JP2000100609A - Material alloy for nanocomposite rare earth magnets and manufacture thereof - Google Patents

Material alloy for nanocomposite rare earth magnets and manufacture thereof

Info

Publication number
JP2000100609A
JP2000100609A JP10264104A JP26410498A JP2000100609A JP 2000100609 A JP2000100609 A JP 2000100609A JP 10264104 A JP10264104 A JP 10264104A JP 26410498 A JP26410498 A JP 26410498A JP 2000100609 A JP2000100609 A JP 2000100609A
Authority
JP
Japan
Prior art keywords
alloy
concentration
cluster
rare earth
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10264104A
Other languages
Japanese (ja)
Inventor
Satoru Hirozawa
哲 広沢
Hirokazu Kanekiyo
裕和 金清
Yasuhiko Shigeki
恭彦 重木
Kazuhiro Houno
和博 宝野
Tokumi Taira
徳海 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Proterial Ltd
Original Assignee
National Research Institute for Metals
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals, Sumitomo Special Metals Co Ltd filed Critical National Research Institute for Metals
Priority to JP10264104A priority Critical patent/JP2000100609A/en
Publication of JP2000100609A publication Critical patent/JP2000100609A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0579Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B with exchange spin coupling between hard and soft nanophases, e.g. nanocomposite spring magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the heating of a material alloy itself by using a specified molten Fe-R-B-M2 alloy which has a structure of a substantially amorphous phase and contains aggregates of M2 atoms having a specified diameter at a specified concentration in an amorphous matrix. SOLUTION: The material is formulated by Fe100-x-y-uRxByM2u (R contains one or two types of Nd and Pr 50% or more, M2 is one or two or more types of Cu, Ag and Au, x: 1-6 at.%, y: 15-30 at.%, u: 0.005-2 at.%) and the structure has an amorphous phase of 95% or more. Aggregates of M2 elements having 1-50 nm diameter are formed at a concentration of 5 at.% or more in an amorphous matrix and acts crystal nuclei in an Fe3B phase in a following heat treatment wherein the crystal nucleus concentration is 1022-1025 nuclei/m3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、モーターやアク
チュエーターなどに最適な希土類焼結磁石用原料合金や
ボンド磁石用原料合金に係り、希土類元素の含有量が少
なくCu,Ag,Auの1種または2種以上を含有した特定組成の
Fe-B-R合金溶湯及びFe-Co-B-R合金溶湯を、比較的緩慢
な急冷条件にて急速凝固させた後、特定の温度範囲内で
所定時間通過させて冷却するか、通常の超急冷条件にて
急冷凝固させ、室温付近まで急速に冷却することにより
全体をアモルファス質とした後、特定の温度にて短時間
の熱処理を行って、アモルファスマトリックス中に所定
原子の原子集合体(クラスター)を有することにより、結
晶化熱処理時の発熱を低減して生産性を向上させたナノ
コンポジット希土類磁石用原料合金とその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a raw material alloy for a rare earth sintered magnet or a material alloy for a bonded magnet, which is most suitable for a motor or an actuator, etc., and has a rare earth element content of one or less of Cu, Ag, and Au. Of a specific composition containing two or more
After rapidly solidifying the Fe-BR alloy melt and the Fe-Co-BR alloy melt under relatively slow quenching conditions, let them pass for a specified time within a specific temperature range and cool them, or use ordinary ultra-rapid cooling conditions. After rapid solidification and rapid cooling to around room temperature, the whole is made amorphous, and then heat-treated for a short time at a specific temperature to have an atom aggregate (cluster) of a predetermined atom in the amorphous matrix. Accordingly, the present invention relates to a nanoalloy raw material alloy for a rare-earth magnet in which productivity is improved by reducing heat generation during crystallization heat treatment, and a method for producing the same.

【0002】[0002]

【従来の技術】Nd‐Fe-B系磁石において、近年、Nd4Fe
77B19(at%)近傍組成でFe3B型化合物を主相とする磁石材
料が提案(R.Coehoorn等、J.de Phys,C8,1988,669〜670
頁)された。この永久磁石材料はアモルファスリボンを
熱処理することにより、軟磁性であるFe3B相と硬磁性で
あるNd2Fe14B相が混在する結晶集合組織を有する準安定
構造の永久磁石材料である。
BACKGROUND OF THE INVENTION Nd-Fe-B based magnet, in recent years, Nd 4 Fe
77 B 19 (at%) magnetic material is proposed as a main phase an Fe 3 B type compound in the vicinity composition (R.Coehoorn like, J.de Phys, C8,1988,669~670
Page). This permanent magnet material is a metastable structure permanent magnet material having a crystal texture in which a soft magnetic Fe 3 B phase and a hard magnetic Nd 2 Fe 14 B phase are mixed by heat-treating an amorphous ribbon.

【0003】かかる永久磁石材料は、10kG程度のBrと2kOe〜
3kOeのiHcを有し、高価なNdの含有濃度が4at%程度と低
いため、配合原料価格はNd2Fe14Bを主相とするNd‐Fe-B
系ボンド磁石より安価ではあるが、配合原料のアモルフ
ァス合金化が必須条件であり、液体急冷条件が狭く限定
されるため、従来、組成的な改善が種々なされている。
[0003] Such a permanent magnet material has Br of about 10 kG and 2 kOe
Since it has iHc of 3 kOe and the content of expensive Nd is as low as about 4 at%, the compounding raw material price is Nd-Fe-B with Nd 2 Fe 14 B as the main phase
Although it is cheaper than a system-bonded magnet, it is an essential condition that an amorphous alloy of a compounding material is required, and the conditions for liquid quenching are narrowly limited. Therefore, conventionally, various improvements in composition have been made.

【0004】上記Fe3B型Nd-Fe-B系ナノコンポジット磁石
は、超急冷法によりアモルファス状態の原料合金を製造
した後、前記合金を熱処理してFe3B相およびNd2Fe14B相
を主要組織とするナノメートルサイズの複合組織(ナノ
コンポジット組織)にすることにより製造されている。
[0004] The above-mentioned Fe 3 B type Nd-Fe-B-based nanocomposite magnet is obtained by producing a raw material alloy in an amorphous state by a rapid quenching method, and then heat-treating the alloy to obtain an Fe 3 B phase and an Nd 2 Fe 14 B phase. It is manufactured by making a nanometer-sized composite structure (nanocomposite structure) having as its main structure.

【0005】[0005]

【発明が解決しようとする課題】前記Nd-Fe-B系原料合
金は超急冷法にて得られたアモルファス合金のフレーク
状又は粉末状であり、急冷速度が106K/s程度の超急冷法
によりアモルファス相が90%以上からなるように調整さ
れ、最終製品の磁石において高い磁気特性を発現させる
ために、結晶化熱処理工程にて結晶粒径を数nm〜数十nm
の範囲に調整する必要がある。
The Nd-Fe-B-based raw material alloy is a flake or powder of an amorphous alloy obtained by a rapid quenching method, and has a rapid cooling rate of about 10 6 K / s. The amorphous phase is adjusted to be 90% or more by the method, and in order to express high magnetic properties in the final product magnet, the crystal grain size is several nm to several tens nm in the crystallization heat treatment step.
It is necessary to adjust to the range.

【0006】従来の原料合金では結晶化に伴う発熱が著しい
ため、多量に熱処理をすると原料合金の温度の制御が困
難となり、又結晶成長が起こりやすく、熱処理時の原料
合金の供給速度および昇温速度の厳密な管理が必要とな
り、生産性を低下させる原因になっていた。
[0006] In the conventional raw material alloy, the heat generated by crystallization is remarkable, so that a large amount of heat treatment makes it difficult to control the temperature of the raw material alloy, crystal growth tends to occur, the supply rate of the raw material alloy during heat treatment and the temperature rise. Strict control of the speed was required, which reduced productivity.

【0007】この発明は、Fe3B型Nd-Fe-B系ナノコンポジッ
ト磁石における結晶化熱処理工程で、原料合金自体の発
熱を低減でき、結晶粒径の制御が容易で生産性を向上さ
せることが可能な、ナノコンポジット希土類磁石用原料
合金とその製造方法の提供を目的としている。
[0007] The present invention is to reduce the heat generation of the raw material alloy itself in the crystallization heat treatment step of the Fe 3 B type Nd-Fe-B-based nanocomposite magnet, to easily control the crystal grain size, and to improve the productivity. It is an object of the present invention to provide a raw material alloy for a nanocomposite rare earth magnet and a method for producing the same, which is possible.

【0008】[0008]

【課題を解決するための手段】発明者らは種々検討した
結果、従来の前記超急冷法においては、原料合金のアモ
ルファス化に重点をおいたため、冷却速度を過大に設定
し、原料合金の組織をほぼ完全なるアモルファス組織に
するか、あるいはアモルファスマトリックス中に微細結
晶からなるサブナノメートルからナノメートルサイズの
Fe3B相やNd2Fe2 3B相などの準安定相が不均一に存在する
組織になっているため、Fe3B相の結晶化が既に存在する
存在密度の低い結晶相を核として瞬時に進行して、粗大
組織になりやすいことを知見した。
As a result of various studies, the inventors of the present invention have set the cooling rate excessively in the conventional ultra-quenching method because the emphasis was on the amorphousization of the raw material alloy, and the structure of the raw material alloy was changed. To a nearly perfect amorphous structure, or a sub-nanometer to nanometer size
Since the structure is such that metastable phases such as the Fe 3 B phase and the Nd 2 Fe 2 3 B phase are non-uniformly present, crystallization of the Fe 3 B phase already exists, It was found that it progressed instantaneously and easily became a coarse tissue.

【0009】発明者らは、Fe3B型Nd-Fe-Bナノコンポジット
磁石合金系に固溶度を有さず、Feと大きな正の混合エン
タルピーを有する元素M2(Cu,Ag,Au)を微量添加し、超急
冷過程での冷却速度を低速にすると共に、固体中の元素
拡散が起こりやすい温度域(800℃〜500℃)の通過時間を
特定することにより、あるいは通常の超急冷条件にて急
冷凝固させ、室温付近まで急速に冷却することにより全
体をアモルファス質とした後、特定の温度にて短時間の
熱処理を行うことにより、原料合金粉末の組織の最適
化、Fe3B結晶化の核となるM2元素(Cu,Ag,Au)の原子が高
濃度に集積し、直径1nm〜50nmの原子集合体(クラスタ
ー)をアモルファスマトリックス内に特定量均一に分散
する組織にすることにが可能であり、Fe3B相の結晶化が
均一に起こると共に、従来の如く、瞬時の結晶化ではな
く、昇温過程で徐々に結晶化を進行させることにより、
結晶化反応熱の発生を広い温度範囲に分散させ、多量の
処理品の熱処理が可能となることを知見した。
[0009] The present inventors have proposed an element M2 (Cu, Ag, Au) which has no solid solubility in Fe 3 B type Nd-Fe-B nanocomposite magnet alloy system and has a large positive mixing enthalpy with Fe. Add a small amount, slow down the cooling rate in the ultra-quenching process, and specify the transit time in a temperature range (800 ° C to 500 ° C) where element diffusion in the solid is likely to occur, or in the normal ultra-quenching condition After rapid solidification and rapid cooling to around room temperature to make the whole amorphous, heat treatment at a specific temperature for a short time optimizes the structure of the raw alloy powder, crystallization of Fe 3 B A high concentration of atoms of the M2 element (Cu, Ag, Au), which is the nucleus of, forms a structure in which atomic aggregates (clusters) with a diameter of 1 nm to 50 nm are uniformly dispersed in an amorphous matrix in a specific amount. are possible, with crystallization of the Fe 3 B phase occurs uniformly, as in the conventional, instantaneous formation Rather than reduction, by proceeding gradually crystallized in the temperature raising process,
It has been found that the generation of heat of crystallization reaction is dispersed over a wide temperature range, and that a large amount of processed products can be heat-treated.

【0010】すなわち、発明者らは、特定組成の合金溶湯
を、比較的緩慢な急冷条件にて急速凝固させた後、特定
の温度範囲内を所定時間通過させて冷却する方法、また
は通常の超急冷条件にて急冷凝固させ、室温付近まで急
速に冷却することにより全体をアモルファス質とした
後、結晶化温度より充分低温の特定温度にて短時間の熱
処理を行うことによって、所望の金属組成に調整できる
ことを知見し、この発明を完成した。
[0010] That is, the present inventors have a method of rapidly solidifying a molten alloy having a specific composition under a relatively slow quenching condition, and then passing the molten alloy through a specific temperature range for a predetermined time to cool it. After rapid solidification under quenching conditions and rapid cooling to around room temperature to make the whole amorphous, heat treatment at a specific temperature sufficiently lower than the crystallization temperature for a short time to obtain the desired metal composition Having found that the adjustment can be made, the present invention has been completed.

【0011】この発明は、組成式を、Fe100-x-y-uRxByM2
u 、Fe100-x-y-w-uRxByM1wM2u、Fe100-x-y-z-uRxByCozM
2u 、Fe100-x-y-z-w-uRxByCozM1wM2u(但しRはNd又はPr
の1種または2種を50%以上含有、M1はAl,Si,Ti,V,Cr,Mn,
Ni,Ga,Zr,Nb,Mo,Hf,Ta,W,Pt,Pbの1種または2種以上、M2
はCu,Ag,Auの1種または2種以上)のいずれかで表し、組
成範囲を規定する記号x,y,z,w,uが下記値を満足する合
金溶湯を、1)冷却速度103K/s〜3×105K/sの範囲にて超
急冷法にて急速凝固後、800℃〜500℃の温度範囲の通過
時間1ms〜1sにて冷却するか、2)冷却速度104K/s〜106K/
sの範囲にて超急冷法にて急速凝固後、800℃〜500℃の
温度範囲の通過時間が1ms未満になるように冷却、400℃
〜550℃の温度範囲にて1分〜60分の熱処理をすることに
より、組織は95vol%以上が実質的にアモルファス相で、
且つアモルファスマトリックス中に直径1nm〜50nmのM2
原子が5at%以上の濃度で集積した原子集合体(クラスタ
ー)を1022個/m3〜1025個/m3の濃度で含有することを特
徴とする溶質クラスターを利用したナノコンポジット希
土類磁石用原料合金を得るものである。 x: 1at%〜6at% y: 15at%〜30at% z: 0.01at%〜20at% w: 0.01at%〜7at% u: 0.005at%〜2at%
[0011] This invention is a composition formula, Fe 100-xyu R x B y M2
u , Fe 100-xywu R x B y M1 w M2 u , Fe 100-xyzu R x B y Co z M
2 u, Fe 100-xyzwu R x B y Co z M1 w M2 u ( where R is Nd or Pr
Containing 50% or more of one or two of M1, Al, Si, Ti, V, Cr, Mn,
One or more of Ni, Ga, Zr, Nb, Mo, Hf, Ta, W, Pt, Pb, M2
Is one or more of Cu, Ag, and Au), and the symbols x, y, z, w, and u that define the composition range are alloy melts satisfying the following values: 1) Cooling rate 10 After rapid solidification by ultra-rapid cooling in the range of 3 K / s to 3 × 10 5 K / s, cool in the temperature range of 800 ° C to 500 ° C with a passage time of 1 ms to 1 s, or 2) Cooling rate 10 4 K / s to 10 6 K /
After rapid solidification by ultra-rapid cooling in the range of s, cool down to a temperature of 800 to 500 ° C so that the transit time is less than 1 ms, 400 ° C
By performing heat treatment for 1 minute to 60 minutes at a temperature range of ~ 550 ° C, 95% or more of the structure is a substantially amorphous phase,
M2 with a diameter of 1 nm to 50 nm in an amorphous matrix
For nanocomposite rare earth magnets using solute clusters, characterized by containing an atomic aggregate (cluster) in which atoms are accumulated at a concentration of 5 at% or more at a concentration of 10 22 / m 3 to 10 25 / m 3 This is to obtain a raw material alloy. x: 1at% to 6at% y: 15at% to 30at% z: 0.01at% to 20at% w: 0.01at% to 7at% u: 0.005at% to 2at%

【0012】[0012]

【発明の実施の形態】組成の限定理由希土類元素Rは、
保磁力発現のために必要なR2Fe14B相晶出の必須元素
で、Rの50%以上がPr,Ndの1種又は2種であることがR2Fe
14B相に一軸結晶磁気異方性を付与するために必要であ
り、また、PrおよびNd以外の成分は任意の希土類元素が
選択できるが、TbとDyはRの一軸結晶磁気異方性を増強
するので好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Composition Reasons Rare earth element R is
In essential element of R 2 Fe 14 B AiAkirade necessary for coercivity expression, 50% or more of R is Pr, it is one or two Nd is R 2 Fe
14 It is necessary to impart uniaxial crystal magnetic anisotropy to the B phase, and any rare earth element can be selected for components other than Pr and Nd, but Tb and Dy It is preferred because it enhances.

【0013】Rは、1at%未満では保磁力(iHc)発生の効果が少
なく、また、6at%を超えるとFe 3B相が生成されず、α-F
e相が主相となって保磁力(iHc)は著しく低下するので好
ましくないため、1at%〜6at%の範囲とする。
[0013] When R is less than 1 at%, the effect of generating coercive force (iHc) is small.
No, and when it exceeds 6 at%, Fe ThreeNo B phase is generated, α-F
The e phase becomes the main phase, and the coercive force (iHc) is significantly reduced.
Because it is not preferable, the range is 1 at% to 6 at%.

【0014】Bは、15at%未満および30at%を超えると所要の
保磁力(iHc)が得られないので15at%〜30at%とする。
If B is less than 15 at% or more than 30 at%, the required coercive force (iHc) cannot be obtained, so B is set to 15 at% to 30 at%.

【0015】Coは、キュリー温度向上による磁気特性の温度
変化に対する安定性の向上、並びに溶湯の粘性の低下等
の改善により、超急冷過程での溶湯噴出速度の安定化に
好ましく、増加量が0.01at%未満ではかかる効果が得ら
れず、また20at%を超えると磁化の低下を招来するので
好ましくない。よって0.01at%〜20at%とする。
[0015] Co is preferable for stabilizing the jetting speed of the molten metal in the ultra-quenching process by improving the stability of the magnetic properties against temperature change by improving the Curie temperature and reducing the viscosity of the molten metal. If it is less than at%, such an effect cannot be obtained, and if it exceeds 20 at%, the magnetization is lowered, which is not preferable. Therefore, it is set to 0.01 at% to 20 at%.

【0016】M1元素は、Al,Si,Ti,V,Cr,Mn,Ni,Ga,Zr,Nb,Mo,
Hf,Ta,W,Pt,Pbの1種または2種以上で保磁力(iHc)の増大
に有効であるが、0.01at%未満では保磁力(iHc)の増大の
効果が少なく、また7at%を超えると磁化が低下するので
添加量は0.01at%〜7at%とする。
[0016] The M1 element is Al, Si, Ti, V, Cr, Mn, Ni, Ga, Zr, Nb, Mo,
One or more of Hf, Ta, W, Pt, Pb is effective in increasing the coercive force (iHc), but less than 0.01 at%, the effect of increasing the coercive force (iHc) is small, and 7 at% If it exceeds, the magnetization decreases, so the addition amount is set to 0.01 at% to 7 at%.

【0017】M2元素は、Feと正の大きな混合エンタルピーを
有し、Rと負の大きな混合エンタルピーを有する元素で
あり、具体的にはCu,Ag,Auの1種又は2種以上であり、M2
はアモルファス中でFeとの大きな正の混合エンタルピー
を有するので、熱処理の極初期段階でFeと分離しクラス
ターを形成する。また、M2元素は、同時にRと負の大き
な混合エンタルピーを有するので、M2クラスターにRが
凝集し、M2‐R複合クラスターが形成される。
The M2 element is an element having a large positive enthalpy of mixing with Fe and having a large negative enthalpy of mixing with R, specifically, one or more of Cu, Ag, and Au. M2
Has a large positive enthalpy of mixing with Fe in the amorphous phase, so that it separates from Fe and forms clusters at an extremely early stage of the heat treatment. In addition, since the M2 element has a large negative enthalpy of mixing with R at the same time, R aggregates into the M2 cluster to form an M2-R composite cluster.

【0018】これによりクラスター/アモルファス界面でBの
濃化とRの欠乏領域が生じて、ここにFe3B相が核形成さ
れることにより微細なFe3Bが分散される。残存アモルフ
ァス領域からR2Fe14B相が形成されるので、1段階目の結
晶化組織をこのように微細化することにより、最終的な
ナノコンポジット組織を微細化することが可能である。
As a result, B enrichment and R deficient regions occur at the cluster / amorphous interface, where fine Fe 3 B is dispersed by nucleation of the Fe 3 B phase. Since the R 2 Fe 14 B phase is formed from the remaining amorphous region, it is possible to refine the final nanocomposite structure by refining the first-stage crystallized structure in this way.

【0019】M2元素は、この発明の必須元素であり、特定の
冷却速度で急冷凝固した後、特定温度範囲を比較的緩慢
な冷却速度で冷却する。あるいは急速凝固後、結晶化温
度より十分低温で短時間熱処理した場合に直径1nm〜50n
mのM2元素の集合体(クラスター)がアモルファスマトリ
ック中に特定濃度に形成され、後続の熱処理時にFe3B相
の結晶化核として作用し、熱処理工程での結晶化の急激
な進行を抑制し、反応熱の生成が短時間に発生して、熱
処理温度が変動する問題を抑制する効果がある。
[0019] The M2 element is an essential element of the present invention, and after quenching and solidifying at a specific cooling rate, is cooled at a relatively slow cooling rate in a specific temperature range. Alternatively, after rapid solidification, when heat-treated for a short time at a temperature sufficiently lower than the crystallization temperature, the diameter is 1 nm to 50 n.
An m2 element aggregate (cluster) is formed at a specific concentration in the amorphous matrix, and acts as a crystallization nucleus of the Fe 3 B phase during the subsequent heat treatment, suppressing the rapid progress of crystallization in the heat treatment process. This has the effect of suppressing the problem that the heat of reaction is generated due to the generation of reaction heat in a short time.

【0020】前記結晶化核の存在濃度は1022個/m3〜1025個/
m3で、前記濃度が1022個/m3未満では前記効果が少な
く、また1025個/m3を超えると原子クラスター内外のFe,
Nd,B相の組成差が低減して、原子クラスターがFe3Bの優
先核生成サイトを提供するという機構が作用しなくなる
ので好ましくない。
The concentration of the crystallization nuclei is 10 22 / m 3 to 10 25 /
m 3 , when the concentration is less than 10 22 / m 3 , the effect is small, and when it exceeds 10 25 / m 3 , Fe,
It is not preferable because the composition difference between the Nd and B phases is reduced, and the mechanism that the atomic cluster provides the preferential nucleation site of Fe 3 B does not work.

【0021】上記機構を発現するM2元素の添加量は、0.01at
%未満ではその効果がなく、また2at%を超えると減磁曲
線の角型性が劣化し、高い(BH)maxが得られないので好
ましくない。
[0021] The addition amount of the M2 element exhibiting the above mechanism is 0.01 at
If it is less than 2 at%, the effect is not obtained. If it exceeds 2 at%, the squareness of the demagnetization curve is deteriorated, and a high (BH) max cannot be obtained.

【0022】M2元素の原子集合体(クラスター)中での濃度
は、アトムプローブで測定した結果、5vol%以上であ
り、その構造は基本的にはアモルファスであり、特定の
長周期な結晶構造をもたない。
[0022] The concentration of the M2 element in the atomic aggregate (cluster) was measured by an atom probe and found to be 5 vol% or more. The structure was basically amorphous, and a specific long-period crystal structure was observed. I have nothing.

【0023】この発明による原料合金は、特定組成の合金溶
湯を、特定の冷却速度に超急冷して凝固させ、その後、
特定の温度範囲にてその通過時間を制御することによ
り、あるいは超急冷法にて急冷凝固後、特定の熱処理条
件にて熱処理することにより製造することができ、結晶
相としては未同定の準安定相または少量のα-Fe相(生成
時にはγ-Feであるが、これが相変態したものと考えら
れる)は5vol%未満含有してもよいが、アモルファス相は
95vol%未満になると、熱処理後、磁気特性、特に減磁曲
線の角型性が低下して(BH)max値が低下するので好まし
くない。
[0023] The raw material alloy according to the present invention solidifies a molten alloy having a specific composition by ultra-rapid cooling to a specific cooling rate.
It can be manufactured by controlling the transit time in a specific temperature range, or by quenching and solidifying by a rapid quenching method, and then heat-treating it under specific heat treatment conditions. Phase or a small amount of α-Fe phase (γ-Fe at the time of formation, which is considered to be phase transformed) may contain less than 5 vol%, but the amorphous phase
If the content is less than 95 vol%, the magnetic properties, particularly the squareness of the demagnetization curve are reduced after the heat treatment, and the (BH) max value is undesirably reduced.

【0024】製造条件の限定理由 この発明の原料合金を製造する方法には2種の方法があ
り、その第1の方法は特定組成の合金溶湯を比較的緩慢
な急冷条件にて急速凝固させた後、特定の温度範囲内を
所定時間通過させて冷却する方法であり、第2の方法は
通常の超急冷条件にて急冷凝固させ、室温付近まで急速
に冷却することにより全体をアモルファス質とした後、
特定の温度にて短時間の熱処理を行って、原子集合体
(クラスター)を生成する方法である。
Reasons for Limiting Manufacturing Conditions There are two methods for manufacturing the raw material alloy of the present invention. The first method is to rapidly solidify a molten alloy having a specific composition under relatively slow quenching conditions. After that, it is a method of cooling by passing through a specific temperature range for a predetermined time, the second method is rapidly solidified under normal ultra-quenching conditions, and rapidly cooled to around room temperature to make the whole amorphous rear,
Heat treatment at a specific temperature for a short time
(Cluster).

【0025】すなわち、第1の方法では合金溶湯の超急冷過
程での冷却速度は3×105K/sを超えると全体が均質なア
モルファス相となってしまい、Fe3B相の結晶化核として
作用するM2原子集合体(クラスター)の存在濃度が少なく
なり、後続の結晶化熱処理過程での結晶化が急激に瞬時
に進行するため組織制御が困難となり、又103K/s未満で
はアモルファス相が生成されず、α-Fe相(生成時にはγ
-Feであるが、これが相変態したものと考えられる)の粗
大な樹脂層が生成して、後続の熱処理によって所要のナ
ノコンポジット組織が得られないので好ましくない。
That is, in the first method, if the cooling rate in the ultra-quenching process of the molten alloy exceeds 3 × 10 5 K / s, the whole becomes a homogeneous amorphous phase, and the crystallization nuclei of the Fe 3 B phase The concentration of M2 atomic clusters (clusters) that act as a catalyst decreases, and crystallization in the subsequent crystallization heat treatment process proceeds rapidly and instantaneously, making it difficult to control the structure.If it is less than 10 3 K / s, amorphous No phase is formed, and the α-Fe phase
-Fe, which is considered to be a phase transformation), is not preferable because a coarse resin layer is formed, and a required nanocomposite structure cannot be obtained by a subsequent heat treatment.

【0026】又、超急冷法により急冷凝固した後の冷却条件
を800℃〜500℃の温度区間の通過時間を1msec〜1secに
限定した理由は、1ms未満ではM2原子の集合体(クラスタ
ー)が十分に成長せず、又1sを超えると冷却速度が遅す
ぎて結晶化が進行し、冷却速度の局部的変動により組織
が不均一となり、後続の結晶化熱処理での組織制御が困
難となるので好ましくない。
The reason why the cooling time after rapid solidification by the ultra-quenching method is limited to a time of 1 msec to 1 sec in a temperature section of 800 ° C. to 500 ° C. is that an aggregate (cluster) of M2 atoms is less than 1 ms. If it does not grow sufficiently, and if it exceeds 1 s, the cooling rate is too slow and crystallization proceeds, and the structure becomes uneven due to local fluctuation of the cooling rate, and it becomes difficult to control the structure in the subsequent crystallization heat treatment. Not preferred.

【0027】この800℃〜500℃の温度区間は急冷合金の凝固
が終了し、金属ガラス状になる温度区間で、固体中の原
子拡散が起こっている温度区間であり、800℃を超える
温度での冷却速度は103K/s〜3×105K/sが好ましく、又5
00℃未満では元素の拡散が一般に遅いので、特に冷却過
程での通過時間を限定する必要はないが、500℃未満で
も熱処理に相当するような3分間以上保持するとM2元素
の原子集合体(クラスター)の粗大化、結晶化の進行など
金属組織の変化を招来し、後続の熱処理過程での結晶化
を制御することが困難となるので好ましくない。
[0027] The temperature range from 800 ° C to 500 ° C is a temperature range in which solidification of the quenched alloy is completed and becomes metallic glass, and is a temperature range in which atom diffusion in a solid occurs. The cooling rate is preferably 10 3 K / s to 3 × 10 5 K / s,
If the temperature is lower than 00 ° C, the diffusion of the element is generally slow.Therefore, it is not necessary to particularly limit the passage time in the cooling process. ) Causes a change in the metal structure such as coarsening and progress of crystallization, which makes it difficult to control crystallization in the subsequent heat treatment process, which is not preferable.

【0028】この発明においては、M2元素をアモルファスマ
トリック中に微細集合体として分散させることにより、
Fe3B相の結晶化核として作用させ、後続の熱処理工程で
生成されるFe3B相及びNd2Fe14B相の微細に分散した希土
類磁石の組織制御を容易にし、すぐれた磁気特性を有す
る希土類磁石が得られる原料合金を提供するものであ
る。
In the present invention, by dispersing the M2 element as a fine aggregate in the amorphous matrix,
To act as a crystallization nucleus of Fe 3 B phase, to facilitate finely dispersed microstructure control of the rare earth magnet of Fe 3 B phase, which is generated by the subsequent heat treatment process and Nd 2 Fe 14 B phase, excellent magnetic properties It is intended to provide a raw material alloy from which a rare-earth magnet can be obtained.

【0029】また、第2の方法は、通常の超急冷を行って、
ほぼ全体を実質的にアモルファス化した後、再度昇温し
て400℃〜550℃で短時間の熱処理を行うことにより、M2
元素の原子集合体(クラスター)を生成する方法であり、
400℃〜550℃の熱処理では結晶化反応を起こさないの
で、一時に大量の熱処理が可能であり、この方法は工業
的実施方法として適している。
[0029] The second method is to perform ordinary ultra-rapid cooling,
After the whole is substantially amorphized, the temperature is raised again and a short-time heat treatment is performed at 400 ° C. to 550 ° C. to obtain M2.
It is a method of generating atomic aggregates (clusters) of elements,
Since a crystallization reaction does not occur in the heat treatment at 400 ° C. to 550 ° C., a large amount of heat treatment can be performed at a time, and this method is suitable as an industrial practice method.

【0030】この発明の合金系において、全体をアモルファ
スとするには104K/s〜106K/sの冷却速度での超急冷法が
好ましく、さらにより好ましくは3〜8×105K/sがよい。
超急冷法における冷却速度が104K/s未満では全体がアモ
ルファスとならず、又10 6K/sを超える冷却速度では超急
冷設備の冷却ロールの冷却対策が大規模となり好ましく
なく、106K/s以上の冷却速度にする必要はない。
In the alloy system of the present invention, the
10FourK / s ~ 106Ultra-rapid cooling at a cooling rate of K / s
Preferably, even more preferably 3-8 × 10FiveK / s is good.
Cooling rate of 10 in the rapid quenching methodFourAmo below K / s
It does not become Rufus, and 10 6Extremely rapid at cooling rates above K / s
Cooling measures for the cooling rolls of the refrigeration equipment are large and preferable.
No, 106It is not necessary to have a cooling rate higher than K / s.

【0031】[0031]

【実施例】実施例1 Nd4.5Fe73-xCo3Ga1B18.5Cux(x=0.3)なる組成の合金をメ
ルトスピニング法により、冷却速度約4×105K/s、800℃
から600℃の通過時間約0.8msにて冷却し、さらに530℃
で7分間熱処理して冷却速度約50℃/分で室温まで冷却し
てナノコンポジット磁石用原料を得た。
Example 1 An alloy having a composition of Nd 4.5 Fe 73-x Co 3 Ga 1 B 18.5 Cu x (x = 0.3) was melt-spinned at a cooling rate of about 4 × 10 5 K / s at 800 ° C.
Cooling time of about 0.8ms from 600 ° C to 530 ° C
For 7 minutes and cooled to room temperature at a cooling rate of about 50 ° C./min to obtain a raw material for a nanocomposite magnet.

【0032】この原料合金は厚さ約90μmの薄帯であった。
この薄帯をCuの特性X線を用いて粉末X線パターンを測定
したところ、全体がほぼアモルファスであり、およそ3v
ol%以下の準安定相の回折線が観察された。この薄帯か
ら針状試料を削りだし、さらに電解研磨によりアトムプ
ローブ顕微鏡用資料に加工して3次元アトムプローブ分
析を行ったところ、直径およそ1〜2nmのCu原子集合体が
およそ1024個/m3の密度で存在することが観察された。
This raw material alloy was a thin ribbon having a thickness of about 90 μm.
The thin ribbon was measured for powder X-ray pattern using characteristic X-rays of Cu.
ol% or less of a metastable phase diffraction line was observed. From this ribbon carved acicular sample further was subjected to by processing the atom probe microscope article 3-dimensional atom probe analysis by electrolytic polishing, Cu atoms aggregate diameter approximately 1~2nm approximately 10 24 / it was observed that present at a density of m 3.

【0033】前記原料合金を、幅100mm、加熱区間長900mm、
冷却区間長1000mmの金属フープベルト炉にて厚さ100μm
のステンレス製フープベルトを用いてアルゴンガス流気
中、送り速度200mm/分、原料フィード量5kg/時間、炉の
雰囲気温度600℃にて連続熱処理を行ったところ、平均
で(BH)max=136kJ/m3、Br=1.1T、HcJ=310kA/mの磁石特性
が得られた。
[0033] The raw material alloy, width 100mm, heating section length 900mm,
100μm thickness in 1000mm metal hoop belt furnace with cooling section length
Using a stainless steel hoop belt in an argon gas flow, feed rate 200 mm / min, raw material feed rate 5 kg / hour, when the continuous heat treatment was performed at furnace atmosphere temperature 600 ° C., on average (BH) max = 136 kJ Magnet properties of / m 3 , Br = 1.1T and HcJ = 310 kA / m were obtained.

【0034】比較例1 実施例1の組成式においてx=0(すなわちCuを含有しない)
の合金を冷却速度約10 6K/s条件で冷却し、さらに800℃
から600℃の通過時間約600μsで急速に冷却して薄帯を
得、熱処理を行わずに原料合金とした。
Comparative Example 1 In the composition formula of Example 1, x = 0 (that is, containing no Cu)
Cooling rate of alloy about 10 6Cool at K / s condition, and 800 ℃
From 600 ° C to about 600μs to cool rapidly
This was used as a raw material alloy without heat treatment.

【0035】この合金薄帯はX線回折によればほぼ完全なア
モルファスで結晶相の回折線は観察されなかった。ま
た、透過型顕微鏡による解析結果によれば、アモルファ
スマトリックス中にFe3Bの微細な結晶相がまばらに1022
個/m3程度の密度で分散していることが認められた。こ
の原料合金に実施例1と同じ条件で熱処理を施すと十分
な磁石特性が得られず、(BH)max=86kJ/m3、Br=0.93T、H
cJ=220kA/mの磁石特性が得られたにすぎなかった。
According to X-ray diffraction, the alloy ribbon was almost completely amorphous, and no diffraction line of a crystalline phase was observed. Further, according to the result of analysis by a transmission microscope, Fe 3 fine crystalline phase is sparsely 10 B in an amorphous matrix 22
It was confirmed that the particles were dispersed at a density of about particles / m 3 . If this raw material alloy was subjected to heat treatment under the same conditions as in Example 1, sufficient magnet properties could not be obtained, (BH) max = 86 kJ / m 3 , Br = 0.93 T, H
Only magnet properties of cJ = 220 kA / m were obtained.

【0036】比較例において、実施例1と同等な磁石特性を
得るにはフープベルトの送り速度を100mm/S、原料フィ
ード量を1kg/分、炉の雰囲気温度を620℃とする必要が
あり、熱処理行程の生産性が大きく異なっていることが
分かった。
In the comparative example, in order to obtain the same magnetic properties as in Example 1, it is necessary to set the feed speed of the hoop belt to 100 mm / S, the raw material feed rate to 1 kg / min, and the furnace atmosphere temperature to 620 ° C. It was found that the productivity of the heat treatment process was significantly different.

【0037】実施例2 表1に示す組成の合金をそれぞれ示した条件でメルトス
ピニング法により急速凝固させ、さらにあるものについ
ては熱処理を施してナノコンポジット磁石用原料を得
た。これらの原料はX線回折結果から少なくとも97vol%
以上がアモルファスであり、若干の準安定結晶相が存在
する組織を有していた。
Example 2 Alloys having the compositions shown in Table 1 were rapidly solidified by the melt spinning method under the conditions shown, and some of them were subjected to heat treatment to obtain a raw material for a nanocomposite magnet. These materials are at least 97 vol% from X-ray diffraction results
The above was amorphous and had a structure in which some metastable crystal phases were present.

【0038】これらの原料を、内径130mm、全長3m(うち加熱
部1.2m、冷却部1.8m)の回転チューブ式熱処理炉を用い
て原料フィード量20kg/hで表2に示す温度により熱処理
した。この時得られた磁石特性は表2に示すとおりであ
った。
These raw materials were heat-treated at a temperature shown in Table 2 at a raw material feed rate of 20 kg / h using a rotary tube type heat treatment furnace having an inner diameter of 130 mm and a total length of 3 m (including a heating section of 1.2 m and a cooling section of 1.8 m). The magnet properties obtained at this time were as shown in Table 2.

【0039】比較例2 表3(表1に示した組成からM2元素を抜いた組成)の合金を
冷却速度約6×105K/sにて急速凝固させ、800℃以下600
℃以上の滞留時間約500μsで急速に冷却した。X線回折
により、これらの合金はほぼ100%がアモルファス相であ
ることが分かった。これらの合金を原料として用い、実
施例2に示したと同じ装置を用い、同じ条件で熱処理す
るといずれも減磁曲線の角形が悪く、(BH)maxは全て95k
J/m3未満であった。
Comparative Example 2 The alloy of Table 3 (composition obtained by removing the M2 element from the composition shown in Table 1) was rapidly solidified at a cooling rate of about 6 × 10 5 K / s,
Cooled rapidly with a residence time above 500C for about 500 μs. X-ray diffraction showed that nearly 100% of these alloys were in the amorphous phase. Using these alloys as raw materials, using the same apparatus as shown in Example 2 and performing heat treatment under the same conditions, the demagnetization curves were all bad in square shape, and (BH) max was all 95k.
It was less than J / m 3.

【0040】比較例において、実施例2に示した合金と同等
の磁石特性を得るには、原料フィード量を5kg/h程度と
することが必要であり、実施例と比較例の合金は熱処理
行程の生産性が大きく異なっていることが分かった。
[0040] In the comparative example, in order to obtain the same magnetic properties as the alloy shown in Example 2, it is necessary to set the feed rate of the raw material to about 5 kg / h. It was found that the productivity of the products differed greatly.

【0041】[0041]

【表1】 【table 1】

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【発明の効果】この発明は、元素M2(Cu,Ag,Au)を微量添
加し、超急冷過程での冷却速度を低速にすると共に、固
体中の元素拡散が起こりやすい温度域(800℃〜500℃)の
通過時間を特定することにより、あるいは超急冷過程で
の冷却速度を高速にした後、特定温度に熱処理すること
により、原料合金粉末の組織の最適化、Fe3B結晶化の核
となるM2元素(Cu,Ag,Au)の原子が高濃度に集積し、直径
1nm〜50nmの原子集合体(クラスター)をアモルファスマ
トリックス内に特定量均一に分散する組織にすることに
より、Fe3B相の結晶化が均一に起こると共に、従来の如
く、瞬時の結晶化ではなく、昇温過程で徐々に結晶化を
進行させることにより、結晶化反応熱の発生を広い温度
範囲に分散させ、多量の当該合金の熱処理が可能とな
り、生産性を向上させることができる。
According to the present invention, the element M2 (Cu, Ag, Au) is added in a small amount, the cooling rate in the ultra-quenching process is reduced, and the temperature range (800 ° C. (500 ° C), or by increasing the cooling rate in the ultra-quenching process and then heat-treating it to a specific temperature, to optimize the structure of the raw alloy powder and the core of Fe 3 B crystallization. Atoms of the M2 element (Cu, Ag, Au) accumulate in high concentration
By forming a structure in which an atomic aggregate (cluster) of 1 nm to 50 nm is uniformly dispersed in a specific amount in an amorphous matrix, crystallization of the Fe 3 B phase occurs uniformly, and instead of instantaneous crystallization as in the related art, By gradually progressing the crystallization during the temperature raising process, the generation of heat of crystallization reaction is dispersed in a wide temperature range, and a large amount of the alloy can be heat-treated, thereby improving the productivity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金清 裕和 大阪府三島郡島本町江川2丁目15−17 住 友特殊金属株式会社山崎製作所内 (72)発明者 重木 恭彦 大阪府三島郡島本町江川2丁目15−17 住 友特殊金属株式会社山崎製作所内 (72)発明者 宝野 和博 茨城県つくば市千現1−2−1 科学技術 庁 金属材料技術研究所内 (72)発明者 平 徳海 茨城県つくば市千現1−2−1 科学技術 庁 金属材料技術研究所内 Fターム(参考) 4K018 AA27 BA18 BB06 BB07 BC01 BD01 KA45 KA46 5E040 AA04 AA19 BD00 BD03 CA01 HB07 HB11 HB15 NN01 NN06 NN17 NN18  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hirokazu Kanei 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Sumitomo Special Metals Co., Ltd. Yamazaki Works (72) Inventor Yasuhiko Shigeki Shimamoto-cho, Mishima-gun, Osaka 2-15-17 Egawa Sumitomo Special Metals Co., Ltd.Yamazaki Works (72) Inventor Kazuhiro Takano 1-2-1 Sengen, Tsukuba-shi, Ibaraki Prefectural Agency for Science and Technology Agency Metal Materials Research Laboratory (72) Inventor Tokuumi Taira Ibaraki 1-2-1 Sengen, Tsukuba, Japan F-term (Reference) 4K018 AA27 BA18 BB06 BB07 BC01 BD01 KA45 KA46 5E040 AA04 AA19 BD00 BD03 CA01 HB07 HB11 HB15 NN01 NN06 NN17 NN18

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 組成式をFe100-x-y-uRxByM2u(但しRはNd
又はPrの1種または2種を50%以上含有、M2はCu,Ag,Auの1
種または2種以上)を表し、組成範囲を規定する記号x,y,
uが下記値を満足し、組織は95vol%以上が実質的にアモ
ルファス相で、且つアモルファスマトリックス中に直径
1nm〜50nmのM2原子が5at%以上の濃度で集積した原子集
合体(クラスター)を1022個/m3〜1025個/m3の濃度で含有
することを特徴とする溶質クラスターを利用したナノコ
ンポジット希土類磁石用原料合金。 x: 1at%〜6at% y: 15at%〜30at% u: 0.005at%〜2at%
1. A composition formula Fe 100-xyu R x B y M2 u ( where R is Nd
Or containing 50% or more of one or two types of Pr, M2 is one of Cu, Ag, Au
Species or two or more), the symbols x, y,
u satisfies the following values, and the structure is 95% or more of a substantially amorphous phase and has a diameter within the amorphous matrix.
A solute cluster characterized by containing an atomic aggregate (cluster) in which M2 atoms of 1 nm to 50 nm are accumulated at a concentration of 5 at% or more at a concentration of 10 22 / m 3 to 10 25 / m 3 is used. Raw material alloy for nanocomposite rare earth magnets. x: 1at% to 6at% y: 15at% to 30at% u: 0.005at% to 2at%
【請求項2】 組成式をFe100-x-y-w-uRxByM1wM2u(但しR
はNd又はPrの1種または2種を50%以上含有、M1はAl,Si,T
i,V,Cr,Mn,Ni,Ga,Zr,Nb,Mo,Hf,Ta,W,Pt,Pbの1種または2
種以上、M2はCu,Ag,Auの1種または2種以上)を表し、組
成範囲を規定する記号x,y,w,uが下記値を満足し、組織
は95vol%以上が実質的にアモルファス相で、且つアモル
ファスマトリックス中に直径1nm〜50nmのM2原子が5at%
以上の濃度で集積した原子集合体(クラスター)を1022
/m3〜1025個/m3の濃度で含有することを特徴とする溶質
クラスターを利用したナノコンポジット希土類磁石用原
料合金。 x: 1at%〜6at% y: 15at%〜30at% w: 0.01at%〜7at% u: 0.005at%〜2at%
2. A method composition formula Fe 100-xywu R x B y M1 w M2 u ( where R
Contains 50% or more of one or two kinds of Nd or Pr, and M1 is Al, Si, T
One or two of i, V, Cr, Mn, Ni, Ga, Zr, Nb, Mo, Hf, Ta, W, Pt, Pb
Or more, M2 represents one or more of Cu, Ag, and Au), and the symbols x, y, w, and u defining the composition range satisfy the following values, and the structure is substantially 95 vol% or more. 5at% of M2 atoms in the amorphous phase and 1-50nm in diameter in the amorphous matrix
10 22 atomic aggregates (clusters) accumulated at the above concentrations
/ m 3 to 10 25 cells / m nanocomposite rare earth material alloy for a magnet using solute clusters characterized in that it contains a concentration of 3. x: 1at% to 6at% y: 15at% to 30at% w: 0.01at% to 7at% u: 0.005at% to 2at%
【請求項3】 組成式をFe100-x-y-z-uRxByCozM2u(但しR
はNd又はPrの1種または2種を50%以上含有、M2はCu,Ag,A
uの1種または2種以上)を表し、組成範囲を規定する記号
x,y,z,uが下記値を満足し、組織は95vol%以上が実質的
にアモルファス相で、且つアモルファスマトリックス中
に直径1nm〜50nmのM2原子が5at%以上の濃度で集積した
原子集合体(クラスター)を1022個/m3〜1025個/m3の濃度
で含有することを特徴とする溶質クラスターを利用した
ナノコンポジット希土類磁石用原料合金。 x: 1at%〜6at% y: 15at%〜30at% z: 0.01at%〜20at% u: 0.005at%〜2at%
The 3. A composition formula Fe 100-xyzu R x B y Co z M2 u ( where R
Contains 50% or more of one or two of Nd or Pr, M2 is Cu, Ag, A
(one or more of u) and a symbol that defines the composition range
x, y, z, u satisfy the following values, and the structure is an atomic group in which 95 vol% or more is a substantially amorphous phase and M2 atoms with a diameter of 1 nm to 50 nm are accumulated in an amorphous matrix at a concentration of 5 at% or more. A raw material alloy for a nanocomposite rare earth magnet using a solute cluster, characterized by containing a body (cluster) at a concentration of 10 22 / m 3 to 10 25 / m 3 . x: 1at% to 6at% y: 15at% to 30at% z: 0.01at% to 20at% u: 0.005at% to 2at%
【請求項4】 組成式をFe100-x-y-z-w-uRxByCozM1wM2
u(但しRはNd又はPrの1種または2種を50%以上含有、M1は
Al,Si,Ti,V,Cr,Mn,Ni,Ga,Zr,Nb,Mo,Hf,Ta,W,Pt,Pbの1種
または2種以上、M2はCu,Ag,Auの1種または2種以上)を表
し、組成範囲を規定する記号x,y,z,w,uが下記値を満足
し、組織は95vol%以上が実質的にアモルファス相で、且
つアモルファスマトリックス中に直径1nm〜50nmのM2原
子が5at%以上の濃度で集積した原子集合体(クラスター)
を1022個/m3〜1025個/m3の濃度で含有することを特徴と
する溶質クラスターを利用したナノコンポジット希土類
磁石用原料合金。 x: 1at%〜6at% y: 15at%〜30at% z: 0.01at%〜20at% w: 0.01at%〜7at% u: 0.005at%〜2at%
The 4. A composition formula Fe 100-xyzwu R x B y Co z M1 w M2
u (where R contains 50% or more of one or two of Nd or Pr, M1 is
Al, Si, Ti, V, Cr, Mn, Ni, Ga, Zr, Nb, Mo, Hf, Ta, W, Pt, Pb, one or more, M2 is one of Cu, Ag, Au or 2 or more), the symbols x, y, z, w, u that define the composition range satisfy the following values, the structure is 95% or more of a substantially amorphous phase, and a diameter of 1 nm to Atomic aggregate (cluster) of 50nm M2 atoms accumulated at a concentration of 5at% or more
10 22 / m 3 to 10 25 cells / m nanocomposite rare earth magnet material alloy that utilizes a solute clusters characterized in that it contains a concentration of 3. x: 1at% to 6at% y: 15at% to 30at% z: 0.01at% to 20at% w: 0.01at% to 7at% u: 0.005at% to 2at%
【請求項5】 組成式をFe100-x-y-uRxByM2u 、Fe
100-x-y-w-uRxByM1wM2u、Fe100-x-y-z-uRxByCozM2u 、F
e100-x-y-z-w-uRxByCozM1wM2u(但しRはNd又はPrの1種ま
たは2種を50%以上含有、M1はAl,Si,Ti,V,Cr,Mn,Ni,Ga,Z
r,Nb,Mo,Hf,Ta,W,Pt,Pbの1種または2種以上、M2はCu,A
g,Auの1種または2種以上)のいずれかで表し、組成範囲
を規定する記号x,y,z,w,uが下記値を満足する合金溶湯
を、冷却速度103K/s〜3×105K/sの範囲にて超急冷法に
て急速凝固後、800℃〜500℃の温度範囲の通過時間1ms
〜1sにて冷却することを特徴とする溶質クラスターを利
用したナノコンポジット希土類磁石用原料合金の製造方
法。 x: 1at%〜6at% y: 15at%〜30at% z: 0.01at%〜20at% w: 0.01at%〜7at% u: 0.005at%〜2at%
5. A composition formula Fe 100-xyu R x B y M2 u, Fe
100-xywu R x B y M1 w M2 u, Fe 100-xyzu R x B y Co z M2 u, F
e 100-xyzwu R x B y Co z M1 w M2 u ( where R is 50% or more of one or two kinds of Nd or Pr, M1 is Al, Si, Ti, V, Cr, Mn, Ni, Ga , Z
One or more of r, Nb, Mo, Hf, Ta, W, Pt, Pb, M2 is Cu, A
g, one or more of Au), the symbols x, y, z, w, u that define the composition range satisfy the following values, and the cooling rate is 10 3 K / s or more. After rapid solidification by the rapid quenching method in the range of 3 × 10 5 K / s, the passage time in the temperature range of 800 ° C to 500 ° C is 1 ms.
A method for producing a raw alloy for a nanocomposite rare earth magnet using a solute cluster, characterized in that the alloy is cooled in 1 second. x: 1at% to 6at% y: 15at% to 30at% z: 0.01at% to 20at% w: 0.01at% to 7at% u: 0.005at% to 2at%
【請求項6】 組成式をFe100-x-y-uRxByM2u 、Fe
100-x-y-w-uRxByM1wM2u、Fe100-x-y-z-uRxByCozM2u 、F
e100-x-y-z-w-uRxByCozM1wM2u(但しRはNd又はPrの1種ま
たは2種を50%以上含有、M1はAl,Si,Ti,V,Cr,Mn,Ni,Ga,Z
r,Nb,Mo,Hf,Ta,W,Pt,Pbの1種または2種以上、M2はCu,A
g,Auの1種または2種以上)のいずれかで表し、組成範囲
を規定する記号x,y,z,w,uが下記値を満足する合金溶湯
を、冷却速度104K/s〜106K/sの範囲にて超急冷法にて急
速凝固後、800℃〜500℃の温度範囲の通過時間が1ms未
満になるように冷却、400℃〜550℃の温度範囲にて1分
〜60分の熱処理をすることを特徴とする溶質クラスター
を利用したナノコンポジット希土類磁石用原料合金の製
造方法。 x: 1at%〜6at% y: 15at%〜30at% z: 0.01at%〜20at% w: 0.01at%〜7at% u: 0.005at%〜2at%
6. A composition formula Fe 100-xyu R x B y M2 u, Fe
100-xywu R x B y M1 w M2 u, Fe 100-xyzu R x B y Co z M2 u, F
e 100-xyzwu R x B y Co z M1 w M2 u ( where R is 50% or more of one or two kinds of Nd or Pr, M1 is Al, Si, Ti, V, Cr, Mn, Ni, Ga , Z
One or more of r, Nb, Mo, Hf, Ta, W, Pt, Pb, M2 is Cu, A
g, one or two or more of Au), and the symbols x, y, z, w, u that define the composition range satisfy the following values, and the cooling rate is 10 4 K / s or more. After rapid solidification by the rapid quenching method in the range of 10 6 K / s, it is cooled so that the passage time in the temperature range of 800 ° C to 500 ° C is less than 1 ms, and 1 minute in the temperature range of 400 ° C to 550 ° C. A method for producing a raw alloy for a nanocomposite rare-earth magnet using a solute cluster, wherein a heat treatment is performed for up to 60 minutes. x: 1at% to 6at% y: 15at% to 30at% z: 0.01at% to 20at% w: 0.01at% to 7at% u: 0.005at% to 2at%
JP10264104A 1998-09-18 1998-09-18 Material alloy for nanocomposite rare earth magnets and manufacture thereof Pending JP2000100609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10264104A JP2000100609A (en) 1998-09-18 1998-09-18 Material alloy for nanocomposite rare earth magnets and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10264104A JP2000100609A (en) 1998-09-18 1998-09-18 Material alloy for nanocomposite rare earth magnets and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2000100609A true JP2000100609A (en) 2000-04-07

Family

ID=17398577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10264104A Pending JP2000100609A (en) 1998-09-18 1998-09-18 Material alloy for nanocomposite rare earth magnets and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2000100609A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327930A (en) * 2003-04-28 2004-11-18 Neomax Co Ltd Rare earth magnet and its manufacturing method
CN106169345A (en) * 2016-08-29 2016-11-30 海安县建业磁材有限公司 A kind of neodymium iron boron magnetic body and preparation method and neodymium iron boron magnetic body photo frame

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327930A (en) * 2003-04-28 2004-11-18 Neomax Co Ltd Rare earth magnet and its manufacturing method
JP4576800B2 (en) * 2003-04-28 2010-11-10 日立金属株式会社 Rare earth magnet and manufacturing method thereof
CN106169345A (en) * 2016-08-29 2016-11-30 海安县建业磁材有限公司 A kind of neodymium iron boron magnetic body and preparation method and neodymium iron boron magnetic body photo frame
CN106169345B (en) * 2016-08-29 2018-05-01 海安县建业磁材有限公司 A kind of preparation method of neodymium iron boron magnetic body

Similar Documents

Publication Publication Date Title
JP4023138B2 (en) Compound containing iron-based rare earth alloy powder and iron-based rare earth alloy powder, and permanent magnet using the same
KR100562681B1 (en) Permanent magnet including multiple ferromagnetic phases and method for producing the magnet
KR100535945B1 (en) Nanocomposite magnet
EP1826782B1 (en) Iron base rare earth nano-composite magnet and method for production thereof
JP5071409B2 (en) Iron-based rare earth nanocomposite magnet and manufacturing method thereof
JP4687662B2 (en) Iron-based rare earth alloy magnet
JP4830972B2 (en) Method for producing isotropic iron-based rare earth alloy magnet
JP3801456B2 (en) Iron-based rare earth permanent magnet alloy and method for producing the same
JP3264664B1 (en) Permanent magnet having a plurality of ferromagnetic phases and manufacturing method thereof
JP3594084B2 (en) Rare earth alloy ribbon manufacturing method, rare earth alloy ribbon and rare earth magnet
JP7151238B2 (en) rare earth permanent magnet
JPH07188704A (en) Alloy powder for rare earth permanent magnet and its production
JP2000100609A (en) Material alloy for nanocomposite rare earth magnets and manufacture thereof
JP2005270988A (en) Method for producing rare-earth-metal alloy thin sheet, rare-earth-metal alloy thin sheet and rare-earth-metal magnet
JP3720489B2 (en) Method for producing iron-based alloy for fine crystal permanent magnet
JPH0776708A (en) Production of anisotropic rare earth alloy powder for permanent magnet
JP3773484B2 (en) Nano composite magnet
JPH0620813A (en) Rare earth anisotropic permanent magnet powder and manufacture thereof
JP3763774B2 (en) Quenched alloy for iron-based rare earth alloy magnet and method for producing iron-based rare earth alloy magnet
JP4670179B2 (en) Permanent magnet having a plurality of ferromagnetic phases and method for producing the same
JP4715245B2 (en) Iron-based rare earth nanocomposite magnet and method for producing the same
JPH10306314A (en) Manufacture of soft magnetic alloy
JP3850623B2 (en) Method for producing soft magnetic alloy having fine crystal structure
JP2000269015A (en) Iron based permanent magnet containing trace of rare earth metal and production thereof
JP4107062B2 (en) Low rare earth-containing magnet and manufacturing method thereof