JP2000091124A - Integrated magnetic device - Google Patents

Integrated magnetic device

Info

Publication number
JP2000091124A
JP2000091124A JP10253850A JP25385098A JP2000091124A JP 2000091124 A JP2000091124 A JP 2000091124A JP 10253850 A JP10253850 A JP 10253850A JP 25385098 A JP25385098 A JP 25385098A JP 2000091124 A JP2000091124 A JP 2000091124A
Authority
JP
Japan
Prior art keywords
magnetic
conductor
integrated
value
electromagnetic induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10253850A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamada
宏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10253850A priority Critical patent/JP2000091124A/en
Publication of JP2000091124A publication Critical patent/JP2000091124A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an integrated magnetic device capable of providing little leakage of magnetic field, small size and high L- and Q-values. SOLUTION: To achieve little leakage of magnetic field by forming a closed magnetic circuit in the relative positioning of a conductor 1 and a magnetic material 2 in an integrated magnetic device, the conductor 1 is positioned close to regions 2a and 2b opposite to each other via a gap 3 so that the direction 5 of magnetic field due to electromagnetic induction in the regions is directed as indicated by 5a and 5b. While maintaining an occupied volume to a minimum, main properties as small sized inductance device can be improved, such as inductance (L) value, factor of quality (Q) value for small size, high gain and low power consumption, and the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、移動通信、衛星通
信、および衛星放送等の高周波領域で動作する集積回路
において、超小型の高性能インダクタ素子として用いら
れる集積磁気素子構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integrated magnetic element structure used as an ultra-compact high-performance inductor element in an integrated circuit operating in a high-frequency region such as mobile communication, satellite communication, and satellite broadcasting.

【0002】[0002]

【従来の技術】従来は、高周波集積回路を実現するに
は、高周波動作する能動素子と、インダクタ素子や容量
素子等から構成される受動素子とを、個別の独立した素
子として絶縁性基板を介して結合したり、場合によって
は、例えば受動素子それ自体も、一部のインダクタ素子
等を個別部品として結合し、組み立てていた。しかし、
このような方法では、組み立て位置により整合特性等の
電気的特性が変化するため、歩留まり良く大量生産する
ことが困難であったり、また、既存のモノリシックに製
作可能なインダクタ素子等の性能は不充分であったた
め、回路の設計自由度が制約を受けたり、これを回避す
るために素子容積が大きい個別部品を代わりに使用すれ
ば、上述の電気特性変化ばかりではなく、高集積化や小
型化も困難になるという問題があった。これを解決する
ためには、個々の素子をモノリシックに最小限の基板上
に構築することや、究極的には、いわゆるシステムオン
チップと言われる高集積、高密度の集積回路を指向した
素子構成を実現することが不可欠である。中でも、イン
ダクタ素子は、高周波回路の集積度を向上するための小
型化や、高利得化および低消費電力化のための品質係数
(Q)値やインダクタンス(L)値の向上と低損失化等
が必須であるにもかかわらず、集積回路素子のうちで最
も性能向上の進捗や小型化が遅れているという大きな問
題があった。集積化されたインダクタ素子である集積磁
気素子において、その導体の巻線方法(コイルパター
ン)をもとに大別すると、次の二つの構成方法がある。
一つは、導体を平面的に屈曲(曲折)させたり、渦巻き
状に配線した、つづら折れ型やスパイラル型、さらに
は、これらを組み合わせた、つづら折れ−スパイラル複
合型等の平面型集積磁気素子であり、もう一つは、導体
を円筒状に巻いたソレノイド型に代表される立体型集積
磁気素子である。平面型のコイルパターンの内、L値を
最も大きくできるのは、例えば、図6(a)に示すよう
なスパイラル型であるため、同一のL値やQ値等の電気
特性を得るうえでは、スパイラル型が平面的には最も小
型化が可能な構成方法といえる。しかしながら、スパイ
ラル型では、外部引き出し端子を設ける方法として、2
層のスパイラル導体(コイル)をスルーホール導体で接
続するか、もしくは端子引き出し用導体60を別途形成
する必要があり、他の平面型コイルパターンに比べて製
造プロセスが複雑となる。集積回路全体から見れば、こ
の平面型コイルパターンの専有面積はかなり大きく、面
積利用効率も非常に悪く、かつ、レイアウト設計上の自
由度も大きく制限されるという本質的な問題があった。
しかも、平面型コイルパターンは、最も磁束密度の高い
コイルの中央部の磁界〔図6(a)に示す平面図では、
紙面に垂直方向(図示省略)である〕が、そのまま外部
に開放されていて、いわゆる閉磁路構造とはなっていな
い。そのため、この開放された磁界(漏れ磁界)によっ
て誘起された寄生信号(磁気誘起寄生信号)が近隣の他
の素子の動作信号に重畳され、全体の回路性能に悪影響
を及ぼすなど、許容される専有面積下では、実用的な所
要のL値とQ値を得ることは困難であった。すなわち、
所要のL値とQ値を得るためには、導体(コイル)の平
面的な大型化や積層による立体的な大型化が必要であ
り、それに伴う導体長(コイル長)の増大は、結果的
に、電気抵抗、寄生容量、電流経路(効率悪化)、磁気
誘起寄生信号等の増大をもたらすことになってしまうか
らである。また、仮にL値やQ値の増大と、この磁気誘
起寄生信号の影響を軽減するために、磁性体をコイル内
外に設けた場合、占有容積が増大すると共に、プロセス
が極めて複雑になるなど、実用的な作製方法とはなり得
なかった。さらに、より実用的な見地から、素子形成後
において、インダクタンスの大きさなどの回路特性を調
整(回路調整)できるトリミング機能を有することが好
ましいが、平面型コイルパターンは構造的に機能付加が
困難であるため、回路の最終性能が導体や磁性体の特
性、素子の構造パラメータ等に著しく依存し、実用上、
重要な要件である歩留まりや信頼性の確保、向上が困難
であるという、本質的な欠点を有しており、実用化の大
きな障害となっていた。一方、上記立体型は、例えば図
6(b)に示すように、直線状ソレノイドコイル1c中
に磁性体2を設置した磁芯状ソレノイドとすることによ
り、同一専有面積下では、上記平面型や磁性体が設置さ
れていない空芯状ソレノイドよりも高いL値とQ値を比
較的容易に実現できる点で有望である。しかも、例えば
この磁性体2を可動・変更可能にするなどの機能を付加
することが構造的に可能であることから、上記平面型で
は困難であった回路調整のためのトリミング機能を付加
することが比較的容易となり、集積磁気素子の性能の、
導体や磁性体の特性、および素子の構造パラメータ等に
対する依存度を軽減できるため、実用上重要な要件であ
る歩留まりや信頼性の確保と向上が実現しやすく、極め
て有望な素子構造である。しかしながら、上記直線状ソ
レノイドコイル(磁芯状ソレノイド)1cでは、もっと
磁束密度の高いソレノイド両端中央部の磁界(ある瞬間
の電磁誘導磁界の向き5)が、そのまま外部に開放され
ている、いわゆる閉磁路構造とはなっていないため、こ
の漏れ磁界によって磁気誘起寄生信号が発生する原因と
なる。仮に、これを回避するためにソレノイド全体を磁
性体で覆ったり、環状ソレノイド(トロイダル)構造に
よる閉磁路化をはかるなどの閉鎖磁界構造を採用すれ
ば、被覆磁性体やその形成のために占有容積やプロセス
の複雑さが増大したり、環状中央部のデッドスペースの
ために専有面積がかなり増大するなど、実用化の上での
大きな障害となっていた。以上のように、立体型磁芯状
集積磁気素子は、小型で高いL値とQ値を実現可能であ
り、しかもトリミング機能まで付加できる可能性を有す
るという点で実用上極めて重要であるにもかかわらず、
最も磁束密度の高い磁芯両端中央部の磁界がそのまま外
部に開放されている、いわゆる閉磁路構造とはなってい
ないため、この漏れ磁界によって磁気誘起寄生信号を発
生する発生源となって、近隣の他の素子回路に悪影響を
及ぼし、高密度・高集積化した信頼性の高い安定な集積
回路を実現することが困難であると言う、実用上極めて
深刻な問題があった。
2. Description of the Related Art Conventionally, in order to realize a high-frequency integrated circuit, an active element operating at a high frequency and a passive element composed of an inductor element, a capacitance element, and the like are separated as an independent element through an insulating substrate. In some cases, for example, the passive element itself is assembled by combining some inductor elements and the like as individual components. But,
In such a method, electric characteristics such as matching characteristics change depending on an assembling position, so that it is difficult to mass-produce with a high yield, and the performance of existing monolithically manufacturable inductor elements is insufficient. Therefore, the degree of freedom in circuit design is limited, and if individual components with a large element volume are used instead to avoid this, not only the above-mentioned change in electrical characteristics but also high integration and miniaturization can be achieved. There was a problem that it became difficult. In order to solve this problem, individual elements must be monolithically constructed on a minimum substrate, and ultimately, an element configuration oriented to high-density and high-density integrated circuits called system-on-chip. It is essential to achieve. Among them, the inductor element is downsized to improve the integration degree of the high frequency circuit, and the quality factor (Q) value and the inductance (L) value are increased and the loss is reduced for higher gain and lower power consumption. However, there is a major problem in that progress of performance improvement and miniaturization are delayed most among integrated circuit elements. In an integrated magnetic element, which is an integrated inductor element, there are roughly the following two configuration methods when roughly classified based on the winding method (coil pattern) of the conductor.
One is a planar integrated magnetic element in which a conductor is bent (bent) in a plane or wired in a spiral shape, such as a serpentine type or a spiral type, or a combination of these, a serpentine-spiral composite type. The other is a three-dimensional integrated magnetic element represented by a solenoid type in which a conductor is wound in a cylindrical shape. Of the planar coil patterns, the L value can be maximized, for example, in a spiral type as shown in FIG. 6A, so that the same electrical characteristics such as L value and Q value can be obtained. It can be said that the spiral type is the configuration method that can be most miniaturized in plan view. However, in the spiral type, as a method of providing an external lead-out terminal, 2
It is necessary to connect the spiral conductors (coils) of the layers with through-hole conductors or separately form the terminal leading conductors 60, which complicates the manufacturing process as compared with other planar coil patterns. From the viewpoint of the entire integrated circuit, there is an essential problem that the area occupied by the planar coil pattern is considerably large, the area utilization efficiency is very low, and the degree of freedom in layout design is greatly restricted.
In addition, the planar coil pattern has a magnetic field at the center of the coil having the highest magnetic flux density [in the plan view shown in FIG.
The direction perpendicular to the plane of the paper (not shown)] is open to the outside as it is, and does not have a so-called closed magnetic circuit structure. Therefore, a parasitic signal (magnetically induced parasitic signal) induced by the released magnetic field (leakage magnetic field) is superimposed on an operation signal of another neighboring element, and adversely affects the overall circuit performance. Under the area, it was difficult to obtain practical required L values and Q values. That is,
In order to obtain the required L value and Q value, it is necessary to increase the planar size of the conductor (coil) or to increase the size three-dimensionally by lamination, and the accompanying increase in the conductor length (coil length) results in In addition, the electric resistance, the parasitic capacitance, the current path (deterioration in efficiency), the magnetically induced parasitic signal, and the like are increased. Also, if a magnetic material is provided inside and outside the coil to reduce the effect of the L- and Q-values and the magnetically induced parasitic signal, the occupied volume increases and the process becomes extremely complicated. It could not be a practical manufacturing method. Further, from a more practical point of view, it is preferable to have a trimming function for adjusting circuit characteristics such as the magnitude of inductance (circuit adjustment) after forming the element, but it is difficult to add a function structurally to a planar coil pattern. Therefore, the final performance of the circuit remarkably depends on the characteristics of conductors and magnetic materials, structural parameters of elements, etc.
It has the essential drawback that it is difficult to secure and improve yield and reliability, which are important requirements, and has been a major obstacle to practical application. On the other hand, for example, as shown in FIG. 6B, the three-dimensional type is a magnetic core type solenoid in which a magnetic body 2 is installed in a linear solenoid coil 1c. It is promising in that relatively higher L and Q values can be achieved relatively easily than air-core solenoids without a magnetic body. Moreover, since it is structurally possible to add a function such as making the magnetic body 2 movable and changeable, it is necessary to add a trimming function for circuit adjustment, which is difficult with the above-mentioned flat type. Is relatively easy, and the performance of the integrated magnetic element
Since the dependence on the characteristics of the conductor and the magnetic material, the structural parameters of the element, and the like can be reduced, it is easy to realize the yield and reliability, which are important requirements in practical use, and it is an extremely promising element structure. However, in the linear solenoid coil (magnetic core solenoid) 1c, the magnetic field at the center of both ends of the solenoid having a higher magnetic flux density (direction 5 of the electromagnetic induction magnetic field at a certain moment) is open to the outside as it is, so-called closed magnetic field. Since it does not have a path structure, the leakage magnetic field causes a magnetically induced parasitic signal to be generated. To avoid this, if a closed magnetic field structure such as covering the entire solenoid with a magnetic material or forming a closed magnetic circuit with a circular solenoid (toroidal) structure is adopted, the volume occupied by the coated magnetic material and its formation can be reduced. And the process complexity increased, and the occupied area increased considerably due to the dead space in the center of the ring. As described above, the three-dimensional magnetic core integrated magnetic element is extremely important for practical use in that it is small and can realize high L and Q values, and has the possibility of adding a trimming function. regardless of,
Since the magnetic field at the center of both ends of the magnetic core with the highest magnetic flux density is not open to the outside as it is, it does not have a so-called closed magnetic circuit structure. There is a serious problem in practical use that it has a bad effect on other element circuits and it is difficult to realize a highly reliable and stable integrated circuit with high density and high integration.

【0003】[0003]

【発明が解決しようとする課題】上述した従来技術で
は、最も磁束密度の高い磁芯両端中央部の磁界がそのま
ま外部に開放されている、いわゆる閉磁路構造ではない
立体型磁芯状集積磁気素子構造が用いられていたため、
漏れ磁界により磁気誘起寄生信号の発生源となって、近
隣の他の素子回路動作に悪影響を及ぼすという障害があ
り、さらに、この磁気誘起寄与信号の発生・伝播に伴っ
て、集積回路の全体の特性や動作安定性、信頼性の低下
等が起こるため、所要の性能を持つ小型・高性能な集積
回路を実現することが困難であった。
In the above-mentioned prior art, a three-dimensional magnetic core integrated magnetic element having a so-called closed magnetic circuit structure in which the magnetic field at the center of both ends of the magnetic core having the highest magnetic flux density is opened to the outside as it is. Because the structure was used,
There is an obstacle that the leakage magnetic field becomes a source of the magnetically induced parasitic signal and adversely affects the operation of other element circuits in the vicinity. In addition, with the generation and propagation of the magnetically induced contribution signal, the entire integrated circuit becomes Since characteristics, operation stability, reliability, and the like decrease, it has been difficult to realize a small-sized and high-performance integrated circuit having required performance.

【0004】本発明の目的は、上記従来技術における問
題点を解消するものであって、漏れ磁界の少ない、小型
で高いインダクタンス(L)値と、高周波回路の集積度
を向上するための小型化、高利得化および低消費電力化
のための品質係数(Q)値を、より向上し得る集積磁気
素子構造を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in the prior art, and to reduce the leakage magnetic field, reduce the size and increase the inductance (L) value, and reduce the size of the high-frequency circuit to improve the degree of integration. Another object of the present invention is to provide an integrated magnetic element structure capable of further improving a quality factor (Q) value for high gain and low power consumption.

【0005】[0005]

【課題を解決するための手段】上記本発明の目的を達成
するために、本発明は特許請求の範囲に記載のような構
成とするものである。すなわち、請求項1に記載のよう
に、電磁誘導磁界を発生できる導体と、該導体に近接し
て配置された電磁誘導磁界強度を制御できる磁性体と、
上記導体に電力を供給し、かつ、電磁誘導信号を受容で
きる電力供給信号受容手段と、上記の導体と磁性体と電
力供給信号受容手段とを電子回路として構築する基板と
により少なくとも構成される集積磁気素子において、上
記導体を、上記磁性体内の空隙を介して対向し合う領域
近傍に、該領域に発生する電磁誘導磁界の向きが互いに
対向するように配置した構造の集積磁気素子とするもの
である。上記請求項1に記載のような素子構造とするこ
とにより、導体により発生された電磁誘導磁界は、磁性
体による制御を受けると共に、磁性体の領域で発生する
電磁誘導磁界の向きが互いに対向するため、磁性体内の
磁束は閉磁路となり漏れ磁界の発生を抑制することがで
きるので、従来技術における漏れ磁界に起因した磁気誘
起寄生信号による集積回路性能に対する悪影響を著しく
低減することができる。しかも、磁性体は高周波域でも
高い透磁率を有し、かつ電気抵抗の高い高透磁性軟磁性
材料等で構成されているため、G(ギガ)Hz級の高周
波域においても、磁性体内で発生する渦電流などによる
損失は軽減され、結果的に極めて大きなL値とQ値を実
現できる効果がある。また、請求項2に記載のように、
請求項1に記載の集積磁気素子において、上記導体の両
端部もしくは該両端部以外の所要の位置から、上記電力
供給信号受容手段と電気的に接続できる構造とするか、
もしくは上記導体の両端部および該両端部以外の所要の
位置から、上記電力供給信号受容手段と電気的に接続で
きる構造の集積磁気素子とするものである。上記請求項
2に記載のような素子構造とすることにより、磁性体内
の磁束は閉磁路となり、漏れ磁界の発生を抑制しなが
ら、極めて大きなL値とQ値を実現できる効果は上記請
求項1と同様であるが、導体の両端部あるいは導体の両
端部以外の位置から、電力供給信号受容手段と電気的に
接続することができるので、導体の巻線数を所要の数に
選択、調整することが可能となり、導体の両端部での巻
線数で規定されるL値よりも小さな所要のL値を、製造
プロセスの複雑な変更や、集積磁気素子の位置や、専有
面積等を変更することなく、簡易に実現できる効果があ
る。また、請求項3に記載のように、請求項1または請
求項2に記載の集積磁気素子において、上記導体の長手
方向に交差する導体断面の外周表層を凹凸構造とした集
積磁気素子とするものである。上記請求項3に記載のよ
うな素子構造とすることにより、上記請求項1に記載の
共通の効果に加えて、導体の外周表層に設けられた凹凸
構造により、電流分布が集中する表層(表皮)領域の面
積増大効果により、実効電流密度の低下に伴う高周波域
での寄生抵抗増加を軽減することができるので、効率良
く電力供給と信号受容が可能となり、結果的に極めて大
きなL値とQ値を実現できる効果がある。また、請求項
4に記載のように、請求項1または請求項2に記載の集
積磁気素子において、上記磁性体の一部に、該磁性体の
電気抵抗の大きい領域を構成した構造の集積磁気素子と
するものである。上記請求項4に記載のような素子構造
とすることにより、上記請求項1に記載の共通の効果に
加えて、磁性体の一部の領域の電気抵抗が増大されてい
るので、電磁誘導磁界によって磁性体に誘起される渦電
流の発生、伝播が抑制され、この渦電流損失に起因した
インダクタ素子の効率やL値の周波数特性の悪化等の性
能低下を軽減することができ、結果的に、特に高周波域
においても極めて大きなL値とQ値を実現できる効果が
ある。また、請求項5に記載のように、請求項1または
請求項2に記載の集積磁気素子において、上記磁性体の
一部に、該磁性体の断面積縮小領域を構成した構造の集
積磁気素子とするものである。上記請求項5に記載のよ
うな素子構造とすることにより、上記請求項1に記載の
共通の効果に加えて、磁性体の一部の領域の断面積が縮
小されているため、電磁誘導磁界によって磁性体に誘起
される渦電流の発生、伝播が抑制され、この渦電流損失
に起因したインダクタ素子の効率やL値の周波数特性の
悪化等の性能低下を軽減することができ、結果的に、特
に高周波域においても、極めて大きなL値とQ値を実現
できる効果がある。
Means for Solving the Problems In order to achieve the object of the present invention, the present invention is configured as described in the claims. That is, as described in claim 1, a conductor capable of generating an electromagnetic induction magnetic field, and a magnetic body disposed in close proximity to the conductor and capable of controlling the intensity of the electromagnetic induction magnetic field,
An integrated circuit comprising at least a power supply signal receiving means for supplying power to the conductor and receiving an electromagnetic induction signal, and a substrate on which the conductor, the magnetic body and the power supply signal receiving means are constructed as an electronic circuit. In the magnetic element, the conductor is an integrated magnetic element having a structure in which the conductors are arranged near an area facing each other via a gap in the magnetic body so that directions of electromagnetic induction magnetic fields generated in the area are opposite to each other. is there. With the element structure according to the first aspect, the electromagnetic induction magnetic field generated by the conductor is controlled by the magnetic material, and the directions of the electromagnetic induction magnetic fields generated in the region of the magnetic material are opposed to each other. As a result, the magnetic flux in the magnetic body becomes a closed magnetic path, and the generation of the leakage magnetic field can be suppressed, so that the adverse effect on the integrated circuit performance due to the magnetically induced parasitic signal caused by the leakage magnetic field in the related art can be significantly reduced. In addition, since the magnetic material has a high magnetic permeability even in a high frequency range and is made of a high magnetic permeability soft magnetic material having a high electric resistance, the magnetic material is generated in the magnetic material even in a high frequency range of the G (giga) Hz class. Loss due to eddy current or the like is reduced, and as a result, there is an effect that extremely large L value and Q value can be realized. Also, as described in claim 2,
2. The integrated magnetic element according to claim 1, wherein the conductor is configured to be electrically connectable to the power supply signal receiving means from both ends of the conductor or a required position other than the both ends.
Alternatively, the integrated magnetic element has a structure that can be electrically connected to the power supply signal receiving means from both ends of the conductor and required positions other than the both ends. By adopting the element structure as described in the second aspect, the magnetic flux in the magnetic body becomes a closed magnetic circuit, and the effect of realizing extremely large L value and Q value while suppressing the generation of the leakage magnetic field can be obtained. Same as above, but since it can be electrically connected to the power supply signal receiving means from both ends of the conductor or positions other than both ends of the conductor, select and adjust the number of windings of the conductor to the required number It is possible to change the required L value smaller than the L value defined by the number of windings at both ends of the conductor into a complicated change of a manufacturing process, a position of an integrated magnetic element, a occupied area, and the like. There is an effect that can be easily realized without any. According to a third aspect of the present invention, there is provided the integrated magnetic element according to the first or second aspect, wherein an outer peripheral surface layer of a conductor cross section that intersects the longitudinal direction of the conductor has an uneven structure. It is. With the element structure according to the third aspect, in addition to the common effect according to the first aspect, the surface layer (skin) where the current distribution is concentrated is formed by the uneven structure provided on the outer peripheral surface layer of the conductor. 2) The effect of increasing the area of the region makes it possible to reduce the increase in parasitic resistance in the high-frequency region due to the decrease in the effective current density, so that power can be supplied and signals can be received efficiently, and as a result, the extremely large L value and Q This has the effect of realizing the value. According to a fourth aspect of the present invention, in the integrated magnetic element according to the first or second aspect, the integrated magnetic element has a structure in which a part of the magnetic body has a region having a large electric resistance of the magnetic body. It is an element. With the element structure according to the fourth aspect, in addition to the common effect according to the first aspect, the electric resistance of a partial region of the magnetic body is increased, so that the electromagnetic induction magnetic field is increased. As a result, generation and propagation of eddy currents induced in the magnetic material are suppressed, and performance degradation such as deterioration of efficiency and L-value frequency characteristics of the inductor element due to the eddy current loss can be reduced. As a result, In particular, there is an effect that extremely large L value and Q value can be realized even in a high frequency range. According to a fifth aspect of the present invention, in the integrated magnetic element according to the first or second aspect, the integrated magnetic element has a structure in which a cross-sectional area reduction region of the magnetic body is formed in a part of the magnetic body. It is assumed that. According to the element structure of the fifth aspect, in addition to the common effect of the first aspect, the sectional area of a part of the magnetic body is reduced, so that the electromagnetic induction magnetic field is reduced. As a result, generation and propagation of eddy currents induced in the magnetic material are suppressed, and performance degradation such as deterioration of efficiency and L-value frequency characteristics of the inductor element due to the eddy current loss can be reduced. As a result, In particular, there is an effect that extremely large L value and Q value can be realized even in a high frequency range.

【0006】本発明は、集積磁気素子の導体と磁性体と
の相対的な配置構造を、閉磁路化による漏れ磁界の少な
い状態が実現できるようにすることにより、占有容積を
最小限に維持しながら、L値やQ値等の小型インダクタ
素子としての主要な特性を向上するものである。すなわ
ち、電磁誘導磁界を発生できる導体と、該導体に近接し
て配置された電磁誘導磁界強度を制御できる磁性体と、
上記導体に電力を供給し、かつ、電磁誘導信号を受容で
きる電力供給信号受容手段と、上記導体と磁性体と電力
供給信号受容手段とを電子回路として構築するための基
板とからなる集積磁気素子において、上記導体が、上記
磁性体内の空隙を介して対向し合う領域の近傍に、該領
域に発生する電磁誘導磁界の向きが互いに対向するよう
に配置した構造の集積磁気素子とするものである。本発
明は、集積磁気素子において、導体と磁性体との相対的
な配置構造を、閉磁路化による漏れ磁界の少ない状態が
実現できるような構造とすることにより、占有容積を最
小限に維持しながら、L値やQ値等の小型インダクタ素
子としての主要な特性を向上させることができるため、
集積回路、特に高周波領域で動作する集積回路におい
て、超小型の高性能インダクタ素子を実現できる効果が
ある。
The present invention maintains the occupied volume to a minimum by making the relative arrangement structure of the conductor and the magnetic body of the integrated magnetic element capable of realizing a state in which the leakage magnetic field is small due to the closed magnetic circuit. However, it improves the main characteristics of the small inductor element such as the L value and the Q value. That is, a conductor that can generate an electromagnetic induction magnetic field, and a magnetic body that can control the intensity of the electromagnetic induction magnetic field that is arranged close to the conductor,
An integrated magnetic element comprising: a power supply signal receiving means for supplying power to the conductor and receiving an electromagnetic induction signal; and a substrate for constructing the conductor, the magnetic body, and the power supply signal receiving means as an electronic circuit. , An integrated magnetic element having a structure in which the conductors are arranged near an area facing each other via a gap in the magnetic body so that the directions of electromagnetic induction magnetic fields generated in the area are opposite to each other. . The present invention maintains the occupied volume to a minimum by making the relative arrangement structure of the conductor and the magnetic body in the integrated magnetic element a structure capable of realizing a state with a small leakage magnetic field due to the closed magnetic circuit. However, since the main characteristics as a small inductor element such as L value and Q value can be improved,
In an integrated circuit, particularly, an integrated circuit operating in a high-frequency region, there is an effect that a very small high-performance inductor element can be realized.

【0007】[0007]

【発明の実施の形態】本発明の実施の形態として、Si
基板を用いた集積回路の構造のうちのインダクタ素子の
構成部分に限定した場合を例に挙げ、本発明の集積磁気
素子の構成について説明する。なお、本実施の形態で
は、特に数百M(メガ)HzからG(ギガ)Hz領域の
高周波回路へ採用した場合の素子構成について説明す
る。 〈実施の形態1〉図1(a)は、本発明の集積磁気素子
の構造の一例を示す模式図である。図1(a)におい
て、1は導体、2は磁性体、3は磁性体内の空隙、4
は、ある瞬間の電流の向き、5は、ある瞬間の電磁誘導
磁界の向きである。導体1は、導体1に電力を供給し、
かつ、電磁誘導信号を受容できる電力供給信号受容手段
(例えば、高周波電源と他のインダクタ素子、容量素
子、抵抗素子などにより構成される電子回路)と、電気
的に接続され、口の字型の磁性体2内の空隙3を介して
対向する一方の領域2aと、磁性体2内の空隙3を介し
て対向する、もう一方の領域2bとを、あたかも領域2
aと2bが二つの磁芯状ソレノイド1aと1bの各々の
磁芯に相当するような巻線状態で配置されている。しか
も、導体1は、導体1に流れる、ある瞬間の電流の向き
4を図示のように想定した場合、上記磁性体2の領域2
aと2bでの、ある瞬間の電磁誘導磁界の向き5が、い
わゆるビオ・サバールの法則に従って5aと5bで示さ
れる向きとなるように、言い換えれば、磁性体2の領域
2aと2bで発生する電磁誘導磁界の向き5が、5aと
5bで示されるように互いに対向するように配置されて
いる。なお、図1(a)は、本発明の集積磁気素子の主
要部の概略構成を示したに過ぎず、実際には、導体1の
周囲には二酸化ケイ素や窒化ケイ素等の酸化物や窒化
物、あるいは高分子等よりなる絶縁性材料(図示省略)
で電気的絶縁が構成され、かつ、集積回路としてSi基
板(図示省略)上に構築されている。導体1は、Ag、
Cu、Au、Alや合金等よりなる低電気抵抗材料で構
成されている。磁性体2は、(Fe、Co)−半金属系
材料である(Fe、Co)−(Si、C)−(B、P)
系材料や、(Fe、Co)−遷移金属系材料である(F
e、Co)−(Zr、Hf、Nb、Ti、V、Ta、
W、Y、Ce等の希土類元素)−(B、O)系ナノ(na
no)結晶材料、金属−非金属系材料である (Fe、C
o)−(B、Si、Hf、Zr、Al)−(F、O、
N)系ナノ(nano)グラニュラー結晶等の高透磁性軟磁
性材料で構成され、高い飽和磁束密度と共に、結晶磁気
異方性を制御することによって高い軟磁気特性をも有
し、しかもGHz級の高周波域においても高い透磁率を
保持し、同時に、高い電気抵抗を有している。以上述べ
たように、導体1によって発生された電磁誘導磁界は、
磁性体2による制御を受けると共に、該磁性体2の領域
2aと2bで発生する電磁誘導磁界の向きが、5aと5
bで示すように互いに対向するため、該磁性体2内の磁
束は閉磁路となり上述した漏れ磁界の発生を抑制するこ
とができるため、従来技術のような漏れ磁界に起因した
磁気誘起寄生信号による集積回路性能に対する悪影響を
著しく低減することができた。しかも、該磁性体2は高
周波域でも高い透磁率を有し、かつ、電気抵抗の高い高
透磁性軟磁性材料で構成されているため、GHz級の高
周波域においても、該磁性体2内で発生する渦電流によ
る損失は軽減され、結果的に極めて大きなL値とQ値を
実現することができた。ここで、図1(a)に示した実
施の形態を基に、本発明の集積磁気素子の更なるL値増
大方法の一例について説明する。図1(b)は、本発明
の集積磁気素子構造の他の一例を示す模式図で、図1
(a)で示した集積磁気素子を平面的に拡張した構造と
なっている。図1(b)において、1は導体、2は磁性
体、3は磁性体内の空隙、4はある瞬間の電流の向き、
5はある瞬間の電磁誘導磁界の向きを示す。図1(a)
で示した実施の形態と同様に、導体1は、該導体1に電
力を供給し、かつ、電磁誘導信号を受容できる電力供給
信号受容手段(図示省略)と電気的に接続され、磁性体
2内の三つの空隙3を介して互いに対向する領域2a、
2b、2c、2d間を、あたかも領域2a、2b、2
c、2dが四つの磁芯状ソレノイドの各々の磁芯に相当
するような巻線状態で配置されている。しかも、導体1
は、導体1に流れる、ある瞬間の電流の向き4を図示の
ように想定した場合、上記磁性体2の領域2a、2b、
2c、2dでの、ある瞬間の電磁誘導磁界の向き5が、
該磁性体の領域2a、 2b、2c、2dで発生する電
磁誘導磁界の向き5が、5a、5b、5c、5dで示す
ように互いに対向するように配置されている。なお、図
1(b)は本発明の主要部の構成を示したに過ぎず、基
本的には、図1(a)で示した集積磁気素子と同様の材
料構成等が用いられている。以上述べたように、導体1
によって発生された電磁誘導磁界は、磁性体2による制
御を受けると共に、該磁性体2の領域2a、2b、2
c、2dで発生する電磁誘導磁界の向き5が、5a、5
b、5c、5dで示すように互いに対向するため、該磁
性体2内の磁束は閉磁路となり、上述した漏れ磁界の発
生を抑制することができるため、従来技術のような漏れ
磁界に起因した磁気誘起寄生信号による集積回路性能に
対する悪影響を著しく低減することができた。しかも、
該磁性体2は高周波域でも高い透磁率を有し、かつ、電
気抵抗の高い高透磁性軟磁性材料で構成されているた
め、GHz級の高周波域においても、該磁性体2内で発
生する渦電流による損失は軽減され、結果的に極めて大
きなL値とQ値を実現することができた。特に、本実施
の形態では、インダクタ素子として機能する導体1の巻
線部分が倍増しているため、図1(a)で示した実施の
形態に比べてL値を増大することができた。このよう
に、磁性体2内の空隙3の数を増大することにより、製
造プロセスの複雑さを増すことなく、容易に、所要のL
値まで増大することができた。以上のように、本発明の
集積磁気素子構造とすることにより、閉磁路化による漏
れ磁界の少ない状態が実現できるため、プロセスの複雑
さを増すことなく、かつ、占有容積を最小限に維持しな
がら、L値やQ値等の小型インダクタ素子としての主要
な特性を向上することが可能となり、極めて信頼性の高
い高性能の高周波集積回路を実現することができた。な
お、ここで述べた結果は、本発明の有効性の一例に過ぎ
ず、本発明を実施することにより、インダクタ素子機能
の必要とされる、他の高性能の集積回路を実現すること
が可能となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As an embodiment of the present invention, Si
The configuration of the integrated magnetic element of the present invention will be described by taking as an example a case where the configuration is limited to the components of the inductor element in the structure of the integrated circuit using the substrate. Note that, in this embodiment, an element configuration in the case where the element is employed in a high-frequency circuit in the range of several hundred M (mega) Hz to G (giga) Hz will be described. <First Embodiment> FIG. 1A is a schematic view showing an example of the structure of an integrated magnetic element of the present invention. In FIG. 1A, 1 is a conductor, 2 is a magnetic material, 3 is a gap in the magnetic material, 4
Is the direction of the current at a certain moment, and 5 is the direction of the electromagnetic induction magnetic field at a certain moment. Conductor 1 supplies power to conductor 1;
In addition, it is electrically connected to a power supply signal receiving means (for example, an electronic circuit including a high-frequency power supply and another inductor element, a capacitance element, a resistance element, and the like) capable of receiving an electromagnetic induction signal, and has a mouth-shaped shape. The one region 2a facing through the gap 3 in the magnetic body 2 and the other region 2b facing through the gap 3 in the magnetic body 2
a and 2b are arranged in a winding state such that they correspond to the respective magnetic cores of the two magnetic core solenoids 1a and 1b. Moreover, assuming the direction 4 of the current flowing through the conductor 1 at a certain moment as shown in FIG.
The direction 5 of the electromagnetic induction magnetic field at a moment at a and 2b is generated in the regions 2a and 2b of the magnetic body 2 so as to be the directions indicated by 5a and 5b according to the so-called Bio-Savart law. The directions 5 of the electromagnetic induction magnetic fields are arranged so as to face each other as shown by 5a and 5b. FIG. 1A shows only a schematic structure of a main part of the integrated magnetic element of the present invention. Actually, an oxide or a nitride such as silicon dioxide or silicon nitride is provided around the conductor 1. Or insulating material made of polymer or the like (not shown)
, And is constructed on an Si substrate (not shown) as an integrated circuit. The conductor 1 is made of Ag,
It is made of a low electric resistance material made of Cu, Au, Al, alloy or the like. The magnetic body 2 is (Fe, Co)-(Si, C)-(B, P) which is a (Fe, Co) -metalloid material.
Based material or (Fe, Co) -transition metal based material (F
e, Co)-(Zr, Hf, Nb, Ti, V, Ta,
Rare earth elements such as W, Y, Ce)-(B, O) nano (na
no) crystalline materials, metal-nonmetallic materials (Fe, C
o)-(B, Si, Hf, Zr, Al)-(F, O,
N) Based on a magnetically permeable soft magnetic material such as nano-granular crystal, it has high saturation magnetic flux density and high soft magnetic characteristics by controlling crystal magnetic anisotropy. It maintains high magnetic permeability even in a high frequency range, and at the same time has high electric resistance. As described above, the electromagnetic induction magnetic field generated by the conductor 1 is
While being controlled by the magnetic body 2, the directions of the electromagnetic induction magnetic fields generated in the regions 2a and 2b of the magnetic body 2 are 5a and 5b.
As shown by b, the magnetic flux in the magnetic body 2 becomes a closed magnetic circuit and can suppress the generation of the above-described leakage magnetic field. The adverse effects on integrated circuit performance could be significantly reduced. Moreover, the magnetic body 2 has a high magnetic permeability even in a high frequency range and is made of a high magnetic permeability soft magnetic material having a high electric resistance. The loss due to the generated eddy current was reduced, and as a result, extremely large L value and Q value could be realized. Here, an example of a method of further increasing the L value of the integrated magnetic element of the present invention will be described based on the embodiment shown in FIG. FIG. 1B is a schematic diagram showing another example of the integrated magnetic element structure of the present invention.
It has a structure in which the integrated magnetic element shown in FIG. In FIG. 1B, 1 is a conductor, 2 is a magnetic material, 3 is a gap in the magnetic material, 4 is the direction of current at a certain moment,
5 indicates the direction of the electromagnetic induction magnetic field at a certain moment. FIG. 1 (a)
As in the embodiment shown in FIG. 1, the conductor 1 is electrically connected to a power supply signal receiving means (not shown) capable of supplying power to the conductor 1 and receiving an electromagnetic induction signal. Regions 2a opposed to each other via three voids 3 in
2b, 2c, 2d, as if areas 2a, 2b, 2
The windings are arranged in such a manner that c and 2d correspond to the respective magnetic cores of the four magnetic core solenoids. Moreover, conductor 1
Assuming the direction 4 of the current flowing through the conductor 1 at a certain moment as shown in the figure, the regions 2a, 2b,
The direction 5 of the electromagnetic induction magnetic field at a certain moment in 2c and 2d is
The directions 5 of the electromagnetic induction magnetic fields generated in the regions 2a, 2b, 2c and 2d of the magnetic material are arranged so as to face each other as shown by 5a, 5b, 5c and 5d. FIG. 1B shows only the configuration of the main part of the present invention, and basically uses the same material configuration as that of the integrated magnetic element shown in FIG. 1A. As described above, the conductor 1
The electromagnetic induction magnetic field generated by the magnetic material 2 is controlled by the magnetic material 2 and the regions 2a, 2b, 2
The direction 5 of the electromagnetic induction magnetic field generated in c and 2d is 5a, 5
As shown by b, 5c, and 5d, the magnetic flux in the magnetic body 2 becomes a closed magnetic path, and the generation of the above-described leakage magnetic field can be suppressed. The adverse effect on the performance of the integrated circuit due to the magnetically induced parasitic signal was significantly reduced. Moreover,
Since the magnetic body 2 has a high magnetic permeability even in a high frequency range and is made of a high magnetic permeability soft magnetic material having a high electric resistance, the magnetic substance 2 is generated in the magnetic body 2 even in a high frequency range of GHz class. The loss due to the eddy current was reduced, and as a result, extremely large L value and Q value could be realized. In particular, in the present embodiment, since the winding portion of the conductor 1 functioning as an inductor element is doubled, the L value can be increased as compared with the embodiment shown in FIG. As described above, by increasing the number of voids 3 in the magnetic body 2, the required L can be easily adjusted without increasing the complexity of the manufacturing process.
Value could be increased. As described above, with the integrated magnetic element structure of the present invention, a state in which a leakage magnetic field is small due to the closed magnetic circuit can be realized, so that the process volume is not increased and the occupied volume is kept to a minimum. However, the main characteristics of the small inductor element such as the L value and the Q value can be improved, and a highly reliable and high-performance high-frequency integrated circuit can be realized. It should be noted that the results described here are only examples of the effectiveness of the present invention, and by implementing the present invention, it is possible to realize other high-performance integrated circuits that require an inductor element function. Becomes

【0008】〈実施の形態2〉本発明の集積磁気素子の
他の実施の形態について、図2を引用して説明する。図
2は、実施の形態1の図1(a)で示した本発明の集積
磁気素子の構成を示す斜視図を平面図化した模式図であ
る。図2において、1は導体、2は磁性体、3は磁性体
内の空隙、20は導体1の両端部、21aと21bは、
引き出し用導体である。図1(a)で示した実施の形態
と同様に、導体1は、該導体1に電力を供給し、かつ、
電磁誘導信号を受容できる電力供給信号受容手段(図示
省略)と導体1の両端部20を介して電気的に接続さ
れ、口の字型の磁性体2に上述した磁界関係が実現され
るように巻線状態で配置されている。また、導体1の両
端部20以外の所要の位置(本実施の形態では2箇所だ
けを例示)からも、上記電力供給信号受容手段(図示省
略)と電気的な接続が可能な引き出し用導体21a、2
1b(本実施の形態では二つだけを例示)が設置されて
いる。なお、図2には本発明の主要部の概略構成を示し
たに過ぎず、基本的には、図1(a)で示した実施の形
態と同様の材料構成等が用いられる。以上説明したよう
に、導体1によって発生された電磁誘導磁界は、磁性体
2による制御を受けると共に、該磁性体2内の磁束は閉
磁路となるため上述した漏れ磁界の発生を抑制しなが
ら、極めて大きなL値とQ値を実現できたことは、上記
実施の形態1と同様である。ただし、本実施の形態で
は、引き出し用導体21a、21b(本実施の形態では
二つだけを例示)が設置してあるため、所要の導体1の
巻線数を選択することが可能となるため、導体1の両端
部20での巻線数で規定されるL値よりも小さな所要の
L値を、製造プロセスの複雑な変更や集積磁気素子の位
置や専有面積等を変更することなく、実現することがで
きた。以上のように本発明の集積磁気素子を構成するこ
とにより、閉磁路化による漏れ磁界の少ない状態が実現
できるため、プロセスの複雑さを増すことなく、かつ、
占有容積を最小限に維持しながら、L値やQ値等の小型
インダクタ素子としての主要な特性を向上できるばかり
でなく、複数の所要のL値を実現することも可能とな
り、極めて信頼性の高い高性能の高周波集積回路を実現
することができた。なお、ここで述べた結果は、本発明
の有効性の一例に過ぎず、本発明を実施することによ
り、インダクタ素子機能の必要とされる他の高性能の集
積回路を実現することができる。
Embodiment 2 Another embodiment of the integrated magnetic element of the present invention will be described with reference to FIG. FIG. 2 is a schematic plan view of the perspective view showing the configuration of the integrated magnetic element of the present invention shown in FIG. 1A of the first embodiment. In FIG. 2, 1 is a conductor, 2 is a magnetic body, 3 is a gap in the magnetic body, 20 is both ends of the conductor 1, and 21a and 21b are:
This is a lead conductor. As in the embodiment shown in FIG. 1A, the conductor 1 supplies power to the conductor 1 and
A power supply signal receiving means (not shown) capable of receiving an electromagnetic induction signal is electrically connected via both ends 20 of the conductor 1 so that the magnetic field relationship described above is realized in the mouth-shaped magnetic body 2. They are arranged in a winding state. Also, from a required position other than both end portions 20 of the conductor 1 (only two places are illustrated in the present embodiment), a lead-out conductor 21a electrically connectable to the power supply signal receiving means (not shown). , 2
1b (only two are illustrated in the present embodiment). FIG. 2 shows only a schematic configuration of a main part of the present invention, and basically uses the same material configuration as that of the embodiment shown in FIG. As described above, the electromagnetic induction magnetic field generated by the conductor 1 is controlled by the magnetic body 2 and the magnetic flux in the magnetic body 2 becomes a closed magnetic path, thereby suppressing the above-described generation of the leakage magnetic field. As in the first embodiment, extremely large L values and Q values can be realized. However, in the present embodiment, since the lead-out conductors 21a and 21b (only two are illustrated in the present embodiment) are provided, the required number of turns of the conductor 1 can be selected. A required L value smaller than the L value defined by the number of windings at both ends 20 of the conductor 1 can be realized without changing the manufacturing process or changing the position or occupied area of the integrated magnetic element. We were able to. By configuring the integrated magnetic element of the present invention as described above, a state in which the leakage magnetic field is small due to the closed magnetic path can be realized, without increasing the complexity of the process, and
While keeping the occupied volume to a minimum, not only can the main characteristics of the small inductor element such as the L value and the Q value be improved, but it is also possible to realize a plurality of required L values, which makes it extremely reliable. A high-performance high-frequency integrated circuit was realized. Note that the results described here are only examples of the effectiveness of the present invention, and by implementing the present invention, other high-performance integrated circuits requiring the inductor element function can be realized.

【0009】〈実施の形態3〉図3は、本発明の集積磁
気素子の導体1の構成を示す斜視図で、図1(a)に示
した導体1の一部分を抜き出して図示したものである。
図3において、1は導体、30は導体1の長手方向、3
1は導体1の長手方向30に交差する導体1の断面、3
2は導体1の断面31の外周表層である。導体1の外周
表層31は、図示のように、断面31の面積を変えるこ
となく、その周囲長を増大するように凹凸構造、すなわ
ち、長手方向30へ縞状に凹凸が形成されている。図3
は、本発明の主要部の構成を示したに過ぎず、基本的に
は、図1(a)で示した実施の形態と同様の材料構成等
が用いられている。一般に、導体の抵抗は、高周波では
電流分布が一様ではなくなり、導体の表層(表皮)領域
に集中して流れるという表皮効果のために、周波数が高
くなるほど増大する傾向がある。すなわち、インダクタ
素子としての寄生抵抗は、表皮効果のために周波数の平
方根にほぼ比例して増大することが知られている。した
がって、導体の抵抗を低減して損失を軽減するために
は、電流分布が集中する表層領域の断面積を増大するこ
とが有効である。ただし、集積回路内での占有容積等を
できる限り増大させずに、該表層断面積を増大すること
が望ましい。図3で示した実施の形態は、導体1の断面
積を増大することなく、外周表層32の増大を実現し、
しかも、効率悪化の原因となる電流(伝播)経路を延長
することがないように長手方向30と同方向の縞状構造
としている。以上説明したように、導体1の外周表層3
2に設けられた凹凸構造による電流分布の集中する表層
(表皮)領域の面積増大効果により、実効電流密度の低
下に伴う高周波域での寄生抵抗増加を軽減できるため、
効率良く電力供給と信号受容が可能となり、結果的に極
めて大きなL値とQ値を実現することができた。本実施
の形態で示した集積磁気素子を構成することにより、導
体の寄生抵抗による損失を軽減できるため、効率良くL
値やQ値等の小型インダクタ素子としての主要な特性を
向上することが可能となり、極めて信頼性の高い高性能
高周波集積回路を実現することができた。なお、ここで
述べた結果は、本発明の有効性の一例に過ぎず、本発明
を実施することにより、インダクタ素子機能の必要とさ
れる、他の高性能の集積回路を実現することができる。
<Embodiment 3> FIG. 3 is a perspective view showing the structure of a conductor 1 of an integrated magnetic element according to the present invention, in which a part of the conductor 1 shown in FIG. .
In FIG. 3, 1 is a conductor, 30 is a longitudinal direction of the conductor 1, and 3 is a conductor.
1 is a cross section of the conductor 1 intersecting in the longitudinal direction 30 of the conductor 1;
Reference numeral 2 denotes a peripheral surface layer of the cross section 31 of the conductor 1. As shown in the drawing, the outer peripheral surface layer 31 of the conductor 1 has a concavo-convex structure, that is, a concavo-convex pattern in the longitudinal direction 30 so as to increase the perimeter without changing the area of the cross section 31. FIG.
Merely shows the configuration of the main part of the present invention, and basically uses the same material configuration as that of the embodiment shown in FIG. In general, the resistance of a conductor tends to increase as the frequency increases, due to a skin effect in which the current distribution becomes non-uniform at high frequencies and flows intensively in the surface layer (skin) region of the conductor. That is, it is known that the parasitic resistance as the inductor element increases almost in proportion to the square root of the frequency due to the skin effect. Therefore, in order to reduce the resistance by reducing the resistance of the conductor, it is effective to increase the sectional area of the surface layer region where the current distribution is concentrated. However, it is desirable to increase the surface layer cross-sectional area without increasing the occupied volume in the integrated circuit as much as possible. The embodiment shown in FIG. 3 realizes an increase in the outer peripheral layer 32 without increasing the cross-sectional area of the conductor 1,
Moreover, the striped structure is formed in the same direction as the longitudinal direction 30 so as not to extend the current (propagation) path which causes the efficiency deterioration. As described above, the outer surface layer 3 of the conductor 1
Due to the effect of increasing the area of the surface layer (skin) region where the current distribution is concentrated by the uneven structure provided in 2, it is possible to reduce the increase in the parasitic resistance in the high frequency region due to the decrease in the effective current density.
Power can be efficiently supplied and signals can be received efficiently, and as a result, extremely large L and Q values can be realized. By configuring the integrated magnetic element described in the present embodiment, the loss due to the parasitic resistance of the conductor can be reduced.
The main characteristics of the small inductor element such as the value and the Q value can be improved, and a highly reliable high-performance high-frequency integrated circuit can be realized. Note that the results described here are only examples of the effectiveness of the present invention, and by implementing the present invention, other high-performance integrated circuits requiring an inductor element function can be realized. .

【0010】〈実施の形態4〉図4は、本発明の集積磁
気素子の構造の一例を示す模式図で、図1(a)で示し
た実施の形態の一部分を抜き出して図示したものであ
る。図4において、2は磁性体、40は、磁性体2の表
層に形成された高電気抵抗領域、41は、磁性体2の表
層から断面中心部まで形成された高電気抵抗領域であ
る。すなわち、磁性体2の一部が、図4に示すように、
磁性体2の平均的な比抵抗値よりも大きい高電気抵抗領
域40や41を設けた構造になっている。なお、図4は
本発明の主要部の概略構成を示したに過ぎず、基本的に
は、図1(a)で示した実施の形態と同様の材料構成等
が用いられている。一般に、電磁誘導磁界を受けた磁性
体には渦電流が誘起され、結果的にインダクタ素子の効
率やL値の周波数特性の悪化などの性能低下を起こすと
いう、特に高周波域では無視できない重大な損失があ
る。この磁性体に係わる渦電流損失は、磁性体中での渦
電流の流れを抑制、すなわち、電気抵抗を高めることに
より軽減できることが知られている。したがって、磁性
体の抵抗を増大して渦電流損失を軽減するためには、磁
性体の固有抵抗値(比抵抗値)を高めたり、渦電流経路
となる磁性体中の経路断面積を縮小することなどが有効
である。本発明は、前者の比抵抗値を高める方策を実施
したもので、磁性体2の高透磁性、軟磁性等の磁気的性
能に対する影響を極力少なくし、かつ、効率的に渦電流
損失を低減するために、磁性体2の一部の領域に限定し
た高電気抵抗領域の形成を行った。この高電気抵抗領域
40、41は、磁性体2の形成と同時でも、磁性体2の
形成後でも、例えば、酸素や窒素等からなるラジカル等
の反応活性粒子やイオン等の荷電粒子を照射、注入する
ことにより高電気抵抗の化合物化処理をするなど、既存
技術によって問題なく実現することができる。なお、こ
のような高電気抵抗領域は、導体や磁性体の形状や配置
等により、最も適切な材質や形状、個数、配置、形成方
法を選択して組み合わせることが肝要であることは言う
までもない。以上説明したように、磁性体2の一部の領
域の電気抵抗が増大されているため、電磁誘導磁界によ
って磁性体2に誘起される渦電流の発生、伝播が抑制さ
れ、この渦電流損失に起因したインダクタ素子の効率や
L値の周波数特性の悪化などの性能低下を軽減すること
ができ、結果的に、特に高周波域においても、極めて大
きなL値とQ値を実現することができた。上述したよう
に、本実施の形態で例示した集積磁気素子構造とするこ
とにより、磁性体での渦電流発生に起因する損失を軽減
することができるため、効率良くL値やQ値等の小型イ
ンダクタ素子としての主要な特性を向上することが可能
となり、極めて信頼性の高い高性能の高周波集積回路を
実現することができた。なお、本実施の形態で述べた結
果は、本発明の有効性の一例を示すに過ぎず、本発明を
実施することにより、インダクタ素子機能の必要とされ
る、他の高性能の集積回路を実現することが可能とな
る。
<Embodiment 4> FIG. 4 is a schematic view showing an example of the structure of an integrated magnetic element according to the present invention, in which a part of the embodiment shown in FIG. . In FIG. 4, 2 is a magnetic material, 40 is a high electric resistance region formed on the surface layer of the magnetic material 2, and 41 is a high electric resistance region formed from the surface layer of the magnetic material 2 to the center of the cross section. That is, as shown in FIG.
The structure has high electric resistance regions 40 and 41 which are larger than the average specific resistance value of the magnetic body 2. FIG. 4 merely shows a schematic configuration of a main part of the present invention, and basically uses the same material configuration as that of the embodiment shown in FIG. 1A. In general, eddy currents are induced in a magnetic material that has received an electromagnetic induction magnetic field, resulting in performance degradation such as deterioration of the efficiency of an inductor element and the frequency characteristics of an L value. There is. It is known that the eddy current loss relating to the magnetic material can be reduced by suppressing the flow of the eddy current in the magnetic material, that is, by increasing the electric resistance. Therefore, in order to reduce the eddy current loss by increasing the resistance of the magnetic material, the specific resistance value (specific resistance value) of the magnetic material is increased, or the path cross-sectional area in the magnetic material serving as the eddy current path is reduced. That is effective. The present invention implements the former measure of increasing the specific resistance value, and minimizes the influence on the magnetic performance of the magnetic body 2 such as high permeability and soft magnetism, and efficiently reduces the eddy current loss. For this purpose, a high electric resistance region limited to a part of the magnetic body 2 was formed. The high electric resistance regions 40 and 41 are irradiated with reactive active particles such as radicals composed of oxygen or nitrogen or charged particles such as ions even at the same time as the formation of the magnetic body 2 or after the formation of the magnetic body 2. It can be realized without problems by existing techniques, such as performing compounding treatment with high electrical resistance by injecting. Needless to say, it is important to select and combine the most appropriate material, shape, number, arrangement, and forming method for such a high electric resistance region depending on the shape and arrangement of the conductor and the magnetic material. As described above, since the electric resistance in a part of the magnetic body 2 is increased, generation and propagation of the eddy current induced in the magnetic body 2 by the electromagnetic induction magnetic field are suppressed, and the eddy current loss is reduced. It is possible to reduce the performance degradation such as the deterioration of the efficiency of the inductor element and the frequency characteristic of the L value, and as a result, it was possible to realize extremely large L value and Q value especially in a high frequency range. As described above, the integrated magnetic element structure exemplified in the present embodiment can reduce the loss due to the eddy current generation in the magnetic material, and can efficiently reduce the L value and the Q value. The main characteristics as an inductor element can be improved, and a highly reliable and high-performance high-frequency integrated circuit can be realized. It should be noted that the results described in the present embodiment are merely examples of the effectiveness of the present invention, and by implementing the present invention, other high-performance integrated circuits requiring an inductor element function can be obtained. It can be realized.

【0011】〈実施の形態5〉図5は、本発明の集積磁
気素子の構成の一例を示す模式図であり、図1(a)に
示した集積磁気素子の一部分を抜き出して図示したもの
である。図5において、2は磁性体、50、51は、磁
性体2に形成された断面積縮小領域である。磁性体2の
一部が、図示のように、磁性体2の平均的な断面積に比
べて縮小された断面積縮小領域50、51を有する構成
となっている。なお、図4は、本発明の主要部の概略構
成を示したに過ぎず、基本的には、図1(a)で示した
実施例と同様の材料構成等が用いられている。上述した
ように、一般に、電磁誘導磁界を受けた磁性体には渦電
流が誘起され、結果的にインダクタ素子の効率やL値の
周波数特性の悪化などの性能低下を起こすという、特に
高周波域では無視できない重大な損失がある。この磁性
体に係わる渦電流損失は、磁性体中での渦電流の流れを
抑制、すなわち、電気抵抗を高めることにより軽減でき
ることが知られている。したがって、磁性体の抵抗を増
大して渦電流損失を軽減するためには、磁性体の固有抵
抗値(比抵抗値)を高めたり、渦電流経路となる磁性体
中の経路断面積を縮小することなどが有効である。本発
明は、後者の経路断面積を縮小する方策を実施したもの
で、磁性体2の高透磁性軟磁性等の磁気的性能に対する
影響を極力少なくし、かつ、効率的に渦電流損失を低減
するために、磁性体2の一部の領域に限定した断面積縮
小領域の形成を行った。この断面積縮小領域50、51
は、磁性体2の形成時でも、磁性体2の形成後でも、例
えば、マスクパターンを用いた埋め込みや、エッチング
等の既存技術を適用することによって問題なく実現する
ことができた。なお、このような断面積縮小領域は、導
体や磁性体の形状や配置等により、最も適切な形状や個
数、配置、形成方法を選択して組み合わせることが肝要
であることは言うまでもない。上述したように、磁性体
2の一部の領域の断面積が縮小されているため、電磁誘
導磁界によって磁性体2に誘起される渦電流の発生、伝
播が抑制され、この渦電流損失に起因したインダクタ素
子の効率やL値の周波数特性の悪化などの性能低下を軽
減でき、結果的に、特に高周波域においても、極めて大
きなL値とQ値を実現することができた。以上のよう
に、本発明の集積磁気素子構造とすることにより、磁性
体での渦電流発生に起因する損失を軽減できるため、効
率良くL値やQ値等の小型インダクタ素子としての主要
な特性を向上することが可能となり、極めて信頼性の高
い高性能の高周波集積回路を実現することができた。な
お、ここで述べた結果は、本発明の有効性の一例に過ぎ
ず、本発明を実施することにより、インダクタ素子機能
の必要とされる、他の高性能の集積回路を実現すること
が可能である。上述した実施の形態1〜5は、高周波集
積回路への適用実施を例に取り説明したものであるが、
これ以外にも、より広範囲の周波数領域の集積回路に対
しても適用できる他、磁気記録装置や磁気駆動機構等の
マイクロマシニング関連装置などや、その他各種の微細
な駆動部品の実現に本発明が適用できることは言うまで
もない。また、基板をSi以外のSiCやGaAs等の
化合物半導体基板や絶縁性基板などに変更した場合で
も、また、導体や磁性体等を複数の材料によって構成し
た場合でも、さらに、インダクタンス等の特性トリミン
グ機能を付加して改良した場合でも、本発明の主旨を逸
脱するものではない。
Embodiment 5 FIG. 5 is a schematic view showing an example of the configuration of an integrated magnetic element according to the present invention, in which a part of the integrated magnetic element shown in FIG. is there. In FIG. 5, reference numeral 2 denotes a magnetic body, and reference numerals 50 and 51 denote cross-sectional area reduction regions formed in the magnetic body 2. As shown in the drawing, a part of the magnetic body 2 is configured to have cross-sectional area reduction regions 50 and 51 which are reduced as compared with the average cross-sectional area of the magnetic body 2. FIG. 4 merely shows a schematic configuration of a main part of the present invention, and basically uses the same material configuration as that of the embodiment shown in FIG. 1A. As described above, in general, an eddy current is induced in a magnetic material that has received an electromagnetic induction magnetic field, and as a result, performances such as deterioration of the efficiency of the inductor element and the frequency characteristics of the L value are deteriorated. There are significant losses that cannot be ignored. It is known that the eddy current loss relating to the magnetic material can be reduced by suppressing the flow of the eddy current in the magnetic material, that is, by increasing the electric resistance. Therefore, in order to reduce the eddy current loss by increasing the resistance of the magnetic material, the specific resistance value (specific resistance value) of the magnetic material is increased, or the path cross-sectional area in the magnetic material serving as the eddy current path is reduced. That is effective. The present invention implements the latter measure of reducing the cross-sectional area of the path, and minimizes the influence on the magnetic performance of the magnetic body 2 such as high permeability soft magnetism, and efficiently reduces the eddy current loss. In order to do so, a cross-sectional area reduction region limited to a partial region of the magnetic body 2 was formed. The cross-sectional area reduction areas 50 and 51
Can be realized without any problem both at the time of forming the magnetic body 2 and after the formation of the magnetic body 2 by applying an existing technique such as embedding using a mask pattern or etching. Needless to say, it is important to select and combine the most appropriate shape, number, arrangement, and formation method of such cross-sectional area reduction regions according to the shape and arrangement of the conductor and the magnetic material. As described above, since the cross-sectional area of a part of the magnetic body 2 is reduced, the generation and propagation of the eddy current induced in the magnetic body 2 by the electromagnetic induction magnetic field are suppressed. Thus, it is possible to reduce the performance degradation such as the deterioration of the efficiency of the inductor element and the frequency characteristic of the L value, and as a result, it was possible to realize extremely large L value and Q value, especially even in a high frequency range. As described above, the integrated magnetic element structure according to the present invention can reduce the loss due to the eddy current generation in the magnetic body, and can efficiently reduce the main characteristics as a small inductor element such as L value and Q value. , And a highly reliable and high-performance high-frequency integrated circuit can be realized. It should be noted that the results described here are only examples of the effectiveness of the present invention, and by implementing the present invention, it is possible to realize other high-performance integrated circuits that require an inductor element function. It is. The above-described first to fifth embodiments have been described taking an example of application to a high-frequency integrated circuit.
In addition to this, the present invention can be applied to an integrated circuit in a wider frequency range, and the present invention can be applied to micro-machining related devices such as a magnetic recording device and a magnetic drive mechanism and other various fine drive components. It goes without saying that it can be applied. In addition, even when the substrate is changed to a compound semiconductor substrate such as SiC or GaAs other than Si or an insulating substrate, or when a conductor or a magnetic material is formed of a plurality of materials, characteristics such as inductance are trimmed. Even if the function is added and improved, it does not depart from the gist of the present invention.

【0012】[0012]

【発明の効果】本発明の集積磁気素子は、上述の実施の
形態1〜5からも明らかなように、極めて高特性のイン
ダクタ素子を含む電気回路を実現することができる。ま
た、本発明の集積磁気素子は、高性能な高周波集積回路
を始めとして、さまざまな集積回路素子を制御性、信頼
性良く実現する上で極めて有効である。したがって、本
発明を実施することによる工業上の利用価値は極めて大
きい。
As is clear from the first to fifth embodiments, the integrated magnetic element of the present invention can realize an electric circuit including an inductor element having extremely high characteristics. Further, the integrated magnetic element of the present invention is extremely effective in realizing various integrated circuit elements including a high-performance high-frequency integrated circuit with high controllability and reliability. Therefore, the industrial utility value by implementing the present invention is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1で例示した集積磁気素子
の構成の一例を示す模式図。
FIG. 1 is a schematic diagram showing an example of a configuration of an integrated magnetic element exemplified in Embodiment 1 of the present invention.

【図2】本発明の実施の形態2で例示した集積磁気素子
の構成の一例を示す模式図。
FIG. 2 is a schematic diagram illustrating an example of a configuration of an integrated magnetic element exemplified in Embodiment 2 of the present invention.

【図3】本発明の実施の形態3で例示した集積磁気素子
の構成の一例を示す模式図。
FIG. 3 is a schematic diagram illustrating an example of a configuration of an integrated magnetic element exemplified in Embodiment 3 of the present invention.

【図4】本発明の実施の形態4で例示した集積磁気素子
の構成の一例を示す模式図。
FIG. 4 is a schematic view showing an example of a configuration of an integrated magnetic element exemplified in Embodiment 4 of the present invention.

【図5】本発明の実施の形態5で例示した集積磁気素子
の構成の一例を示す模式図。
FIG. 5 is a schematic diagram showing an example of a configuration of an integrated magnetic element exemplified in a fifth embodiment of the present invention.

【図6】従来の集積磁気素子の構成の一例を示す模式
図。
FIG. 6 is a schematic view showing an example of a configuration of a conventional integrated magnetic element.

【符号の説明】[Explanation of symbols]

1…導体 1a…磁芯状ソレノイド 1b…磁芯状ソレノイド 1c…直線状ソレノイドコイル(磁芯状ソレノイド) 2…磁性体 2a、2b、2c、2d…磁性体内の空隙を介して対向
する領域 3…磁性体内の空隙 4…ある瞬間の電流の向き 5…ある瞬間の電磁誘導磁界の向き 5a、5b、5c、5d…ある瞬間の電磁誘導磁界の向
き 20…導体の両端部 21a、21b…引き出し用導体 30…導体の長手方向 31…長手方向に交差する導体の断面 32…長手方向に交差する導体断面の外周表層 40…磁性体の表層に形成された高電気抵抗領域 41…磁性体の断面中心部まで形成された高電気抵抗領
域 50、51…磁性体に形成された断面積縮小領域 60…端子引き出し用導体
DESCRIPTION OF SYMBOLS 1 ... Conductor 1a ... Magnetic-core solenoid 1b ... Magnetic-core solenoid 1c ... Linear solenoid coil (magnetic-core solenoid) 2 ... Magnetic body 2a, 2b, 2c, 2d ... The area | region which opposes through the space | gap in a magnetic body 3 ... air gap in the magnetic body 4 ... direction of current at a certain moment 5 ... direction of electromagnetic induction magnetic field at a certain moment 5a, 5b, 5c, 5d ... direction of electromagnetic induction magnetic field at a certain moment 20 ... both ends 21a, 21b of a conductor Conductor for use 30 ... Longitudinal direction of conductor 31 ... Cross section of conductor intersecting in the longitudinal direction 32 ... Outer peripheral surface layer of conductor cross section intersecting in the longitudinal direction 40 ... High electric resistance region formed on surface layer of magnetic material 41 ... Cross section of magnetic material High electric resistance regions formed up to the center 50, 51: reduced cross-sectional area formed in the magnetic material 60: terminal lead-out conductor

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】電磁誘導磁界を発生できる導体と、該導体
に近接して配置された電磁誘導磁界強度を制御できる磁
性体と、上記導体に電力を供給し、かつ、電磁誘導信号
を受容できる電力供給信号受容手段と、上記の導体と磁
性体と電力供給信号受容手段とを電子回路として構築す
る基板とにより少なくとも構成される集積磁気素子にお
いて、上記導体を、上記磁性体内の空隙を介して対向し
合う領域近傍に、該領域に発生する電磁誘導磁界の向き
が互いに対向するように配置してなることを特徴とする
集積磁気素子。
1. A conductor capable of generating an electromagnetic induction magnetic field, a magnetic body disposed close to the conductor and capable of controlling the intensity of the electromagnetic induction magnetic field, and capable of supplying power to the conductor and receiving an electromagnetic induction signal. A power supply signal receiving means, and an integrated magnetic element configured at least by a substrate that constructs the conductor, the magnetic body, and the power supply signal receiving means as an electronic circuit, wherein the conductor is connected through a gap in the magnetic body. An integrated magnetic element, wherein an electromagnetic induction magnetic field generated in the region is arranged near the facing region so that the directions of the electromagnetic induction magnetic fields are opposite to each other.
【請求項2】請求項1に記載の集積磁気素子において、
上記導体の両端部もしくは該両端部以外の所要の位置か
ら、上記電力供給信号受容手段と電気的に接続できる構
造とするか、もしくは上記導体の両端部および該両端部
以外の所要の位置から、上記電力供給信号受容手段と電
気的に接続できる構造としてなることを特徴とする集積
磁気素子。
2. The integrated magnetic element according to claim 1, wherein
From both ends of the conductor or a required position other than the both ends, a structure capable of electrically connecting to the power supply signal receiving means, or from both ends of the conductor and a required position other than the both ends, An integrated magnetic element having a structure that can be electrically connected to the power supply signal receiving means.
【請求項3】請求項1または請求項2に記載の集積磁気
素子において、上記導体の長手方向に交差する導体断面
の外周表層を凹凸構造としてなることを特徴とする集積
磁気素子。
3. The integrated magnetic element according to claim 1, wherein the outer peripheral surface layer of the conductor cross section that intersects the longitudinal direction of the conductor has an uneven structure.
【請求項4】請求項1または請求項2に記載の集積磁気
素子において、上記磁性体の一部に、該磁性体の電気抵
抗の大きい領域を構成してなることを特徴とする集積磁
気素子。
4. The integrated magnetic element according to claim 1, wherein a part of the magnetic body has a region where the electric resistance of the magnetic body is large. .
【請求項5】請求項1または請求項2に記載の集積磁気
素子において、上記磁性体の一部に、該磁性体の断面積
縮小領域を構成してなることを特徴とする集積磁気素
子。
5. The integrated magnetic element according to claim 1, wherein a part of the magnetic material is provided with a reduced area of the cross-sectional area of the magnetic material.
JP10253850A 1998-09-08 1998-09-08 Integrated magnetic device Pending JP2000091124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10253850A JP2000091124A (en) 1998-09-08 1998-09-08 Integrated magnetic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10253850A JP2000091124A (en) 1998-09-08 1998-09-08 Integrated magnetic device

Publications (1)

Publication Number Publication Date
JP2000091124A true JP2000091124A (en) 2000-03-31

Family

ID=17257010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10253850A Pending JP2000091124A (en) 1998-09-08 1998-09-08 Integrated magnetic device

Country Status (1)

Country Link
JP (1) JP2000091124A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141201A (en) * 2006-11-29 2008-06-19 Holy Loyalty Internatl Co Ltd Coil unit
KR101018994B1 (en) * 2010-06-29 2011-03-07 대한민국 Greenhouse gas-clean air policy support system and method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141201A (en) * 2006-11-29 2008-06-19 Holy Loyalty Internatl Co Ltd Coil unit
KR101018994B1 (en) * 2010-06-29 2011-03-07 대한민국 Greenhouse gas-clean air policy support system and method thereof

Similar Documents

Publication Publication Date Title
JP4685128B2 (en) Inductor
JP2004207729A (en) Coil structure of variable inductance
JP2001068353A (en) Magnetic part
KR20050005777A (en) On-chip inductor with magnetic core
JPH11273951A (en) Magnetic part and manufacture thereof
JP4009142B2 (en) Magnetic core type multilayer inductor
US7288417B2 (en) On-chip signal transformer for ground noise isolation
JP3540733B2 (en) Planar magnetic element and semiconductor device using the same
JP2000091124A (en) Integrated magnetic device
JPH06124843A (en) High frequency use thin film transformer
JP4277753B2 (en) Chip coil for antenna and chip coil antenna
JP2008078177A (en) Inductor
US6873242B2 (en) Magnetic component
JP2000243637A (en) Thin inductor and thin dc-to-dc convertor using the same
JP2004311473A (en) Composite inductor
US20080106364A1 (en) Spiral-shaped closed magnetic core and integrated micro-inductor comprising one such closed magnetic core
JP2000200873A (en) Integrated magnetic device
JPH09223636A (en) Magnetic component and its manufacture
JPH03129804A (en) Inductor and transformer
JP2000269035A (en) Planar magnetic element
JPH11176653A (en) Magnetic core and magnetic parts using magnetic core
JP3927565B2 (en) On-chip inductor with magnetic core
JP2002093624A (en) Minute element of type such as minute inductor, and minute transformer
RU2716282C1 (en) Thin-film toroidal core with shape anisotropy, inductance coil and transformer, containing thereof
JPH08162330A (en) Inductor element