured, the cured product of the resin is separated from the silicon substrate, preferably at 90 to 230 ° C, more preferably at 100 to 21 ° C.
Cure at 0 ° C. for 1-50 hours. FIG. 2 shows an electron micrograph of an example of a cured resin manufactured using a liquid thermosetting resin using the silicon substrate of FIG. 1 as a mold.

【0014】粉末状の熱硬化性樹脂を用いる場合、ガラ
ス状炭素に凹凸構造を形成する方法として、熱圧成型法
を用いることが出来る。熱圧成型法により凹凸構造を形
成するには、凹凸構造を形成した基板を熱圧成型機の金
型に溶接または接着により固定したり、また熱圧成型機
の金型の一面に直接前記凹凸構造を形成し、これを型と
して用いることができる。この型に粉末状の熱硬化性樹
脂を充填した後、本発明では、0.2〜20Ton/cm2
圧力で成型を行なう。この範囲外では、凹凸構造を精度
よく転写することができなかったり、型枠が破壊される
ことがある。同様の観点で好ましい圧力は0.5〜5To
n/cm2である。熱圧成型の温度は、好ましくは50〜2
00℃、より好ましくは80〜160℃である。熱圧成
型の後、得られた樹脂成型板を80〜230℃で再度硬
化を行ない、樹脂硬化板とすることが好ましい。
When a powdery thermosetting resin is used, a method of forming a concavo-convex structure on glassy carbon may be a hot-press molding method. In order to form the concavo-convex structure by the hot-press molding method, the substrate having the concavo-convex structure is fixed to a mold of a hot-press molding machine by welding or bonding, or the concavo-convex structure is directly formed on one surface of the mold of the hot-press molding machine. A structure can be formed and used as a mold. After filling the mold with the powdery thermosetting resin, in the present invention, molding is performed at a pressure of 0.2 to 20 Ton / cm 2 . Outside this range, the uneven structure may not be transferred with high accuracy, or the mold may be broken. From the same viewpoint, a preferable pressure is 0.5 to 5 To.
n / cm 2 . The temperature of hot pressing is preferably 50 to 2
00 ° C, more preferably 80 to 160 ° C. After the hot pressing, the obtained resin molded plate is preferably cured again at 80 to 230 ° C. to obtain a resin cured plate.

【0015】上記の各方法によって得られた樹脂硬化板
は、ついで、非酸化雰囲気中にて焼成しガラス状炭素と
することができる。焼成は、好ましくは0.5〜10℃
/時間の昇温速度で、好ましくは800℃以上、より好
ましくは1000℃以上まで昇温し、最高温度で1〜1
0時間保持して行なうことができる。最高熱処理温度が
800℃未満の場合、炭素化が不十分で、得られるガラ
ス状炭素には水素、酸素、窒素など、原料熱硬化性樹脂
に含有される炭素原子以外の原子が残存する傾向にあ
る。炭素原子以外の元素が残存したままで太陽電池の基
板に用いると、シリコンの薄膜CVD形成等の際に炭素
以外の元素が放出されシリコン薄膜中に入り込んで欠陥
となり、太陽電池の信頼性が低下することがある。
The cured resin plate obtained by each of the above methods can then be fired in a non-oxidizing atmosphere to obtain glassy carbon. Firing is preferably at 0.5 to 10 ° C.
/ Hour, preferably at a temperature of 800 ° C. or higher, more preferably at a temperature of 1000 ° C. or higher.
It can be carried out by holding for 0 hour. When the maximum heat treatment temperature is lower than 800 ° C., carbonization is insufficient, and atoms other than carbon atoms contained in the raw material thermosetting resin, such as hydrogen, oxygen, and nitrogen, tend to remain in the obtained glassy carbon. is there. If the element other than carbon atoms is used for the substrate of the solar cell while remaining, the element other than carbon is released during the thin film CVD of silicon and the like, enters the silicon thin film and becomes a defect, deteriorating the reliability of the solar cell. May be.

【0016】また、一且800℃以上の熱処理温度で焼
成処理して得られたガラス状炭素を、ついで非酸化雰囲
気中で800〜3000℃の温度範囲で高温処理しても
よい。さらに任意の大きさに切断したのち、脱灰炉など
により塩素、フレオン等の精製ガスを吹込んで高純度化
処理することもできる。図3に前記図2の樹脂硬化物を
ガラス状炭素化して得られた太陽電池基板の表面の電子
顕微鏡写真を示す。
Further, the glassy carbon obtained by firing at a heat treatment temperature of 800 ° C. or higher may be subjected to a high temperature treatment in a non-oxidizing atmosphere at a temperature in the range of 800 to 3000 ° C. Further, after cutting into an arbitrary size, a high purity treatment can be performed by blowing a purified gas such as chlorine or freon with a decalcification furnace or the like. FIG. 3 shows an electron micrograph of the surface of a solar cell substrate obtained by converting the cured resin of FIG. 2 into glassy carbon.

【0017】以上のようにして得られる表面に凹凸構造
が形成されたガラス状炭素製基板上には、常法に従い、
アモルファスシリコンの薄膜等を形成することができ
る。こうして得られる基板は、精密な凹凸構造を有する
ために光閉じ込め効果が高く、これを使用することによ
り、光電変換効率の高い太陽電池を得ることが出来る。
また、凹凸構造が、アモルファスシリコン等の薄膜の剥
離防止作用も持つため、薄膜の剥離が無く、太陽電池製
造の歩留りが良く、信頼性が高い太陽電池が得られる。
On a glassy carbon substrate having an uneven structure formed on the surface obtained as described above, a conventional method is used.
An amorphous silicon thin film or the like can be formed. The substrate thus obtained has a high light confinement effect because of having a precise uneven structure, and by using this, a solar cell with high photoelectric conversion efficiency can be obtained.
In addition, since the uneven structure also has a function of preventing peeling of a thin film of amorphous silicon or the like, there is no peeling of the thin film, and a solar cell with good yield and high reliability can be obtained.

【0018】[0018]

【実施例】以下、本発明の実施例を説明する。 実施例1 図1に示す凹凸構造を、エッチング処理により形成した
単結晶シリコン基板をアルミニウム製シャーレに接着剤
を用いて接着した。原料樹脂に、粘度1ポイズ(B型粘
度計で測定。25℃、ロータ回転速度60rpm)のフラ
ン樹脂初期縮合物(日立化成工業(株)製、ヒタフランV
F−302)を用い、これに硬化剤としてトリクロロ酢
酸を樹脂に対して7重量%加え、シャーレに注型した。
樹脂注型後、室温にて0.1Torrに2分間減圧する脱気
を2回行なった後、常圧に戻し、40℃で7時間硬化さ
せた。硬化後、樹脂の半硬化物を単結晶シリコンから剥
離し、ステンレス板に挟んで120℃で10時間硬化を
行なった。得られた硬化板を、非酸化雰囲気中、昇温速
度2℃/時間で900℃まで昇温し、1000℃で3時
間保持して焼成炭素化し、さらに昇温速度5℃/分で最
高2800℃まで昇温し、黒鉛化を行なった。
Embodiments of the present invention will be described below. Example 1 A single-crystal silicon substrate formed by the etching process with the concavo-convex structure shown in FIG. 1 was bonded to an aluminum Petri dish using an adhesive. An initial condensate of a furan resin having a viscosity of 1 poise (measured with a B-type viscometer at 25 ° C. and a rotor rotation speed of 60 rpm) (Hitafuran V, manufactured by Hitachi Chemical Co., Ltd.)
F-302), trichloroacetic acid was added as a curing agent to the resin at 7% by weight, and the mixture was cast into a petri dish.
After resin injection, degassing was performed twice at room temperature to reduce the pressure to 0.1 Torr for 2 minutes, then the pressure was returned to normal pressure, and curing was performed at 40 ° C. for 7 hours. After curing, the semi-cured resin was peeled off from the single crystal silicon, and cured at 120 ° C. for 10 hours between stainless steel plates. The obtained hardened plate is heated in a non-oxidizing atmosphere to 900 ° C. at a rate of 2 ° C./hour, kept at 1000 ° C. for 3 hours to be baked and carbonized, and further up to 2800 at a rate of 5 ° C./min. The temperature was raised to 70 ° C. to perform graphitization.

【0019】形成された凹凸構造の電子顕微鏡写真を図
3に示す。この図から明らかなように、その表面には、
精密な凹凸構造(一辺が1〜50μmの範囲の逆ピラミ
ッド型や半球状の、凹凸の段差(高低差)が1〜50μ
mの範囲にあるくぼみ)が全面に渡って形成されてい
た。得られたガラス状炭素製基板にスパッタ法によりタ
ングステンの裏面電極膜を成膜後、さらにプラズマCV
D法でアモルファスシリコンの薄膜を堆積し、表面側の
透明電極膜及び櫛型形状の集電極を形成し、リード線付
けを行い、光電変換効率の評価を行った。
FIG. 3 shows an electron micrograph of the formed concavo-convex structure. As is clear from this figure,
Precise uneven structure (inverted pyramid type or hemispherical shape with one side in the range of 1 to 50 μm, unevenness step (height difference) is 1 to 50 μm
m) was formed over the entire surface. After forming a tungsten back electrode film on the obtained glassy carbon substrate by sputtering, the plasma CV
A thin film of amorphous silicon was deposited by Method D, a transparent electrode film on the surface side and a comb-shaped collector electrode were formed, lead wires were attached, and the photoelectric conversion efficiency was evaluated.

【0020】実施例2 図1に示す凹凸構造を形成した単結晶シリコンを熱圧成
型機の金型の底部に溶接した。原料樹脂に粉末状フェノ
ール樹脂(鐘紡(株)製、S800)を用い、熱圧成型機
に投入した。樹脂投入後、2Ton/cm2の圧力で150℃
で3分間成型を行なった。成型後、樹脂の半硬化物を単
結晶シリコンから剥離し、SUS板に挟んで230℃で
3時間硬化を行なった。得られた硬化板を、非酸化雰囲
気中、昇温速度2℃/時間で1000℃まで昇温し、1
000℃で3時間保持して焼成炭素化し、さらに昇温速
度5℃/分で最高2800℃まで昇温して黒鉛化を行な
った。
Example 2 Single-crystal silicon having the concavo-convex structure shown in FIG. 1 was welded to the bottom of a mold of a hot press molding machine. A powdery phenol resin (Kanebo Co., Ltd., S800) was used as a raw material resin, and was charged into a hot-press molding machine. After loading the resin, 150 ℃ at 2 Ton / cm 2 pressure
For 3 minutes. After molding, the semi-cured resin was separated from the single crystal silicon, and cured at 230 ° C. for 3 hours between SUS plates. The obtained cured plate was heated to 1000 ° C. at a rate of 2 ° C./hour in a non-oxidizing atmosphere,
It was kept at 000 ° C. for 3 hours for carbonization, and further graphitized by heating up to 2800 ° C. at a rate of 5 ° C./min.

【0021】形成された基板の表面には、図3と同様な
精密な凹凸構造(一辺が1〜50μmの範囲の逆ピラミ
ッド型や半球状の、凹凸の段差(高低差)が1〜50μ
mの範囲にあるくぼみ)が全面に渡って形成されてい
た。得られたガラス状炭素製基板にスパッタ法によりタ
ングステンの裏面電極膜を成膜後、さらにプラズマCV
D法でアモルファスシリコンの薄膜を堆積し、表面側の
透明電極膜及び櫛型形状の集電極を形成し、リード線付
けを行い、光電変換効率の評価を行った。
On the surface of the formed substrate, the same fine uneven structure as shown in FIG. 3 (an inverted pyramid type or hemispherical shape having a side of 1 to 50 μm, a step of unevenness (difference in height) of 1 to 50 μm).
m) was formed over the entire surface. After forming a tungsten back electrode film on the obtained glassy carbon substrate by sputtering, the plasma CV
A thin film of amorphous silicon was deposited by Method D, a transparent electrode film on the surface side and a comb-shaped collector electrode were formed, lead wires were attached, and the photoelectric conversion efficiency was evaluated.

【0022】比較例1 フラン樹脂初期縮合物(日立化成工業(株)製、ヒタフラ
ンVF−302)に硬化剤としてトリクロロ酢酸を樹脂
に対して7重量%加え、シャーレに注型した。樹脂注型
後、室温にて0.1Torrに2分間減圧する脱気を2回行
なった後、常圧に戻し、90℃で7時間成型を行なっ
た。得られた硬化板を、非酸化雰囲気中、昇温速度2℃
/時間で900℃まで昇温し、900℃で3時間保持し
て焼成炭素化し、さらに昇温速度5℃/分で最高280
0℃まで昇温し、黒鉛化を行なった。得られたガラス状
炭素製基板にスパッタ法によりタングステンの裏面電極
膜を成膜後、さらにプラズマCVD法でアモルファスシ
リコンの薄膜を堆積したところ、アモルファスシリコン
の薄膜が剥離し、評価用サンプルの作製が出来なかっ
た。
Comparative Example 1 Trichloroacetic acid as a curing agent was added to a furan resin precondensate (Hitafuran VF-302, manufactured by Hitachi Chemical Co., Ltd.) as a curing agent in an amount of 7% by weight and cast into a petri dish. After resin injection, degassing was performed twice at room temperature to reduce the pressure to 0.1 Torr for 2 minutes, then the pressure was returned to normal pressure, and molding was performed at 90 ° C. for 7 hours. The obtained cured plate is heated in a non-oxidizing atmosphere at a heating rate of 2 ° C.
/ Hour at 900 ° C., and hold at 900 ° C. for 3 hours to form carbonized carbon, and at a rate of 5 ° C./min.
The temperature was raised to 0 ° C. to perform graphitization. After forming a tungsten backside electrode film on the obtained glassy carbon substrate by a sputtering method and further depositing an amorphous silicon thin film by a plasma CVD method, the amorphous silicon thin film was peeled off. I could not do it.

【0023】比較例2 凹凸構造のないガラス製基板にスパッタ法によりタング
ステンの裏面電極膜を成膜後、さらにプラズマCVD法
でアモルファスシリコンの薄膜を堆積し、表面側の透明
電極膜及び櫛型形状の集電極を形成し、リード線付けを
行い、光電変換効率の評価を行った。上記の基板を用い
て、光電変換効率の評価を行なった。基板サイズは1cm
2とした。評価結果を表1に示した。なお、光電変換効
率はその数字が大きいほど効率が高いことを示してい
る。
Comparative Example 2 After forming a tungsten back electrode film on a glass substrate having no uneven structure by a sputtering method, a thin film of amorphous silicon was further deposited by a plasma CVD method, and a transparent electrode film on the front side and a comb shape were formed. Was formed, lead wires were attached, and the photoelectric conversion efficiency was evaluated. Using the above substrate, the photoelectric conversion efficiency was evaluated. Substrate size is 1cm
And 2 . Table 1 shows the evaluation results. In addition, the photoelectric conversion efficiency indicates that the larger the number is, the higher the efficiency is.

【0024】☆[0024] ☆

【表1】表 1 [Table 1] Table 1

【0025】[0025]

【発明の効果】本発明の太陽電池基板の製造方法によれ
ば、精密な凹凸構造を容易に形成でき、光電変換効率が
高い太陽電池が作成可能な、透明導電膜やアモルファス
シリコン薄膜の剥離が生じないガラス状炭素製の太陽電
池基板を製造することができる。
According to the method for manufacturing a solar cell substrate of the present invention, it is possible to easily form a precise uneven structure and to produce a solar cell having high photoelectric conversion efficiency. A solar cell substrate made of glassy carbon that does not generate can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の太陽電池基板の製造法において、凹凸
構造の形成に用いる型枠用基板の表面構造の一例を示す
電子顕微鏡写真である。
FIG. 1 is an electron micrograph showing an example of the surface structure of a mold substrate used for forming a concavo-convex structure in a method for manufacturing a solar cell substrate of the present invention.

【図2】本発明の太陽電池基板の製造法において、太陽
電池基板となる樹脂硬化物の表面構造の一例を示す電子
顕微鏡写真である。
FIG. 2 is an electron micrograph showing an example of the surface structure of a cured resin that becomes a solar cell substrate in the method for manufacturing a solar cell substrate of the present invention.

【図3】本発明の製造法により得られる太陽電池基板に
おいて、その表面の凹凸構造の一例を示す電子顕微鏡写
真である。
FIG. 3 is an electron micrograph showing an example of a concavo-convex structure on the surface of a solar cell substrate obtained by the production method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 87/00 C04B 35/52 A (72)発明者 太田 幸次郎 茨城県日立市鮎川町三丁目3番1号 日立 化成工業株式会社山崎工場内 (72)発明者 鈴木 孝幸 茨城県日立市鮎川町三丁目3番1号 日立 化成工業株式会社山崎工場内 (72)発明者 田口 幹朗 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08L 87/00 C04B 35/52 A (72) Inventor Kojiro Ota 3-1-1 Ayukawacho, Hitachi City, Ibaraki Prefecture No. Hitachi Chemical Industry Co., Ltd. Yamazaki Plant (72) Inventor Takayuki Suzuki 3-3-1 Ayukawacho, Hitachi City, Hitachi City, Ibaraki Prefecture Hitachi Chemical Co., Ltd. Yamazaki Plant (72) Inventor Mikiro Taguchi Keihan Motodori, Moriguchi City, Osaka Prefecture 2-5-5 Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 凹凸状の表面を形成した板を一面に配置
した型枠に、粘度が0.5〜5ポイズの液状の熱硬化性
樹脂を注型して硬化させた後、型枠を剥離し、得られる
樹脂硬化板を焼成してガラス状炭素化することを特徴と
する太陽電池基板の製造方法。
1. A liquid thermosetting resin having a viscosity of 0.5 to 5 poise is poured into a mold in which a plate having an uneven surface is arranged on one side, and the mold is cured. A method for manufacturing a solar cell substrate, comprising peeling off a resin cured plate and firing the resin cured plate to form a glassy carbon.
【請求項2】 凹凸状の表面を形成した基板を一面に配
置した型枠に、粉末状の熱硬化性樹脂を充填し、0.2
〜20Ton/cm2の圧力で熱圧成型して樹脂硬化板を作成
した後、型枠を剥離し、得られる樹脂硬化板を焼成して
ガラス状炭素化することを特徴とする太陽電池基板の製
造方法。
2. A mold in which a substrate having an uneven surface formed on one side is filled with a thermosetting resin in powder form,
After forming a resin-cured plate by hot-press molding at a pressure of ~ 20 Ton / cm 2 , the mold is peeled off, and the obtained resin-cured plate is baked to be glassy carbonized. Production method.
JP10286042A 1998-09-22 1998-09-22 Manufacture of solar battery substrate Pending JP2000101113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10286042A JP2000101113A (en) 1998-09-22 1998-09-22 Manufacture of solar battery substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10286042A JP2000101113A (en) 1998-09-22 1998-09-22 Manufacture of solar battery substrate

Publications (1)

Publication Number Publication Date
JP2000101113A true JP2000101113A (en) 2000-04-07

Family

ID=17699227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10286042A Pending JP2000101113A (en) 1998-09-22 1998-09-22 Manufacture of solar battery substrate

Country Status (1)

Country Link
JP (1) JP2000101113A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226270A (en) * 2001-01-25 2002-08-14 Cluster Technology Co Ltd Amorphous carbon substrate
JP2002299660A (en) * 2001-03-30 2002-10-11 Kyocera Corp THIN-FILM CRYSTALLINE Si SOLAR CELL
KR100645831B1 (en) 2005-09-26 2006-11-14 고려대학교 산학협력단 Method of silicon solar cell
JP2008034686A (en) * 2006-07-31 2008-02-14 Toppan Printing Co Ltd Photoelectric conversion device and manufacturing method thereof
KR101019718B1 (en) * 2007-12-15 2011-03-07 이성수 Photo voltaic cell
KR101499123B1 (en) * 2014-07-04 2015-03-06 고려대학교 산학협력단 Method for texturing glass substrate of solar cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226270A (en) * 2001-01-25 2002-08-14 Cluster Technology Co Ltd Amorphous carbon substrate
JP2002299660A (en) * 2001-03-30 2002-10-11 Kyocera Corp THIN-FILM CRYSTALLINE Si SOLAR CELL
KR100645831B1 (en) 2005-09-26 2006-11-14 고려대학교 산학협력단 Method of silicon solar cell
JP2008034686A (en) * 2006-07-31 2008-02-14 Toppan Printing Co Ltd Photoelectric conversion device and manufacturing method thereof
KR101019718B1 (en) * 2007-12-15 2011-03-07 이성수 Photo voltaic cell
KR101499123B1 (en) * 2014-07-04 2015-03-06 고려대학교 산학협력단 Method for texturing glass substrate of solar cell

Similar Documents

Publication Publication Date Title
KR101105355B1 (en) Flexible collector for electrode, method for manufactuirng thereof and negative electrode using thereof
CN101174658B (en) Method for producing single crystal silicon solar cell and single crystal silicon solar cell
CN102643101A (en) Preparation method of C/SiBNC composite material
JP2000101113A (en) Manufacture of solar battery substrate
JP5638519B2 (en) Method for producing sputtering target using inorganic polymer
CN114976089B (en) Metal bipolar plate containing coating and preparation method thereof
JP2004149884A (en) Method for depositing ito transparent electroconductive thin film, ito transparent electroconductive thin film, transparent electrically conductive film, and touch panel
JP2019156653A (en) SILICON MELTING CRUCIBLE, METHOD OF PRODUCING SILICON MELTING CRUCIBLE, AND METHOD OF PRODUCING REACTION SINTERED SiC
JP2001158680A (en) Silicon carbide-metal complex, method for producing the same, member for wafer-polishing device and table for wafer-polishing device
JP2016155694A (en) Silicon carbide sintered compact and method for producing the same
CN208517290U (en) A kind of hard carbon fiber felt composite material
JP2553389B2 (en) Carbon jig for CVD equipment
JPH03119723A (en) Electrode plate for plasma etching use
JPH0766438A (en) Manufacture of substrate for photoelectric transducer
CN105047920A (en) Method for manufacturing silicon nitride micro-tube
JPH03285086A (en) Electrode plate for plasma etching
JP3141280B2 (en) Method for producing glassy carbon member for silicon wafer plasma processing
JP3859868B2 (en) Glassy electrode plate for plasma etching
US20100297801A1 (en) Method for producing electric contacts on a semiconductor component
JP2000272910A (en) Dummy wafer and its production
JP2000216414A (en) Substrate for solar battery, its manufacture and thin film solar battery
JPH0333007A (en) Carbon member for plasma device
CN101415294A (en) Carbon alloy base novel electronic circuit board and preparation technique thereof
WO1985003532A1 (en) Refractory hard metal containing plates for aluminum cell cathodes
JP2000026961A (en) Sputtering target and its production