JP2000093800A - Method for regenerating hydrogenation catalyst - Google Patents

Method for regenerating hydrogenation catalyst

Info

Publication number
JP2000093800A
JP2000093800A JP10267768A JP26776898A JP2000093800A JP 2000093800 A JP2000093800 A JP 2000093800A JP 10267768 A JP10267768 A JP 10267768A JP 26776898 A JP26776898 A JP 26776898A JP 2000093800 A JP2000093800 A JP 2000093800A
Authority
JP
Japan
Prior art keywords
catalyst
solvent
gas
regeneration
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10267768A
Other languages
Japanese (ja)
Other versions
JP4201890B2 (en
Inventor
Shoji Hasegawa
祥志 長谷川
Hideaki Ueoka
秀晃 植岡
Osamu Tabata
修 田端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP26776898A priority Critical patent/JP4201890B2/en
Publication of JP2000093800A publication Critical patent/JP2000093800A/en
Application granted granted Critical
Publication of JP4201890B2 publication Critical patent/JP4201890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for regenerating a hydrogenation catalyst by which the activity of the catalyst can be recovered beyond the level of the activity of the conventional catalyst. SOLUTION: The regeneration of a hydrogenation catalyst containing copper which is deactivated is achieved by cleaning the oil content of the deactivated catalyst with a solvent, then removing the residual solvent in the catalyst, oxidizing the catalyst with an oxygen-containing gas at 150-400 deg.C temperature and reduction-activating the catalyst. Further, carboxylic acid or the ester thereof is catalytically reduced with hydrogen by a fixed bed continuous reaction process using the regenerated catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、銅を含有する失活
した水素化触媒の再生法、及びそれを用いたアルコール
の製造法に関する。
[0001] The present invention relates to a method for regenerating a deactivated hydrogenation catalyst containing copper and a method for producing an alcohol using the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】水素化
触媒の再生法としては、特開平6−63406 号公報に開示
されている方法がある。この方法では、20〜300 ℃の温
度で水素又は不活性ガスやそれらの混合ガス気流中で劣
化触媒を前処理した後、酸化処理し、その後還元活性化
を行っている。しかしこの再生法では、前処理時に油分
の除去が十分でなく、酸化工程で触媒が燃焼熱の影響を
受け、さらに油分自体が酸化され生成した脂肪酸による
銅の溶出等、触媒の変質が懸念される。
2. Description of the Related Art As a method for regenerating a hydrogenation catalyst, there is a method disclosed in JP-A-6-63406. In this method, a degraded catalyst is pre-treated in a stream of hydrogen or an inert gas or a mixed gas thereof at a temperature of 20 to 300 ° C., then oxidized, and then reduced and activated. However, in this regenerating method, the removal of oil during the pretreatment is not sufficient, and the catalyst is affected by the heat of combustion in the oxidation step, and furthermore, there is a concern that the oil itself may be oxidized, and the catalyst may be degraded such as elution of copper by fatty acids generated. You.

【0003】従って、本発明の課題は、従来以上に触媒
の活性が回復する水素化触媒の再生法を提供することに
ある。
Accordingly, an object of the present invention is to provide a method for regenerating a hydrogenation catalyst in which the activity of the catalyst is recovered more than before.

【0004】[0004]

【課題を解決するための手段】本発明は、下記工程(a)
、(b) 、(c) を有する銅を含有する失活した水素化触
媒の再生法、及びこの再生法により再生された触媒を用
い、固定床連続反応方式により、カルボン酸又はそのエ
ステルを水素で接触還元するアルコールの製造法であ
る。 (a) 失活した触媒の油分を溶剤で洗浄し、ついで触媒に
残った溶剤を除去する工程。 (b) 工程(a) で得られた触媒を 150〜400 ℃の温度範囲
内で酸素含有ガスで酸化する工程。 (c) 工程(b) で得られた触媒を還元活性化する工程。
The present invention comprises the following step (a):
, (B), the regeneration method of the deactivated hydrogenation catalyst containing copper having (c), and using the catalyst regenerated by this regeneration method, the carboxylic acid or its ester hydrogen by a fixed bed continuous reaction system Is a method for producing an alcohol which is catalytically reduced by (a) washing the deactivated catalyst oil with a solvent, and then removing the solvent remaining on the catalyst; (b) oxidizing the catalyst obtained in the step (a) with an oxygen-containing gas within a temperature range of 150 to 400 ° C. (c) a step of reducing and activating the catalyst obtained in the step (b).

【0005】[0005]

【発明の実施の形態】本発明における銅を含有する失活
した水素化触媒は、例えば銅含有水素化触媒前駆体を不
活性な溶媒中で水素にて還元活性化したものを、アルコ
ール製造等に用いて失活した触媒である。ここで失活と
は、新触媒に比べ活性が低下し、目的の反応に対して生
産性やコスト等の面から再生処理を行うことが望ましい
状態のことをいう。
BEST MODE FOR CARRYING OUT THE INVENTION The deactivated hydrogenation catalyst containing copper in the present invention is, for example, a product obtained by reducing and activating a copper-containing hydrogenation catalyst precursor with hydrogen in an inert solvent to produce alcohol. Deactivated catalyst. Here, the term "deactivation" refers to a state in which the activity is lower than that of a new catalyst, and it is desirable to perform a regeneration treatment for the target reaction from the viewpoint of productivity, cost, and the like.

【0006】銅含有水素化触媒前駆体としては、銅−ク
ロム系酸化物触媒、銅−亜鉛系酸化物触媒、銅−鉄系酸
化物触媒、銅−アルミ系酸化物触媒あるいは銅−シリカ
系酸化物触媒等の前駆体が挙げられ、酸化銅含有量は全
触媒前駆体重量に対し、5〜98重量%が好ましく、20〜
80重量%が更に好ましい。尚、これらの触媒前駆体をシ
リカ、アルミナ、酸化ジルコニア、酸化チタン、シリカ
−アルミナ等の担体に担持させたものでもよく、ここで
いう全触媒前駆体重量とはこれらの担体を含めた重量を
言う。
[0006] Copper-containing hydrogenation catalyst precursors include copper-chromium oxide catalysts, copper-zinc oxide catalysts, copper-iron oxide catalysts, copper-aluminum oxide catalysts, and copper-silica oxidation catalysts. The catalyst content is preferably 5 to 98% by weight, preferably 20 to 98% by weight, based on the total weight of the catalyst precursor.
80% by weight is more preferred. These catalyst precursors may be those supported on a carrier such as silica, alumina, zirconia oxide, titanium oxide, and silica-alumina, and the total catalyst precursor weight referred to here means the weight including these carriers. To tell.

【0007】成形されるべき触媒前駆体の形状は、固定
床反応器の運転に支障のないものが良く、円柱状に打錠
又は押し出し成形された触媒前駆体、又は1〜20mmの球
状粒子に成形された触媒前駆体が、容易にかつ安価に製
造できる点で好ましい。
[0007] The shape of the catalyst precursor to be molded is preferably such that it does not hinder the operation of the fixed bed reactor. The catalyst precursor is formed into a columnar tablet-formed or extruded catalyst precursor or spherical particles of 1 to 20 mm. The molded catalyst precursor is preferred in that it can be easily and inexpensively manufactured.

【0008】本発明における上記工程(a) 〜(c) は、固
定床反応器で行うことが、触媒の反応器からの抜出し及
び再充填する作業の手間が省け、低コストで且つ効率よ
く再生でき好ましい。さらには該再生触媒を再利用する
ことで、製品に占める触媒コストを大幅に低減できる。
以下、各工程について説明する。
In the present invention, the steps (a) to (c) are carried out in a fixed bed reactor, so that the operation of extracting and refilling the catalyst from the reactor can be omitted, and the cost and efficiency of the regeneration can be reduced. It is preferable. Further, by reusing the regenerated catalyst, the cost of the catalyst in the product can be significantly reduced.
Hereinafter, each step will be described.

【0009】〔工程(a) 〕本工程は、工程(b) の酸化時
に油分の燃焼による発熱を抑制し、特に活性点である銅
あるいはその酸化物のシンタリングを軽減することのみ
ならず、触媒に残存する油分自体が酸化されて生成した
脂肪酸による銅の溶出等、触媒の変質を抑制する点から
重要な工程である。
[Step (a)] This step not only suppresses the heat generation due to the burning of oil during the oxidation in step (b), and particularly reduces the sintering of copper or its oxide as an active site. This is an important step from the viewpoint of suppressing deterioration of the catalyst, such as elution of copper by fatty acids generated by oxidizing the oil itself remaining in the catalyst.

【0010】本工程で用いられる溶剤は、油分(反応原
料、生成物等)が溶解できる溶剤であれば何れでもよい
が、比較的安価で乾燥除去しやすい溶剤がよい。例えば
メタノール、エタノール、アセトン等が好ましい。固定
床反応器を用いる場合、溶剤の液供給は触媒層容積に対
して1時間当り 0.5〜5.0 倍、即ち液空間速度 0.5〜5.
0 h-1が好ましい。溶剤の供給時間は3〜48時間が好ま
しく、5〜36時間がより好ましい。また溶剤洗浄時の触
媒層温度は40〜80℃が好ましく、溶剤洗浄は、溶剤が液
化している状態で行う事が望ましい。
The solvent used in this step may be any solvent as long as it can dissolve oil (reaction raw materials, products, etc.), but a relatively inexpensive solvent which is easily dried and removed is preferred. For example, methanol, ethanol, acetone and the like are preferable. When a fixed-bed reactor is used, the liquid supply of the solvent is 0.5 to 5.0 times the volume of the catalyst layer per hour, that is, the liquid hourly space velocity is 0.5 to 5.
0 h -1 is preferred. The supply time of the solvent is preferably 3 to 48 hours, more preferably 5 to 36 hours. The temperature of the catalyst layer at the time of solvent washing is preferably 40 to 80 ° C, and the solvent washing is desirably performed in a state where the solvent is liquefied.

【0011】また、溶剤洗浄を行う前あるいは溶剤洗浄
と同時に、アルコール等を製造する際に使用していた水
素や不活性ガス又はこれらの混合ガスを供給して、触媒
中の油分をある程度除去すると、溶剤洗浄時の溶剤使用
量が低減でき好ましい。この時の触媒層温度は60〜250
℃が好ましく、ガス供給は、油分の除去効率、設備面、
コスト面から、触媒層容量に対して1時間当たり 100〜
16000 倍、即ちガス空間速度 100〜16000 h-1が好まし
く、より好ましくは1000〜8000 h-1 である。また供給
時間は3〜24時間、より好ましくは5〜12時間である。
圧力は、反応時の圧力〜0MPaG(ゲージ圧)で行うこと
が望ましい。
Further, before or simultaneously with the solvent washing, hydrogen, an inert gas, or a mixed gas thereof used in producing alcohol or the like is supplied to remove a certain amount of oil in the catalyst. This is preferable because the amount of solvent used during solvent washing can be reduced. The catalyst layer temperature at this time is 60 to 250
° C is preferable, and gas supply is oil removal efficiency, equipment,
From the viewpoint of cost, 100 to 100
It is preferably 16000 times, that is, the gas hourly space velocity is 100 to 16000 h -1 , more preferably 1000 to 8000 h -1 . The supply time is 3 to 24 hours, more preferably 5 to 12 hours.
The pressure is desirably at a pressure during the reaction to 0 MPaG (gauge pressure).

【0012】続いて、溶剤洗浄後に触媒に残った溶剤の
除去を行う。触媒に残った溶剤の除去が不十分であると
次の工程(b) で触媒の変質が懸念され、また高温下に酸
素を供給することから、安全面から溶剤を十分に除去す
る必要がある。
Subsequently, the solvent remaining on the catalyst after the solvent washing is removed. Insufficient removal of the solvent remaining in the catalyst may cause deterioration of the catalyst in the next step (b), and since oxygen is supplied at a high temperature, it is necessary to sufficiently remove the solvent from the viewpoint of safety .

【0013】溶剤の除去は、溶剤がガス化する条件の圧
力であればよいが、設備負荷の観点から常圧が好まし
く、除去効率の観点から、窒素、ヘリウム、アルゴン等
の不活性ガスを供給しながら行うことが好ましい。この
時の触媒層温度は、60〜120 ℃が好ましく、70〜110 ℃
がより好ましい。またガス供給は、溶剤の除去効率及び
コスト面から、ガス空間速度で10〜10000 h-1が好まし
く、100〜5000 h-1がより好ましい。本工程で触媒の油
分を十分に除去することで、工程(b) の酸化時の触媒層
温度制御が容易になり、触媒への熱負荷及び触媒の変質
を抑制できる。
The removal of the solvent may be performed at a pressure under which the solvent is gasified, but normal pressure is preferable from the viewpoint of equipment load, and an inert gas such as nitrogen, helium, or argon is supplied from the viewpoint of removal efficiency. It is preferable to perform while doing. The temperature of the catalyst layer at this time is preferably 60 to 120 ° C, and 70 to 110 ° C.
Is more preferred. The gas supply from the removal efficiency and cost of the solvent, preferably from 10 to 10000 h -1 at a gas hourly space velocity, and more preferably 100 to 5000 h -1. By sufficiently removing the oil content of the catalyst in this step, the control of the temperature of the catalyst layer during the oxidation in the step (b) becomes easy, and the heat load on the catalyst and the deterioration of the catalyst can be suppressed.

【0014】〔工程(b) 〕本工程では、触媒を150 〜40
0 ℃に昇温して、酸素含有ガスで酸化処理を行う。昇温
速度は、時間の短縮化、急激な酸化温度上昇の抑制、酸
化温度の制御の面から 0.5〜40℃/h が好ましく、1〜
30℃/h がより好ましく、5〜20℃/h が更に好まし
い。酸化は昇温中に行っても、昇温後に行ってもよい。
[Step (b)] In this step, the catalyst is mixed with 150 to 40
The temperature is raised to 0 ° C., and oxidation treatment is performed with an oxygen-containing gas. The heating rate is preferably 0.5 to 40 ° C./h from the viewpoints of shortening the time, suppressing a rapid increase in the oxidation temperature, and controlling the oxidation temperature.
30 ° C./h is more preferred, and 5-20 ° C./h is even more preferred. The oxidation may be performed during the heating or after the heating.

【0015】酸素含有ガス(空気も可)の触媒層入口で
の酸素濃度は不活性ガスで希釈して0.3〜10vol %とす
ることが好ましく、酸素濃度とガスの流量をコントロー
ルすることで、触媒層温度を150 〜400 ℃、好ましくは
200〜350 ℃に調節する。温度が150 ℃より低い場合、
酸化が不十分となり、 400℃を越えると熱の影響を受
け、還元活性化後の活性が低下する。ここで用いる不活
性ガスとしては、窒素、ヘリウム、アルゴン等が挙げら
れ、酸素含有ガスとしてはコスト面から空気を窒素で希
釈したものが望ましい。酸化時の圧力は0〜1.0 MPaGが
好ましい。酸化時間は、十分な酸化を行うために2時間
以上が好ましく、5〜200 時間が更に好ましい。
The oxygen concentration of the oxygen-containing gas (or air) at the inlet of the catalyst layer is preferably adjusted to 0.3 to 10 vol% by diluting with an inert gas. The bed temperature is 150-400 ° C, preferably
Adjust to 200-350 ° C. If the temperature is lower than 150 ° C,
Oxidation becomes insufficient. If the temperature exceeds 400 ° C., the effect of heat causes the activity after reduction activation to decrease. Examples of the inert gas used here include nitrogen, helium, argon, and the like. As the oxygen-containing gas, air diluted with nitrogen is desirable from the viewpoint of cost. The pressure at the time of oxidation is preferably 0 to 1.0 MPaG. The oxidation time is preferably 2 hours or more for performing sufficient oxidation, and more preferably 5 to 200 hours.

【0016】酸素含有ガスの供給は酸化熱の除熱効果
や、酸化温度の制御、設備的な面から、ガス空間速度と
して50〜16000 h-1が好ましく、 100〜10000 h-1がより
好ましい。酸化終了の判断は、触媒層中の温度から発熱
の終了を確認するか、及び/又は触媒層入口と出口の酸
素濃度を測定し、入口と出口の酸素濃度が等しいことを
確認して行う。尚、銅の酸化は完全に酸化銅(CuO )に
する必要はなく一部亜酸化銅(Cu2O)が残っていてもよ
く、酸化による発熱も低減でき好ましい。この再生法に
よれば、活性向上の観点から、酸化銅/亜酸化銅=100
/0〜60/40(X線回折強度比)の範囲で酸化すること
が好ましい。
The supply and heat removal effect of the oxidation heat of the oxygen-containing gas, controlling the oxidation temperature, the facility of view, 50-16000 h -1 is preferred as the gas space velocity, and more preferably ranging from 100 to 10000 h -1 . The end of the oxidation is determined by confirming the end of heat generation from the temperature in the catalyst layer and / or by measuring the oxygen concentration at the inlet and the outlet of the catalyst layer and confirming that the oxygen concentrations at the inlet and the outlet are equal. It is not necessary to completely convert copper to copper oxide (CuO 2), and copper oxide (Cu 2 O) may partially remain, and heat generation due to oxidation can be reduced, which is preferable. According to this regeneration method, from the viewpoint of activity improvement, copper oxide / cuprous oxide = 100
It is preferable to oxidize in the range of / 0 to 60/40 (X-ray diffraction intensity ratio).

【0017】[工程(c) ]本工程は、工程(b) により酸
化された銅含有水素化触媒前駆体を水素により還元活性
化する工程であり、特に20〜250 ℃の温度範囲内で不活
性な溶媒中、水素で液相還元することが好ましい。
[Step (c)] This step is a step in which the copper-containing hydrogenation catalyst precursor oxidized in step (b) is reduced and activated with hydrogen, and particularly in the temperature range of 20 to 250 ° C. Liquid phase reduction with hydrogen in an active solvent is preferred.

【0018】不活性な溶媒は、酸化銅あるいは金属銅の
溶出や不可逆的な吸着及び銅との化合物形成を起こさ
ず、触媒前駆体の還元活性化処理条件下で液状を呈する
ものであり、グリセリド油、エステル、アルコール、炭
化水素等が好ましい。最も好ましいものは、アルコール
製造において、生成アルコールの品質に関して悪影響を
与えないグリセリド油、脂肪酸エステル類、脂肪族アル
コール類、炭化水素類等であり、これらは単独でも2種
以上を併用してよい。具体的にはグリセリド油は、炭素
数が6〜22の脂肪酸から構成されるモノグリセリド、ジ
グリセリド及びトリグリセリドであり、例えばココナッ
ツ油、パーム核油、パーム油、牛脂、豚脂等に由来す
る、植物又は動物起源の天然脂肪酸のグリセリドであ
る。また脂肪酸エステル類は、炭素数が2〜22の少なく
とも1個のカルボキシル基を有する脂肪酸と炭素数が1
〜22の脂肪族アルコールとのエステルである。また脂肪
族アルコール類としては、炭素数2〜22の少なくとも1
個の水酸基を有するとともに、触媒還元活性化条件下で
は液状を呈するアルコールである。また、炭化水素類と
しては、流動パラフィンや、シクロヘキサン、シクロオ
クタン、デカリン、ベンゼン、トルエン、キシレン、ナ
フタレン等の環状炭化水素等である。また、エーテル、
アルデヒド、ケトン類等の他の不活性溶媒も使用でき
る。不活性な溶媒の通液は、溶媒による触媒前駆体の濡
れ状態の均一化や経済的な面から液空間速度で0.1〜5.0
h-1が好ましく、0.1〜3.0 h-1がより好ましい。
The inert solvent does not cause elution of copper oxide or metallic copper, irreversible adsorption, and formation of a compound with copper, and is in a liquid state under the conditions for the activation and reduction of the catalyst precursor. Oils, esters, alcohols, hydrocarbons and the like are preferred. Most preferred are glyceride oils, fatty acid esters, aliphatic alcohols, hydrocarbons and the like which do not adversely affect the quality of the produced alcohol in alcohol production, and these may be used alone or in combination of two or more. Specifically, glyceride oil is monoglyceride composed of fatty acids having 6 to 22 carbon atoms, diglyceride and triglyceride, for example, coconut oil, palm kernel oil, palm oil, tallow, tallow, etc., derived from plants or It is a glyceride of natural fatty acids of animal origin. The fatty acid esters are a fatty acid having at least one carboxyl group having 2 to 22 carbon atoms and a fatty acid having 1 carbon atom.
~ 22 aliphatic esters. As the aliphatic alcohol, at least one of C2 to C22 is used.
It is an alcohol having individual hydroxyl groups and presenting a liquid under the conditions for activating the catalytic reduction. Examples of the hydrocarbons include liquid paraffin and cyclic hydrocarbons such as cyclohexane, cyclooctane, decalin, benzene, toluene, xylene, and naphthalene. Also, ether,
Other inert solvents, such as aldehydes, ketones, can also be used. The passage of the inert solvent is performed at a liquid hourly space velocity of 0.1 to 5.0 from the viewpoint of making the catalyst precursor wet by the solvent uniform and economical.
h -1 is preferred, and 0.1 to 3.0 h -1 is more preferred.

【0019】本工程における還元は、水素ガスもしくは
水素と不活性ガスとの混合ガスを触媒前駆体に接触・供
給しながら行う。不活性ガスとしては、窒素、ヘリウ
ム、アルゴン、メタン等が用いられる。混合ガス中の水
素濃度は0.1vol%以上100vol%未満が好ましいが、活性
化に要する時間を考慮した場合、水素分圧として1気圧
以上になるような水素濃度に設定するのが望ましい。ガ
スの供給は、経済的な観点から溶媒の流通下、常圧ない
し30MPaGの圧力条件下で行うのがよい。またガスの供給
は、除熱効果及び還元生成水の効率的な除去、設備的な
面から、ガス空間速度50〜10000 h-1で行うのが好まし
く、100〜5000h-1 がより好ましい。
The reduction in this step is performed while contacting and supplying hydrogen gas or a mixed gas of hydrogen and an inert gas to the catalyst precursor. As the inert gas, nitrogen, helium, argon, methane or the like is used. The hydrogen concentration in the mixed gas is preferably 0.1 vol% or more and less than 100 vol%, but considering the time required for activation, it is desirable to set the hydrogen concentration so that the hydrogen partial pressure becomes 1 atm or more. The gas is preferably supplied under a pressure of normal pressure to 30 MPaG under a solvent flow from an economical viewpoint. The supply of gas is efficient removal of heat removal effect and reduced product water from the facility of view, is preferably carried out at a gas hourly space velocity 50~10000 h -1, 100~5000h -1 it is more preferred.

【0020】液相還元における温度は20〜250℃が好ま
しく、40〜200℃がより好ましく、特に50〜140 ℃が好
ましい。また還元時間は、活性化の進行及び経済的な面
から、1.5 時間以上が好ましく、6〜100 時間がより好
ましい。昇温速度は、時間の短縮化、還元反応の制御の
面から 0.5〜40℃/h が好ましく、1〜30℃/h がより
好ましく、5〜20℃/h が最も好ましい。
[0020] The temperature in the liquid phase reduction is preferably from 20 to 250 ° C, more preferably from 40 to 200 ° C, particularly preferably from 50 to 140 ° C. Further, the reduction time is preferably 1.5 hours or more, more preferably 6 to 100 hours, from the viewpoint of progress of activation and economical aspects. The heating rate is preferably from 0.5 to 40 ° C / h, more preferably from 1 to 30 ° C / h, most preferably from 5 to 20 ° C / h from the viewpoint of shortening the time and controlling the reduction reaction.

【0021】本発明の方法により再生された銅含有水素
化触媒は、固定床連続反応方式により主にアルコールの
製造に用いられる他、アルデヒド基或いはケトン基の水
素化、オレフィン類の水素化、ニトロ基の水素化等の各
種水素化反応に用いることができる。従って、本発明の
再生法を固定床連続反応用の反応器内で行えば、得られ
る活性化触媒をそのままアルコール等の製造に使用する
ことができる。
The copper-containing hydrogenation catalyst regenerated by the method of the present invention is used mainly for the production of alcohol by a fixed bed continuous reaction system, hydrogenation of aldehyde group or ketone group, hydrogenation of olefins, It can be used for various hydrogenation reactions such as hydrogenation of a group. Therefore, if the regeneration method of the present invention is carried out in a reactor for continuous fixed-bed reaction, the obtained activated catalyst can be used as it is for production of alcohol and the like.

【0022】本発明のアルコールの製造法は、固定床連
続反応方式にてカルボン酸又はそのエステルを水素で接
触還元する際に、前記のような方法により再生された銅
含有水素化触媒を用いる。
In the process for producing an alcohol of the present invention, when a carboxylic acid or its ester is catalytically reduced with hydrogen in a fixed bed continuous reaction system, a copper-containing hydrogenation catalyst regenerated by the above-mentioned method is used.

【0023】原料となるカルボン酸としては、ヤシ油、
パーム核油、パーム油、牛脂、豚脂等から得られる動植
物系の天然の脂肪酸の他に合成系脂肪酸等が挙げられ、
そのエステルとしては、油脂又は脂肪酸エステルが望ま
しい。油脂としては、炭素数が6〜22の飽和あるいは不
飽和脂肪酸から構成されるモノグリセリド、ジグリセリ
ド及びトリグリセリドが、また脂肪酸エステルとしては
炭素数が1以上でかつエステル基を1以上含む直鎖、分
岐鎖あるいは不飽和の脂肪酸エステルが挙げられる。こ
のような脂肪酸エステルとしては、例えば蟻酸エステ
ル、酢酸エステル、カプロン酸エステル、カプリル酸エ
ステル、カプリン酸エステル、ウンデセン酸エステル、
ラウリン酸エステル、ミリスチン酸エステル、パルミチ
ン酸エステル、ステアリン酸エステル、イソステアリン
酸エステル、オレイン酸エステル、アラキン酸エステ
ル、ベヘン酸エステル、シュウ酸エステル、マレイン酸
エステル、アジピン酸エステル、セバシン酸エステル等
が挙げられる。脂肪酸エステルを構成するアルコールは
炭素数1〜22の脂肪族アルコールが好ましい。また本発
明において水素化に供されるエステルは、脂肪酸エステ
ルに限定されるものではなく、シクロヘキサンカルボン
酸エステル等の脂環式カルボン酸エステル、安息香酸エ
ステル、フタル酸エステル等の芳香族カルボン酸エステ
ル及びその誘導体であってもよい。
The carboxylic acids used as raw materials include coconut oil,
Palm kernel oil, palm oil, tallow, synthetic fatty acids and the like in addition to animal and plant natural fatty acids obtained from lard,
As the ester, a fat or oil or a fatty acid ester is desirable. As fats and oils, monoglycerides, diglycerides and triglycerides composed of saturated or unsaturated fatty acids having 6 to 22 carbon atoms, and as fatty acid esters, linear or branched chains having 1 or more carbon atoms and containing at least one ester group Alternatively, unsaturated fatty acid esters may be used. Such fatty acid esters include, for example, formate, acetate, caproate, caprylate, caprate, undecenoate,
Lauric esters, myristic esters, palmitic esters, stearic esters, isostearic esters, oleic esters, arachiic esters, behenic esters, oxalic esters, maleic esters, adipic esters, sebacic esters, etc. Can be The alcohol constituting the fatty acid ester is preferably an aliphatic alcohol having 1 to 22 carbon atoms. Esters subjected to hydrogenation in the present invention are not limited to fatty acid esters, but alicyclic carboxylic esters such as cyclohexane carboxylic esters, benzoic esters, and aromatic carboxylic esters such as phthalic esters. And its derivatives.

【0024】本発明では、カルボン酸又はそのエステル
を水素化するに際し、固定床連続反応方式が採用され
る。ここで、本発明の再生法により固定床連続反応器で
触媒を再生した後、次いで同じ反応器中で、カルボン酸
又はそのエステルを水素化してアルコールを製造するこ
とが好ましく、工業的に有利である。水素化反応は溶媒
を使用することも可能であるが、生産性を考慮した場合
には無溶媒で反応を行うのが望ましい。溶媒を用いる場
合、アルコール、ジオキサンあるいはパラフィン等の反
応に悪影響を与えないものが選ばれる。反応温度は 130
〜300 ℃が好ましく、 160〜250 ℃がより好ましい。反
応圧力は0.0098〜30MPaGが好ましい。また、原料供給の
液空間速度は反応条件に応じて任意に決定されるが、生
産性あるいは反応性を考慮した場合、 0.2〜5.0 h-1
好ましい。
In the present invention, when hydrogenating a carboxylic acid or an ester thereof, a fixed bed continuous reaction system is employed. Here, after regenerating the catalyst in the fixed-bed continuous reactor by the regeneration method of the present invention, it is preferable to hydrogenate the carboxylic acid or its ester to produce an alcohol in the same reactor, which is industrially advantageous. is there. Although a solvent can be used for the hydrogenation reaction, it is preferable to perform the reaction without a solvent in consideration of productivity. When a solvent is used, an alcohol, dioxane, paraffin or the like that does not adversely affect the reaction is selected. The reaction temperature is 130
To 300 ° C is preferred, and 160 to 250 ° C is more preferred. The reaction pressure is preferably from 0.0098 to 30 MPaG. Further, the liquid hourly space velocity of the raw material supply is arbitrarily determined according to the reaction conditions, but is preferably 0.2 to 5.0 h -1 in consideration of productivity or reactivity.

【0025】[0025]

【実施例】参考例1 特開平5−177140号公報の実施例5記載の方法に従っ
て、TiO2上にCuO 、ZnO、BaO を担持させた触媒前駆体
を得た。得られた前駆体粉末を円柱状に打錠成形した
後、 450℃で2時間焼成することにより、下記に示す重
量組成を有する直径3mm、高さ3mmの成形触媒前駆体を
得た。
Reference Example 1 According to the method described in Example 5 of JP-A-5-177140, a catalyst precursor having CuO, ZnO and BaO supported on TiO 2 was obtained. The obtained precursor powder was formed into a columnar tablet and then calcined at 450 ° C. for 2 hours to obtain a molded catalyst precursor having the following weight composition and a diameter of 3 mm and a height of 3 mm.

【0026】 CuO:ZnO:BaO:TiO2=43.5%:2.4%:4.1%:50.0% 得られた成形触媒前駆体 500mLを固定床流通反応器(3
5.5mmID×800mmH)に充填した後、触媒層60℃の温度下
で触媒を充分溶媒で濡らすため、窒素を4.0NL/h(ガス
空間速度 8.0 h-1)で流しながら、ラウリルアルコール
(純度=99.8%)を 600mL/hの流量(液空間速度 1.2 h
-1)で6時間(常圧(0MPaG))通液を行った。次い
で、1.96MPaGに昇圧し、50vol%に希釈した水素ガス
(水素50vol%、窒素 50vol%)を78.6NL/h(ガス空間
速度 157.2 h-1)の流量で供給し、ラウリルアルコール
(純度=99.8%)を250mL/hの流量(液空間速度 0.5 h
-1)で通液を行った。液及びガスの流量が安定した後、1
0℃/hの速度で触媒層を130 ℃まで昇温し、昇温後は 13
0℃で23時間保持した。還元時間は、昇温から合わせて
計30時間であった。
CuO: ZnO: BaO: TiO 2 = 43.5%: 2.4%: 4.1%: 50.0% 500 mL of the obtained shaped catalyst precursor was placed in a fixed bed flow reactor (3
5.5 mmID x 800 mmH), and then laminating lauryl alcohol (purity = 4.0 NL / h (gas space velocity 8.0 h -1 ) while flowing nitrogen at 4.0 NL / h (gas space velocity 8.0 h -1 ) to sufficiently wet the catalyst with the solvent at a temperature of 60 ° C. 99.8%) at a flow rate of 600 mL / h (liquid hourly space velocity 1.2 h
-1 ) for 6 hours (normal pressure (0 MPaG)). Then, the pressure was increased to 1.96 MPaG, and hydrogen gas (50 vol% of hydrogen and 50 vol% of nitrogen) diluted to 50 vol% was supplied at a flow rate of 78.6 NL / h (gas space velocity: 157.2 h -1 ), and lauryl alcohol (purity = 99.8 %) At a flow rate of 250 mL / h (liquid hourly space velocity 0.5 h
-1 ). After the liquid and gas flow rates have stabilized,
The temperature of the catalyst layer was increased to 130 ° C at a rate of 0 ° C / h, and
Hold at 0 ° C. for 23 hours. The reduction time was a total of 30 hours from the temperature increase.

【0027】触媒前駆体の還元活性化終了後、ラウリル
アルコールから炭素数が8〜18の鎖長分布を有する脂肪
酸メチルエステル(ケン化価=243)に切り換え、220
℃、4.9MPaG、500mL/h(液空間速度 1.0 h-1)、脂肪酸
メチルエステルに対して100モル倍の水素流通条件下で
水素化反応を行った。ここで、分析によりケン化価(SV)
(JIS K0070 参考)を求め、触媒の活性kvを以下の算出
式により求めた。
After the reduction activation of the catalyst precursor was completed, lauryl alcohol was switched to a fatty acid methyl ester having a chain length distribution of 8 to 18 carbon atoms (saponification value = 243), and 220
The hydrogenation reaction was carried out at 4.9 MPaG, 500 mL / h (liquid hourly space velocity: 1.0 h -1 ), and 100 times the hydrogen flow rate of the fatty acid methyl ester. Here, the saponification value (SV)
(JIS K0070 reference) was determined, and the activity kv of the catalyst was determined by the following formula.

【0028】kv=ln ((243−SVe)/(SV−SVe)) (SVeは平衡値、lnは自然対数) また、反応の選択性はガスクロマトグラフにより求めた
炭化水素及びエーテル化合物等の副生成物量で評価し
た。この新触媒の活性及び選択性を基準とし以下の実施
例及び比較例と相対評価する。結果を表1に示す。
Kv = ln ((243−SVe) / (SV−SVe)) (SVe is an equilibrium value, ln is a natural logarithm) The selectivity of the reaction is determined by gas chromatographs such as hydrocarbons and ether compounds. Evaluation was based on the amount of the product. Based on the activity and selectivity of this new catalyst, it is relatively evaluated with the following Examples and Comparative Examples. Table 1 shows the results.

【0029】実施例1 まず参考例1と同じ触媒で通液量[kg−原料/kg−触
媒]を1420倍通液した後の失活触媒の再生前の活性を確
認するため、参考例1と同じ反応器(触媒充填量500mL)
及び条件で水素化反応を行ない、ケン化価から活性kvを
算出した。
Example 1 First, in order to confirm the activity before regeneration of the deactivated catalyst after passing the flow rate [kg-raw material / kg-catalyst] 1420 times with the same catalyst as in Reference Example 1, reference Example 1 was used. Same reactor (catalyst charge 500mL)
The hydrogenation reaction was carried out under the above conditions, and the activity kv was calculated from the saponification value.

【0030】次に、この失活触媒の再生を行うため、再
生前活性評価のあと、まず水素の供給及び圧力を維持し
た状態で、触媒層を60℃まで冷却した。冷却時間も含
め、計6時間油分の除去を行った。続いて、その状態で
メタノールを 250mL/h(液空間速度 0.5 h-1)、24時間
供給し、触媒を溶剤洗浄した(反応器出口の反応物を取
り、ガスクロマトグラフにより油分が充分除去できてい
ることを確認し終了とした)。次いで、常圧にもどし、
系内を窒素置換した後、触媒層を80℃とし、窒素を80NL
/h(ガス空間速度 160 h-1)の流量で24時間供給し、触
媒の残存溶剤を除去した。尚、NLは標準状態でのガス体
積を示す。
Next, in order to regenerate the deactivated catalyst, after evaluating the activity before regeneration, the catalyst layer was first cooled to 60 ° C. while maintaining the supply of hydrogen and the pressure. The oil was removed for a total of 6 hours, including the cooling time. Subsequently, in this state, methanol was supplied at 250 mL / h (liquid hourly space velocity: 0.5 h -1 ) for 24 hours, and the catalyst was washed with a solvent (the reactant at the outlet of the reactor was taken out, and the oil was sufficiently removed by gas chromatography. And finished.) Then return to normal pressure,
After purging the system with nitrogen, the temperature of the catalyst layer is set to 80 ° C, and the nitrogen is
/ h (gas hourly space velocity of 160 h -1 ) was supplied for 24 hours to remove the residual solvent of the catalyst. In addition, NL shows a gas volume in a standard state.

【0031】次に、系内酸素濃度0%を確認後、窒素を
300NL/h(ガス空間速度 600 h-1)の流量で反応器上部よ
り供給しながら、触媒層を 200℃まで20℃/hで昇温し
た。続いて、供給ガスの酸素濃度が1 vol%になるよう
に空気からの流量を調整して、酸化を開始した。酸化は
触媒層中心軸方向に備えた温度計で、温度を確認しなが
ら、反応器へのガス供給量を300NL/h(ガス空間速度600h
-1)、圧力は0.29MPaG、循環形式の条件で行った。触媒
層最下部の温度計指示が 200℃に落ち着いた後、反応器
入り口及び出口の酸素濃度を測定し、濃度が等しいこと
を確認し終了とした(酸素濃度1.2vol%)。 酸化終了後
反応器を室温まで冷却した後、触媒数グラムをサンプリ
ングし、X線回折法(XRD) により分析を行った。その結
果、銅は全て酸化されており酸化銅/亜酸化銅の強度比
は73/27であった。
Next, after confirming that the oxygen concentration in the system is 0%, nitrogen is added.
The catalyst layer was heated to 200 ° C. at a rate of 20 ° C./h while being supplied from the upper part of the reactor at a flow rate of 300 NL / h (gas hourly space velocity 600 h −1 ). Subsequently, the flow rate from air was adjusted so that the oxygen concentration of the supply gas became 1 vol%, and oxidation was started. Oxidation is performed using a thermometer provided in the direction of the center axis of the catalyst layer.The gas supply rate to the reactor is checked at 300NL / h (gas space velocity 600h
-1 ), at a pressure of 0.29 MPaG and in a circulating condition. After the thermometer reading at the bottom of the catalyst layer had settled at 200 ° C., the oxygen concentrations at the inlet and outlet of the reactor were measured, and it was confirmed that the concentrations were equal, and the process was terminated (oxygen concentration 1.2 vol%). After completion of the oxidation, the reactor was cooled to room temperature, a few grams of the catalyst were sampled, and analyzed by X-ray diffraction (XRD). As a result, all the copper was oxidized, and the strength ratio of copper oxide / cuprous oxide was 73/27.

【0032】上記の酸化で得た触媒前駆体を参考例1と
同条件で液相還元により活性化した。参考例1と同条件
で水素化反応を行い活性の評価を行った。また、反応の
選択性はガスクロマトグラフにより求めた炭化水素及び
エーテル化合物等の副生成物量で評価した。
The catalyst precursor obtained by the above oxidation was activated by liquid phase reduction under the same conditions as in Reference Example 1. A hydrogenation reaction was performed under the same conditions as in Reference Example 1 to evaluate the activity. The selectivity of the reaction was evaluated based on the amounts of by-products such as hydrocarbons and ether compounds determined by gas chromatography.

【0033】ここで、再生後の活性及び選択性につい
て、新触媒を基準として相対比較を行った。尚、相対比
較では、活性は大きいほど良い活性を意味し、選択性は
小さいほど良い選択性を意味している。結果を表1に示
す。
Here, the activity and selectivity after regeneration were compared with each other on the basis of the new catalyst. In the relative comparison, the larger the activity, the better the activity, and the smaller the selectivity, the better the selectivity. Table 1 shows the results.

【0034】実施例2 まず、参考例1と同じ触媒で通液量[kg−原料/kg−触
媒]を5590倍通液した後の失活触媒の再生前の活性の確
認を行うため、参考例1と同じ反応器(触媒充填量500m
L)及び条件で水素化反応を行った。反応後、分析よりケ
ン化価を求め、活性kvを算出した。
Example 2 First, the activity of the deactivated catalyst before regeneration was confirmed after passing the flow rate [kg-raw material / kg-catalyst] 5590 times with the same catalyst as in Reference Example 1. The same reactor as in Example 1 (catalyst charge 500m
Hydrogenation reaction was performed under L) and conditions. After the reaction, the saponification value was determined from the analysis, and the activity kv was calculated.

【0035】続いて、実施例1と同条件で触媒の油分の
洗浄並びに溶剤除去を行った。次いで、酸化工程では、
200℃までの条件は実施例1と同じとし、触媒層最下部
の温度計指示が 200℃に落ち着いた後、反応器入り口及
び出口の酸素濃度を測定し、濃度が等しい(酸素濃度1.
0vol%)ことを確認した。続いて、このまま酸素を供給
した状態で20℃/hの速度で触媒層内温度を確認しながら
触媒層を 250℃まで昇温し、更に同速度で 300℃まで昇
温した。反応器入り口及び出口の酸素濃度を測定し、濃
度が等しいことを確認し、終了とした(酸素濃度8.4vol
%)。X線回折法による分析の結果、銅は全て酸化され
ており酸化銅/亜酸化銅の強度比は79/21であった。
Subsequently, the oil content of the catalyst and the solvent were removed under the same conditions as in Example 1. Next, in the oxidation step,
The conditions up to 200 ° C were the same as in Example 1. After the thermometer reading at the bottom of the catalyst layer settled at 200 ° C, the oxygen concentrations at the inlet and outlet of the reactor were measured, and the concentrations were equal (oxygen concentration 1.
0 vol%). Subsequently, the temperature of the catalyst layer was raised to 250 ° C. while checking the temperature inside the catalyst layer at a rate of 20 ° C./h in a state where oxygen was supplied as it was, and further raised to 300 ° C. at the same rate. The oxygen concentration at the entrance and exit of the reactor was measured, and it was confirmed that the concentrations were equal.
%). As a result of the analysis by the X-ray diffraction method, all the copper was oxidized, and the intensity ratio of copper oxide / cuprous oxide was 79/21.

【0036】以下、還元活性化ならびに水素化反応条件
は参考例1と同じとし、再生後の活性及び選択性を評価
した。実施例1と同様、再生後の活性及び選択性につい
て、新触媒を基準として相対比較を行った。結果を表1
に示す。
Hereinafter, the conditions for the reduction activation and hydrogenation reaction were the same as in Reference Example 1, and the activity and selectivity after regeneration were evaluated. As in Example 1, the activity and selectivity after regeneration were compared relative to the new catalyst. Table 1 shows the results
Shown in

【0037】比較例1 参考例1と同じ反応器を用い、通液量[kg−原料/kg−
触媒]を1420倍通液した後の実施例1と同じ失活触媒の
再生処理を行った。この再生処理では、触媒の油分の洗
浄及び溶剤除去を行わず、それ以外は実施例1と同じ条
件で行い、再生後の活性及び選択性を評価した。実施例
1と同様、再生後の活性及び選択性について、新触媒を
基準として相対比較を行った。結果を表1に示す。
Comparative Example 1 Using the same reactor as in Reference Example 1, the flow rate was [kg-raw material / kg-
[Catalyst] was passed 1420 times, and the same deactivation catalyst regeneration treatment as in Example 1 was performed. In this regeneration treatment, washing of the catalyst oil and removal of the solvent were not performed, and the other conditions were the same as in Example 1, and the activity and selectivity after regeneration were evaluated. As in Example 1, the activity and selectivity after regeneration were compared relative to the new catalyst. Table 1 shows the results.

【0038】比較例2 参考例1と同じ反応器を用い、通液量[kg−原料/kg−
触媒]を5590倍通液した後の実施例2と同じ失活触媒の
再生処理を行った。この再生処理では、酸化温度を 100
℃とした以外は実施例2と同じ条件で行い、再生後の活
性及び選択性を評価した。実施例1と同様、再生後の活
性及び選択性について、新触媒を基準として相対比較を
行った。結果を表1に示す。
Comparative Example 2 Using the same reactor as in Reference Example 1, the flow rate was [kg-raw material / kg-
[Catalyst] was passed 5590 times, and the same deactivation catalyst regeneration treatment as in Example 2 was performed. In this regeneration process, the oxidation temperature was set at 100
The activity and selectivity after regeneration were evaluated under the same conditions as in Example 2 except that the temperature was changed to ° C. As in Example 1, the activity and selectivity after regeneration were compared relative to the new catalyst. Table 1 shows the results.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【発明の効果】本発明の再生法により得られた触媒は、
従来以上に著しく活性が回復し、この失活触媒の再生を
固定床反応器で行うことにより、反応器からの抜出し及
び再充填する作業の手間が省け、低コストで且つ効率よ
く再生できる。さらには該再生触媒を再利用すること
で、製品に占める触媒コストを大幅に低減できる。
The catalyst obtained by the regeneration method of the present invention comprises:
By regenerating the deactivated catalyst in a fixed-bed reactor, the operation of extracting and refilling the reactor can be reduced, and the regeneration can be performed at low cost and efficiently. Further, by reusing the regenerated catalyst, the cost of the catalyst in the product can be significantly reduced.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 29/149 C07C 29/149 31/02 31/02 // C07B 61/00 300 C07B 61/00 300 (72)発明者 田端 修 和歌山県和歌山市湊1334 花王株式会社研 究所内 Fターム(参考) 4G069 AA10 BC13B BC31A BC31B BC35B BC50B CB02 DA06 FB44 FC07 GA05 4H006 AA02 AC41 BA05 BA07 BA09 BA14 BA19 BA33 BA82 BA84 BE20 4H039 CA60 CB40 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C07C 29/149 C07C 29/149 31/02 31/02 // C07B 61/00 300 C07B 61/00 300 ( 72) Inventor Osamu Tabata 1334 Minato, Wakayama, Wakayama Pref.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 下記工程(a) 、(b) 、(c) を有する銅を
含有する失活した水素化触媒の再生法。 (a) 失活した触媒の油分を溶剤で洗浄し、ついで触媒に
残った溶剤を除去する工程。 (b) 工程(a) で得られた触媒を 150〜400 ℃の温度範囲
内で酸素含有ガスで酸化する工程。 (c) 工程(b) で得られた触媒を還元活性化する工程。
1. A method for regenerating a deactivated hydrogenation catalyst containing copper, comprising the following steps (a), (b) and (c). (a) washing the deactivated catalyst oil with a solvent, and then removing the solvent remaining on the catalyst; (b) oxidizing the catalyst obtained in the step (a) with an oxygen-containing gas within a temperature range of 150 to 400 ° C. (c) a step of reducing and activating the catalyst obtained in the step (b).
【請求項2】 工程(c) が、20〜250 ℃の温度範囲内で
不活性な溶媒中、水素で液相還元する工程である請求項
1記載の再生法。
2. The regeneration method according to claim 1, wherein step (c) is a step of performing liquid phase reduction with hydrogen in an inert solvent within a temperature range of 20 to 250 ° C.
【請求項3】 工程(a) 〜(c) を固定床反応器で行う請
求項1又は2記載の再生法。
3. The regeneration method according to claim 1, wherein steps (a) to (c) are carried out in a fixed-bed reactor.
【請求項4】 請求項1〜3のいずれか一項に記載の再
生法により再生された触媒を用い、固定床連続反応方式
により、カルボン酸又はそのエステルを水素で接触還元
するアルコールの製造法。
4. A method for producing an alcohol, wherein a carboxylic acid or an ester thereof is catalytically reduced with hydrogen by a fixed bed continuous reaction system using the catalyst regenerated by the regeneration method according to claim 1. Description: .
JP26776898A 1998-09-22 1998-09-22 Regeneration method of hydrogenation catalyst Expired - Fee Related JP4201890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26776898A JP4201890B2 (en) 1998-09-22 1998-09-22 Regeneration method of hydrogenation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26776898A JP4201890B2 (en) 1998-09-22 1998-09-22 Regeneration method of hydrogenation catalyst

Publications (2)

Publication Number Publication Date
JP2000093800A true JP2000093800A (en) 2000-04-04
JP4201890B2 JP4201890B2 (en) 2008-12-24

Family

ID=17449327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26776898A Expired - Fee Related JP4201890B2 (en) 1998-09-22 1998-09-22 Regeneration method of hydrogenation catalyst

Country Status (1)

Country Link
JP (1) JP4201890B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010030037A1 (en) * 2008-09-11 2010-03-18 花王株式会社 Method for preparing a catalyst
JP2010064019A (en) * 2008-09-11 2010-03-25 Kao Corp Method of producing catalyst
JP2010104938A (en) * 2008-10-31 2010-05-13 Daicel Chem Ind Ltd Method for regenerating copper catalyst
WO2010061959A1 (en) * 2008-11-28 2010-06-03 花王株式会社 Process for production of fats and oils
CN117324046A (en) * 2023-09-25 2024-01-02 青岛金牛油脂科技有限公司 Regeneration method of nickel catalyst for grease hydrogenation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010030037A1 (en) * 2008-09-11 2010-03-18 花王株式会社 Method for preparing a catalyst
JP2010064019A (en) * 2008-09-11 2010-03-25 Kao Corp Method of producing catalyst
JP2010064018A (en) * 2008-09-11 2010-03-25 Kao Corp Method of producing catalyst
US8603938B2 (en) 2008-09-11 2013-12-10 Kao Corporation Method for preparing catalyst
US8648005B2 (en) 2008-09-11 2014-02-11 Kao Corporation Method for preparing catalyst
JP2010104938A (en) * 2008-10-31 2010-05-13 Daicel Chem Ind Ltd Method for regenerating copper catalyst
WO2010061959A1 (en) * 2008-11-28 2010-06-03 花王株式会社 Process for production of fats and oils
JP2010126676A (en) * 2008-11-28 2010-06-10 Kao Corp Method for producing oil-and-fat
CN117324046A (en) * 2023-09-25 2024-01-02 青岛金牛油脂科技有限公司 Regeneration method of nickel catalyst for grease hydrogenation

Also Published As

Publication number Publication date
JP4201890B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
JP3195357B2 (en) Method for preparing copper-containing hydrogenation catalyst and method for producing alcohol
EP0198682B1 (en) Alcohols production by hydrogenation of carboxylic acids
JPH0699337B2 (en) Alcohol production method
JP5065255B2 (en) Catalyst production method
JP2990568B2 (en) Method for preparing copper-containing hydrogenation catalyst and method for producing alcohol
JP4149525B2 (en) Process for producing hydroxy compounds
CN101945847A (en) Method for producing 6-hydroxy hexanoic acid esters
JP2000093800A (en) Method for regenerating hydrogenation catalyst
JP2002508342A (en) Catalytic hydrogenation method of converting carboxylic acids or their anhydrides or esters into alcohols
JP5225026B2 (en) Copper catalyst regeneration method
JP5562541B2 (en) Catalyst preparation method
JP2006167709A (en) Method for manufacturing palladium-containing supported catalyst
JP5562542B2 (en) Catalyst preparation method
JP3662063B2 (en) Method for producing alcohol
CN109312257B (en) Method for selectively hydrogenating vegetable oils using egg-shell catalysts
WO2010018405A1 (en) Chemical process and catalyst
JPH0912491A (en) Production of alcohol
JPS61143332A (en) Synthesis of oxygen-containing compound
JP2005324084A (en) METHOD FOR PRODUCING PALLADIUM-CONTAINING CATALYST, PALLADIUM-CONTAINING CATALYST, AND METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2001247500A (en) Method for producing alcohol
JPH0825930B2 (en) Alcohol production method
JPH0967282A (en) Production of alcohol
TH128795A (en) Method for preparing the catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050928

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080910

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees