JP2000087447A - Method for selecting placement position of stiffening member for single-latticed shell structure and rectangular planar hybrid single-latticed ep shell structure - Google Patents

Method for selecting placement position of stiffening member for single-latticed shell structure and rectangular planar hybrid single-latticed ep shell structure

Info

Publication number
JP2000087447A
JP2000087447A JP29750598A JP29750598A JP2000087447A JP 2000087447 A JP2000087447 A JP 2000087447A JP 29750598 A JP29750598 A JP 29750598A JP 29750598 A JP29750598 A JP 29750598A JP 2000087447 A JP2000087447 A JP 2000087447A
Authority
JP
Japan
Prior art keywords
plane
shell structure
grid
layer lattice
stiffening member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29750598A
Other languages
Japanese (ja)
Other versions
JP3444799B2 (en
Inventor
Hirohiko Hanya
裕彦 半谷
Takashi Kanayama
敬 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP29750598A priority Critical patent/JP3444799B2/en
Publication of JP2000087447A publication Critical patent/JP2000087447A/en
Application granted granted Critical
Publication of JP3444799B2 publication Critical patent/JP3444799B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for selecting the placement position of a stiffening member for a single-latticed shell structure, whereby the required buckling resistance can be obtained from required minimum stiffening and a portion to be stiffened can be selected rapidly. SOLUTION: The in-plane displacement Li and the out-of-plane displacement Wi of the joint of each grid (g) in a single-latticed shell without stiffeners are calculated to determine the in-plane deformation rate γg of each grid from the in-plane displacement Li and to determine the out-of-plane deformation rate ψg of each grid from the out-of-plane displacement Wi. Weighting functions wi, wo for the in-plane deformation rate γg and the out-of-plane deformation rate ψg, respectively, are defined to match the degree of restraint of each grid. An evaluation coefficient κ, which is a function of numerical values for all or some of the in-plane deformation rate γg, the out-of-plane deformation rate ψg, the weighting function wi, and the weighting function wo, is calculated for each grid. Some of the grids that can be regarded as increasing buckling load by placing in-plane stiffening members are selected on the basis of the evaluation coefficient κ, and the in-plane stiffening members are provided for the grids situated along a line connecting the grids by the shortest distance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種大型建築構造
物の架構に用いられる単層ラチスシェル構造物の補剛グ
リッド位置選定方法、および一部のグリッドに補剛材を
組み込んでハイブリッド化させた矩形平面ハイブリッド
単層ラチスEPシェル構造物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for selecting a stiffening grid position of a single-layer lattice shell structure used for frames of various large-scale building structures, and a stiffening material incorporated in some of the grids for hybridization. The present invention relates to a rectangular planar hybrid single-layer lattice EP shell structure.

【0002】[0002]

【従来の技術】単層ラチスシェル構造は、架構の構面を
形成する骨組みが一層であり、立体的なトラス部材を持
たない単層ラチス(平面格子)で所要のシェル曲面を構
成する構造形式である。この単層ラチスシェル構造は、
従来の複層のトラス組構造物に比べて、軽量化が図れ、
接合部の単純化等が可能であり、鉄骨のみならず木質系
の材料も構造材とすることができること等から、近年注
目を集め、各種大型建築構造物における軽量屋根膜の骨
格として採用されつつあるが、曲げ剛性が小さく座屈を
来しやすい面があり、座屈荷重に対する耐力を如何に高
めるかが実用化にあたっての重要なポイントとなる。
2. Description of the Related Art A single-layer lattice shell structure is a structure in which a required shell curved surface is formed by a single-layer lattice (plane lattice) having no three-dimensional truss members, which has a single frame forming a frame structure. is there. This single-layer lattice shell structure
Compared to the conventional multi-layer truss structure, it is lighter,
Since it is possible to simplify joints, etc., and not only steel frames but also wood-based materials can be used as structural materials, it has attracted attention in recent years and is being used as a framework for lightweight roof membranes in various large building structures. However, there is a surface with low bending stiffness and easy buckling, and how to increase the proof stress against buckling load is an important point in practical use.

【0003】ここで、上記座屈荷重は面内剛性および曲
げ剛性の関数として表せ、単層ラチスシェルの座屈耐力
を高める方法としては、ラチスシェルと他の構造とを複
合してハイブリッド構造化し、面内剛性や曲げ剛性を高
めて補剛することが従来より唱えられている。この補剛
としては、図13(a)、(b)及び図14に示すよう
に基本要素をなす平面トラス格子2のグリッドに対し、
ケーブル4、膜、鋼板6等を面内に配置する面内補剛
(図13)と、ポスト10、ケーブル8、膜等を面外
に配置する面外補剛(図14)とがあり、図14に示す
面外補剛は、不安定四辺形の平面トラス格子2にポスト
10とケーブル8とを組み込んで自己釣り合い応力型の
張力安定トラス12に形成してパーツ化したものであ
る。
Here, the buckling load can be expressed as a function of in-plane rigidity and bending rigidity. One method of increasing the buckling resistance of a single-layer lattice shell is to combine a lattice shell with another structure to form a hybrid structure. Conventionally, it has been advocated to increase internal rigidity and bending rigidity to stiffen. As the stiffening, as shown in FIGS. 13A, 13B and 14, the grid of the plane truss lattice 2 forming the basic element is
There are in-plane stiffening (FIG. 13) in which the cable 4, the membrane, the steel plate 6 and the like are arranged in a plane, and out-of-plane stiffening (FIG. 14) in which the post 10, the cable 8, the membrane and the like are arranged out of plane. The out-of-plane stiffening shown in FIG. 14 is obtained by incorporating a post 10 and a cable 8 into an unstable quadrilateral plane truss lattice 2 to form a self-balancing stress type tension stable truss 12, and forming parts.

【0004】即ち、図15(a)〜(d)に示すよう
に、このパーツとしての張力安定トラス12は各二本で
構成される二組の直交するケーブル8をトラス主材2a
の対角線上に緩く配置・連結し、その一組のケーブル8
の中点にポスト10を立設し、そのポスト10の上部に
他の組のケーブル8の中点を連結する。そうしてポスト
10に組み込まれた図示しないねじ機構などの伸縮機構
によりポスト10を伸長させ、あるいは、ケーブル8に
組み込まれた図示しないターンバックルによる締め付
け、または図示しない油圧緊張装置によりケーブル8を
緊張し定着させることにより、張力を導入してトラス主
材2aおよびポスト10の圧縮力と釣合わせて、パーツ
となる張力安定トラス12に形成する。ポスト10の長
さは、ケーブル8の導入張力に基づき予め計算された伸
長長さを見込みパーツのライズ・スパン比が設計値を満
たすように設定する。また、以上の組立に加えて、得ら
れた張力安定トラス12に予め屋根仕上げ用二次部材と
して鋼板等の屋根膜14を張付け、この屋根膜14を荷
重支持パーツとして機能させることも考えられている。
そして、この構造の単層ラチスシェルでは、各パーツの
張力安定トラス12をそのトラス主材2a同士を互いに
隣接させて縦横に多数を連ねて配置することにより、所
要曲面の単層ラチスシェルの架構に構築する。
More specifically, as shown in FIGS. 15 (a) to 15 (d), a tension-stable truss 12 as this part is constructed by connecting two sets of orthogonal cables 8 each composed of two truss main members 2a.
Loosely arranged and connected on the diagonal of
The post 10 is erected at the midpoint of the cable 10 and the midpoint of another set of cables 8 is connected to the top of the post 10. Then, the post 10 is extended by a telescopic mechanism such as a screw mechanism (not shown) incorporated in the post 10, or tightened by a turnbuckle (not shown) incorporated in the cable 8, or the cable 8 is tensioned by a hydraulic tensioning device (not shown). Then, tension is introduced to balance with the compressive force of the truss main member 2a and the post 10, thereby forming the tension stable truss 12 as a part. The length of the post 10 is set so that the rise-span ratio of the part satisfies the design value, based on the elongation length calculated in advance based on the introduction tension of the cable 8. In addition to the above assembly, it is also considered that a roof membrane 14 such as a steel plate is previously attached to the obtained tension stable truss 12 as a secondary member for roof finishing, and the roof membrane 14 functions as a load supporting part. I have.
In the single-layer lattice shell of this structure, the tension-stable truss 12 of each part is arranged in a row in the vertical and horizontal directions with the truss main members 2a adjacent to each other, thereby constructing a single-layer lattice shell frame having a required curved surface. I do.

【0005】図16は単層ラチスシェル構造物16に対
するパーツとしての張力安定トラス12の具体的取付け
構造を示している。同図において、構造物16の各単層
ラチスシェル16aの交点位置に連結用のガセットプレ
ート18を固定し、これに対応して、張力安定トラス1
2の四辺にこれと結合するガセットプレート20を固定
しておき、両者を突き合わせた状態で図外のスプライス
プレートをあてがい、これらをボルトナット結合すれ
ば、張力安定トラス12の固定が完了する。
FIG. 16 shows a specific mounting structure of the tension stable truss 12 as a part to the single-layer lattice shell structure 16. In the figure, a connecting gusset plate 18 is fixed at the intersection of each single-layer lattice shell 16a of the structure 16, and the tension-stable truss 1 is
A gusset plate 20 to be connected to the gusset plate 20 is fixed to the four sides of No. 2 and a splice plate (not shown) is applied in a state where the two are butted together, and these are connected by bolts and nuts.

【0006】[0006]

【発明が解決しようとする課題】ところで、上記張力安
定トラス12のパーツ方式によるハイブリッド単層ラチ
スシェル構造物16は、パーツと称する張力安定トラス
12を単層ラチスシェル16aに取り付け、面内外の剛
性・耐力を高めた構造であり、この構造は、単層ラチス
シェル16aを組み立てた後、別個に組み立てたパーツ
の張力安定トラス12を全てのグリッドに取り付け、軽
量の屋根構造を構築するものである。
By the way, in the hybrid single-layer lattice shell structure 16 of the tension-stable truss 12 using the parts system, the tension-stable truss 12 called a part is attached to a single-layer lattice shell 16a, and rigidity and proof stress in and out of the plane are provided. In this structure, after assembling the single-layer lattice shell 16a, the separately assembled parts of the tension stable truss 12 are attached to all the grids to construct a lightweight roof structure.

【0007】しかしながら、パーツの張力安定トラス1
2の上下弦材としてこれに用いているケーブル8は、端
部の接合金具のガセット20が増えると加速度的にコス
トの上昇を招く。つまり、パーツ毎にケーブル8は切ら
れるので、ケーブル8の本数が増えてその組立が煩雑に
なり、工費が割高となる。そこで、上記張力安定トラス
12でなるパーツを全てのグリッドには取り付けずに、
一部のグリッド内のみに取り付けるようにすることが、
鋭意検討・研究されている[日本建築学会大会学術講演
梗概集(近畿)1996年9月(パーツ方式によるハイ
ブリッド単層ラチスシェルの研究その1:研究の背景と
目標)参照]。すなわち、上記研究のものは、補剛材の
ない場合の座屈モードを計算して、座屈モードが生じる
とされる捩れモードの発生箇所のグリッド内に、補剛材
を組み込むというものである。
[0007] However, the part tension stable truss 1
As for the cable 8 used as the upper and lower chord members, the cost increases at an accelerating rate when the number of gussets 20 of the end fittings increases. That is, since the cable 8 is cut for each part, the number of the cables 8 increases, the assembling thereof becomes complicated, and the construction cost increases. Therefore, instead of attaching the parts consisting of the tension stable truss 12 to all grids,
To be installed only in some grids,
It is being studied and studied diligently [Referred to the Architectural Institute of Japan, Abstracts of Academic Lectures (Kinki), September 1996 (Study on Hybrid Single-Layer Lattice Shell by Part Method, Part 1: Research Background and Goals)]. That is, in the above research, the buckling mode in the case where there is no stiffener is calculated, and the stiffener is incorporated in the grid at the place where the buckling mode is assumed to occur. .

【0008】ところが、このようにして捩れモードの発
生箇所を選定して補剛しても、その補剛により捩れモー
ドが変化して、他の箇所が新たに捩れモードの発生箇所
となってしまうので、当該補剛後の条件で再度座屈モー
ドを計算して新たな捩れモードの発生箇所の有無を検討
し直し、この作業を幾度となく繰り返す必要があるほ
か、最終結果からすると所要の座屈耐力に対して必要以
上の箇所のグリッドを補剛しているという無駄を生ずる
虞があった。
However, even if the location where the torsional mode is generated is selected and stiffened in this way, the stiffening changes the torsional mode and another location becomes a new location where the torsional mode is generated. Therefore, it is necessary to calculate the buckling mode again under the conditions after the stiffening and to examine again whether there is a place where a new torsion mode occurs, and to repeat this work many times. There is a possibility that the grid may be wastefully stiffened at a location more than necessary with respect to the bending strength.

【0009】この発明は、以上の課題を解決するために
なされたものであり、その目的は、単層ラチスシェル構
造物の座屈耐力を、一部グリッド内に補剛部材を組み込
んで向上させるにあたって、所要の座屈耐力に対して必
要最小限の補剛で済ませることができ、しかも補剛箇所
を迅速に選定できる単層ラチスシェル構造物の補剛部材
配設位置選定方法、および一部のグリッドを必要最小限
に補剛した矩形平面単層ラチスEPシェル構造物を提供
することにある。
The present invention has been made to solve the above problems, and an object thereof is to improve the buckling strength of a single-layer lattice shell structure by incorporating a stiffening member partially in a grid. A method of selecting a stiffening member disposing position of a single-layer lattice shell structure, which can minimize a necessary stiffening for a required buckling strength and can quickly select a stiffening portion, and some grids It is an object of the present invention to provide a rectangular flat single-layer lattice EP shell structure which stiffens the minimum required.

【0010】[0010]

【課題を解決するための手段】以上の目的を達成するた
め、請求項1にかかる発明の単層ラチスシェル構造物の
補剛部材配設位置選定方法は、補剛材のない場合の単層
ラチスシェルにおける各グリッドgの節点の面内変位L
iと面外変位Wiとを算出し、該面内変位Liから各グ
リッドの面内変形率γgを求めると共に面外変位Wiか
ら各グリッドの面外変形率ψgを求め、該面内変形率γ
gと面外変形率ψgとに対する重み関数wi,woを各
グリッドの拘束度に応じてそれぞれ定めて、上記面内変
形率γg、面外変形率ψg、重み関数wi、および重み
関数woのうちの全部、もしくはこれらのうち選ばれた
いくつかの数値の関数である評価係数κを各グリッド毎
に算出し、該評価係数κにより面内補剛部材を配置する
ことで座屈荷重を増大せしめるとみなせるグリッドをい
くつか選択し、それらを最短距離で結んだ線に沿って位
置するグリッドに対し、面内補剛部材を設けることを特
徴とする。
In order to achieve the above object, a method of selecting a stiffening member disposing position of a single-layer lattice shell structure according to the present invention is provided by a single-layer lattice shell having no stiffener. In-plane displacement L of the node of each grid g at
i and the out-of-plane displacement Wi are calculated, the in-plane deformation rate γg of each grid is obtained from the in-plane displacement Li, and the out-of-plane deformation rate ψg of each grid is obtained from the out-of-plane displacement Wi.
Weighting functions wi and wo for g and the out-of-plane deformation rate ψg are respectively determined according to the degree of constraint of each grid, and among the in-plane deformation rate γg, out-of-plane deformation rate ψg, weight function wi, and weight function wo, Is calculated for each grid, and the buckling load is increased by arranging the in-plane stiffening member according to the evaluation coefficient κ. It is characterized in that some grids that can be regarded as are selected, and an in-plane stiffening member is provided for a grid located along a line connecting them at the shortest distance.

【0011】そして、当該請求項1の構成でなる単層ラ
チスシェル構造物の補剛部材配設位置選定方法では、グ
リッドの拘束度に応じた重み付けを行いつつ面内・面外
方向の変形を考慮するため、所定の座屈荷重を得るため
の補剛部材の最適配置の決定を迅速に行え、補剛部材の
配置箇所を最小限に留めつつ、大きな座屈荷重を得ら
れ、高価な補強パーツを有効に利用でき、単層ラチスシ
ェル構造物の構築コストを可及的に低減できる。
In the method for selecting a stiffening member disposing position of a single-layer lattice shell structure according to the first aspect of the present invention, the deformation in the in-plane and out-of-plane directions is considered while performing weighting according to the degree of constraint of the grid. As a result, it is possible to quickly determine the optimum arrangement of the stiffening members to obtain a predetermined buckling load, and to obtain a large buckling load while minimizing the arrangement of the stiffening members, thereby increasing the cost of reinforcing parts. Can be effectively used, and the construction cost of the single-layer lattice shell structure can be reduced as much as possible.

【0012】請求項2にかかる発明の単層ラチスシェル
構造物の補剛部材配設位置選定方法は、前記評価係数κ
が、κ={(wi・γg)+(wo・ψg)
1/2である、ことを特徴とする。
According to a second aspect of the present invention, there is provided the method for selecting a stiffening member disposing position of a single-layer lattice shell structure, wherein the evaluation coefficient κ
Κ = {(wi · γg) 2 + (wo · {g) 2 }
It is 1/2, and wherein the.

【0013】当該請求項2の構成でなる単層ラチスシェ
ル構造物の補剛部材配設位置選定方法では、具体的数式
が決定されるため、熟練を要することなく実施できる。
[0013] In the method for selecting a stiffening member disposing position of a single-layer lattice shell structure having the structure of the second aspect, since a specific mathematical expression is determined, it can be performed without skill.

【0014】請求項3にかかる発明の単層ラチスシェル
構造物の補剛部材配設位置選定方法は、前記評価係数κ
が、κ=wi・γgであることを特徴とする。
According to a third aspect of the present invention, there is provided a method for selecting a stiffening member disposing position of a single-layer lattice shell structure, wherein the evaluation coefficient κ
Is κ = wi · γg.

【0015】当該請求項3の構成でなる単層ラチスシェ
ル構造物の補剛部材配設位置選定方法では、具体的数式
が簡略されるため、計算速度を早めることができる。
In the method for selecting a stiffening member disposing position for a single-layer lattice shell structure according to the third aspect of the present invention, since specific mathematical expressions are simplified, the calculation speed can be increased.

【0016】請求項4にかかる発明の単層ラチスシェル
構造物の補剛部材配設位置選定方法は、あらかじめ、補
剛部材を組み込んだ場合の単層ラチスシェル構造物の座
屈荷重と、補剛部材のない場合の同じ単層ラチスシェル
構造物の座屈荷重との比、すなわち、補剛性能指数βを
定義し、単層ラチスシェル構造物の設計にあたり、βの
具体的数値を決定し、一方、任意の補剛部材配置パター
ンを案出し、各補剛部材配置パターンについての単層ラ
チスシェルの座屈荷重を計算し、上記βの具体的数値を
満たすかどうかにより採用するかしないかを判断するこ
とを特徴とする。
According to a fourth aspect of the present invention, there is provided a method for selecting a stiffening member disposing position of a single-layer lattice shell structure, comprising the steps of: The ratio with the buckling load of the same single-layer lattice shell structure in the absence of, that is, the stiffness capacity index β is defined, and in designing the single-layer lattice shell structure, a specific numerical value of β is determined. Devising a stiffening member arrangement pattern, calculating the buckling load of the single-layer lattice shell for each stiffening member arrangement pattern, and determining whether or not to adopt the specific value of the above β to determine whether to adopt. Features.

【0017】当該請求項4の構成でなる単層ラチスシェ
ル構造物の補剛部材配設位置選定方法では、あらかじ
め、補剛部材のない単層ラチスシェル構造物と補剛部材
との座屈耐力分担を明確にすることにより、補剛部材の
配設位置の選定を迅速に行うことができる。
According to the fourth aspect of the present invention, in the method for selecting a stiffening member disposing position of a single-layer lattice shell structure, the buckling resistance sharing between the single-layer lattice shell structure having no stiffening member and the stiffening member is performed in advance. By clarifying, the arrangement position of the stiffening member can be quickly selected.

【0018】ここで、上記補剛位置の選定方法により、
請求項5にかかる発明に示すように、外周部がピン支持
される矩形平面単層ラチスEPシェル構造物において、
該構造物周縁の各隣接する辺の中点同士を結ぶ線に沿っ
て位置するグリッドに面内補剛部材を組み込んだ構成の
矩形平面ハイブリッド単層ラチスEPシェル構造物を得
ることができる。
Here, according to the method of selecting the stiffening position,
As shown in the invention according to claim 5, in a rectangular flat single-layer lattice EP shell structure whose outer peripheral portion is supported by a pin,
A rectangular planar hybrid single-layer lattice EP shell structure having a configuration in which an in-plane stiffening member is incorporated in a grid positioned along a line connecting the midpoints of adjacent sides of the structure periphery can be obtained.

【0019】また、上記補剛位置の選定方法により、請
求項6にかかる発明に示すように、外周部がキール支持
され、かつ4隅がピン支持される矩形平面単層ラチスE
Pシェル構造物において、該構造物の対角線に沿って位
置するグリッドに面内補剛部材を組み込んだ構成の矩形
平面ハイブリッド単層ラチスEPシェル構造物を得るこ
とができる。
According to the above-mentioned method of selecting a stiffening position, a rectangular plane single-layer lattice E having an outer peripheral portion supported by a keel and four corners supported by pins is provided, as shown in the invention of claim 6.
In the P-shell structure, it is possible to obtain a rectangular flat hybrid single-layer lattice EP shell structure in which an in-plane stiffening member is incorporated in a grid located along a diagonal line of the P-shell structure.

【0020】[0020]

【発明の実施の形態】以下、本発明の好ましい実施の形
態につき、添付図面を参照して詳細に説明する。本発明
の単層ラチスシェル構造物の補剛部材配設位置選定方法
は、次の(1)〜(5)の手順からなるものである。 (1)補剛材のない場合の単層ラチスシェルにおける各
グリッドgの節点の面内変位Liと面外変位Wiとを算
出する。 (2)上記(1)で求めた面内変位Liから各グリッド
gの面内変形率γgを求める。 (3)上記(1)で求めた面外変位Wiから各グリッド
gの面外変形率ψgを求める。 (4)上記(2)で求めた面内変形率γgと、上記
(3)で求めた面外変形率ψgとに対する重み関数w
i,woを各グリッド位置に応じてそれぞれ定めて、κ
={(wi・γg)+(wo・ψg)1/2なる
式で規定される評価係数κを各グリッドg毎に算出す
る。 (5)上記(4)で求めた評価係数κの大きいグリッド
をいくつか選択し、それらを最短距離で結んだ線に沿っ
て位置するグリッドを面内補剛対象に選定する。 次に、これらの手順で補剛部材の配設位置を選定する手
法について、順を追って詳述していく。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. The method for selecting the stiffening member disposition position of the single-layer lattice shell structure of the present invention comprises the following procedures (1) to (5). (1) Calculate the in-plane displacement Li and the out-of-plane displacement Wi of the node of each grid g in the single-layer lattice shell without a stiffener. (2) The in-plane deformation rate γg of each grid g is obtained from the in-plane displacement Li obtained in (1). (3) The out-of-plane deformation rate Δg of each grid g is obtained from the out-of-plane displacement Wi obtained in (1). (4) A weighting function w for the in-plane deformation rate γg obtained in (2) and the out-of-plane deformation rate ψg obtained in (3)
i and wo are determined according to each grid position, and κ
= {(Wi · γg) 2 + (wo · Δg) 2 } An evaluation coefficient κ defined by an equation of 1/2 is calculated for each grid g. (5) Several grids with large evaluation coefficients κ obtained in (4) are selected, and grids located along a line connecting them at the shortest distance are selected as in-plane stiffening targets. Next, a method for selecting the disposition position of the stiffening member in these procedures will be described in detail step by step.

【0021】−−−補剛パーツの配置選定手法−−− 種々のパーツの配置パターンを用いた解析結果から、パ
ーツは単層ラチスシェルのグリッド変形が大きい箇所に
配置するのが効果的であると想定できる。そこで、座屈
モードを用いてグリッドの面内および面外変形率を算定
し、以下に示す評価係数を用いて効果的にパーツを組み
込む方法について検討する。
------ Selection method of arrangement of stiffening parts --- From analysis results using arrangement patterns of various parts, it is effective to arrange parts at locations where the grid deformation of the single-layer lattice shell is large. Can be assumed. Therefore, the in-plane and out-of-plane deformation rates of the grid are calculated using the buckling mode, and a method of effectively incorporating parts using the following evaluation coefficients is examined.

【0022】−−−設計パラメーターの定義−−− 面内および面外の変形率を以下のように定義する。面内
の変形率の評価(図3参照)は、式(1)で表す対角線
の変化率γを用いて行う。 γ=(L′ik−Lik)/Lik ………(1) γ=(L′jl−Ljl)/Ljl γg=(γ +γ 1/2 ………(2) 面外の変形率の評価には、各節点で主曲率(式(3))
を採用し、差分公式を用いて算出する。グリッドを形成
する4節点の平均値をグリッドの評価値とする。 ψi=(∂Wi/∂x)+(∂wi/∂y) ………(3) ここに、Wi:面外方向のたわみ 評価係数κの提案 種々のパーツの配置パターンを用いた解析例(図1,図
2)により次のことが言える。 ・面内変形の大きいグリッドにパーツを組み込むこと
が、座屈荷重を高めるのに効果的である。 ・面内および面外変形共に、境界近傍で拘束度が高いほ
どシェルとしての座屈荷重が高まる。そこで面内および
面外変形率のそれぞれに、位置により定めた重み関数w
i、woを乗じて、式(4)で表すκを評価係数とす
る。 κ={(wi・γg)+(wo・ψg)1/2 ………(4)
--- Definition of design parameters --- In-plane and out-of-plane deformation rates are defined as follows. The evaluation of the in-plane deformation rate (see FIG. 3) is performed using the diagonal change rate γ represented by equation (1). γ 1 = (L'ik-Lik ) / Lik ......... (1) γ 2 = (L'jl-Ljl) / Ljl γg = (γ 1 2 + γ 2 2) 1/2 ......... (2) surface For the evaluation of the outside deformation rate, the principal curvature at each node (Equation (3))
Is calculated using the difference formula. The average value of the four nodes forming the grid is defined as the grid evaluation value. ψi = (∂ 2 Wi / ∂x 2 ) + (∂ 2 wi / ∂y 2 ) (3) where Wi: deflection in the out-of-plane direction Proposal of evaluation coefficient κ Various arrangement patterns of parts are used. The following can be said from the analysis examples (FIGS. 1 and 2). -Incorporating parts into a grid with large in-plane deformation is effective in increasing buckling load. -For both in-plane and out-of-plane deformation, the higher the degree of constraint near the boundary, the higher the buckling load of the shell. Therefore, the weight function w determined by the position is given to each of the in-plane and out-of-plane deformation rates.
By multiplying i and wo, κ represented by equation (4) is set as an evaluation coefficient. κ = {(wi · γg) 2 + (wo · ψg) 2 1 / 1/2 (4)

【0023】−−−計算例による検討−−− 周辺ピン支持と周辺キール支持のモデルについて検討す
る。両モデルとも所要の座屈荷重として単層ラチスシェ
ルの2.0倍を目標とする。重み関数の値は、前述の事
象を考慮して図4のように定め、対称性を考慮して1/
4部分を示す。次に具体的に評価係数κを用いた結果を
図5から図8に示す。ここに図の矢印はκの大きなグリ
ッドにパーツを組み込んだ過程を示している。
--- Study by Calculation Example-- A model of peripheral pin support and peripheral keel support will be examined. Both models target the required buckling load to be 2.0 times that of a single-layer lattice shell. The value of the weighting function is determined as shown in FIG.
4 parts are shown. Next, results using the evaluation coefficient κ are specifically shown in FIGS. Here, the arrows in the figure show the process of assembling parts into a grid with a large κ.

【0024】(a)周辺ピン支持の場合 D−1では、κの大きなグリッドに境界部との連続性を
考慮してパーツを配置した結果、一回の検討で所要の座
屈荷重に到達しており、κを用いる有効性を示してい
る。次に、B−1では32箇所にパーツを組み込んで座
屈荷重を高めている。さらにκの値に基づき16箇所に
パーツを組み込むことにより、所要の座屈荷重に到達し
ている。これは、パーツ単体の補剛効果にパーツが連続
することによる補剛効果が加わったためと考えられ、κ
を用いた検討により、パーツの連続性による有効性も併
せて評価できることを示している。一方、C−2の配置
は効果的でなく、κにより改善を目指したが、パーツの
全体的な連続性がないため有効でなかった。従って、外
周部がピン支持される矩形平面単層ラチスEPシェル構
造物においては、例えば図5のD−1の配置選定に基づ
いて、図10に示すように、単層ラチスシェル構造物1
6の全体としての外周部の各辺16A〜Dにおいて、そ
の各中点16Am,16Bm,16Cm,16Dmを隣
接するもの同士で結んだ線に沿って位置するグリッド
に、張力安定トラス12などの面内補剛部材を組み込ん
だ構成の矩形平面ハイブリッド単層ラチスEPシェル構
造物が有効なものとなる。
(A) In the case of peripheral pin support In D-1, the parts were arranged on the grid having a large κ in consideration of the continuity with the boundary, and as a result, the required buckling load was reached in one examination. And shows the effectiveness of using κ. Next, in B-1, parts are incorporated in 32 places to increase the buckling load. Furthermore, the required buckling load has been reached by incorporating parts at 16 locations based on the value of κ. This is thought to be due to the stiffening effect of the continuation of parts added to the stiffening effect of the parts alone, and κ
The results show that the effectiveness due to the continuity of parts can also be evaluated. On the other hand, the arrangement of C-2 was not effective and aimed at improvement by κ, but was not effective due to lack of overall continuity of parts. Therefore, in a rectangular flat single-layer lattice EP shell structure whose outer peripheral portion is supported by pins, as shown in FIG. 10 based on, for example, the selection of the arrangement of D-1 in FIG.
6, a grid such as a tension-stable truss 12 is provided on a grid located along a line connecting adjacent midpoints 16Am, 16Bm, 16Cm, and 16Dm of each side 16A to 16D of the outer peripheral portion as a whole. A rectangular planar hybrid single-layer lattice EP shell structure having a structure incorporating an internal stiffening member is effective.

【0025】(b)周辺キール支持の場合 C−2はκの最大値を示した位置を含む16箇所にパー
ツを配置したが、座屈荷重の上昇は小さかった。さらに
境界支持点への連続性を考慮してパーツを配置した結
果、所要の座屈荷重に到達した。これに対し、32箇所
にパーツを配置したA−1およびD−1は効果的な結果
を示さなかった。ここで、κにより改善を目指したA−
2では所要の座屈荷重が得られている。これもパーツと
境界支持点との連続性による補剛効果と考えられる。C
−3とD−1の比較により、パーツを組み込む場合に、
境界条件の違いがパーツを組み込むことによる効果に大
きな差を生じることがわかる。以上の検討から、単層ラ
チスシェルの変形率に基づく評価係数κを用いてパーツ
の配置を検討する手法が、効果的なパーツ配置を決定す
る上で有効であることが確認できた。
(B) Case of Supporting Peripheral Keel C-2 has parts arranged at 16 positions including the position showing the maximum value of κ, but the rise in buckling load was small. The required buckling load was reached as a result of arranging the parts in consideration of the continuity to the boundary support points. In contrast, A-1 and D-1 in which parts were arranged at 32 locations did not show effective results. Here, A-
2, the required buckling load is obtained. This is also considered to be a stiffening effect due to the continuity between the parts and the boundary support points. C
By comparing -3 and D-1, when incorporating parts,
It can be seen that the difference in the boundary conditions causes a great difference in the effect of incorporating the parts. From the above examination, it was confirmed that the method of examining the arrangement of parts using the evaluation coefficient κ based on the deformation rate of the single-layer lattice shell is effective in determining an effective arrangement of parts.

【0026】パーツ単体の補剛効果に加えて、パーツの
連続性および境界支持点への連続性による補剛効果は大
きく、パーツを組み込む際にはκの値が大きいこと、か
つ上記の連続性が満たされることを合わせて考えること
が重要である。従って、外周辺がキール支持される矩形
平面ハイブリッド単層ラチスEPシェル構造物において
は、例えば図7のC−3の配置選定に基づいて、図11
に示すように、単層ラチスシェル構造物16の対角線に
沿って位置するグリッドに張力安定トラス12等の面内
補剛部材を組み込んだ構成の矩形平面ハイブリッド単層
ラチスEPシェル構造物が有効なものとなる。また、図
12に示すように、補剛部材は張力安定トラスに限ら
ず、鋼板などの板状部材であってもよい。
In addition to the stiffening effect of the parts alone, the stiffening effect due to the continuity of the parts and the continuity to the boundary support points is large, and when the parts are incorporated, the value of κ is large. It is important to consider that the conditions are satisfied. Therefore, in a rectangular flat hybrid single-layer lattice EP shell structure in which the outer periphery is keel-supported, for example, based on the layout selection of C-3 in FIG.
As shown in the figure, a rectangular flat hybrid single-layer lattice EP shell structure having a configuration in which an in-plane stiffening member such as a tension-stable truss 12 is incorporated in a grid located along a diagonal line of the single-layer lattice shell structure 16 is effective. Becomes Further, as shown in FIG. 12, the stiffening member is not limited to a tension-stable truss, but may be a plate-like member such as a steel plate.

【0027】この手法を用いた、ハイブリッド単層ラチ
スシェルの座屈荷重に対する設計フローを、周辺ピン支
持の場合と周辺キール支持の場合とに共通するものとし
て図9に示す。ここに指標βは、補剛部材を組み込んだ
場合の単層ラチスシェル構造物の座屈荷重と、補剛部材
のない場合の同じ単層ラチスシエル構造物の座屈荷重と
の比であって、ラチスシェルと補剛パーツの座屈荷重の
分担をコントロールするものであり、これを満たすよう
にパーツの配置設計を行う。なお、指標βは、具体的に
は2.0〜5.0の範囲が好ましい。β=5.0のとき
は、全てのグリッドに補剛部材を組み込む必要を生ずる
可能性が高いものである。また、この指標βを使用する
ことにより、評価係数κを使用するか否かを問わず、配
設位置の選定を迅速化できる。
FIG. 9 shows a design flow for the buckling load of the hybrid single-layer lattice shell using this method, which is common to the case of supporting the peripheral pin and the case of supporting the peripheral keel. Here, the index β is a ratio of the buckling load of the single-layer lattice shell structure when the stiffening member is incorporated to the buckling load of the same single-layer lattice shell structure without the stiffening member, And the buckling load of the stiffening parts is controlled, and the layout of the parts is designed to satisfy this. The index β is preferably in the range of 2.0 to 5.0. When β = 5.0, there is a high possibility that it becomes necessary to incorporate a stiffening member into all grids. Further, by using the index β, it is possible to speed up the selection of the arrangement position regardless of whether the evaluation coefficient κ is used.

【0028】[0028]

【発明の効果】以上に詳細に説明したように、本発明に
よる単層ラチスシェル構造物の補剛部材配設位置選定方
法によれば次のような優れた効果を奏する。請求項1の
構成でなる単層ラチスシェル構造物の補剛部材配設位置
選定方法では、グリッドの拘束度に応じた重み付けを行
いつつ面内・面外方向の変形を考慮するため、所定の座
屈荷重を得るための補剛部材の最適配置の決定を迅速に
行え、補剛部材の配置箇所を最小限に留めつつ、大きな
座屈荷重を得られ、高価な補強パーツを有効に利用で
き、単層ラチスシェル構造物の構築コストを可及的に低
減できる。
As described in detail above, the method for selecting the position of the stiffening member of the single-layer lattice shell structure according to the present invention has the following excellent effects. In the method for selecting a stiffening member disposition position of a single-layer lattice shell structure according to the first aspect, a predetermined seat is used in order to take into account in-plane and out-of-plane deformation while performing weighting according to the degree of grid constraint. It is possible to quickly determine the optimal arrangement of stiffening members to obtain buckling loads, obtain a large buckling load while minimizing the location of stiffening members, and effectively use expensive reinforcing parts, The construction cost of the single-layer lattice shell structure can be reduced as much as possible.

【0029】請求項2の構成でなる単層ラチスシェル構
造物の補剛部材配設位置選定方法では、具体的数式が決
定されるため、熟練を要することなく実施できる。
In the method for selecting a stiffening member disposing position for a single-layer lattice shell structure according to the second aspect of the present invention, since specific mathematical expressions are determined, the method can be performed without skill.

【0030】請求項3の構成でなる単層ラチスシェル構
造物の補剛部材配設位置選定方法では、具体的数式が簡
略されるため、計算速度を早めることができる。
In the method for selecting a stiffening member disposing position for a single-layer lattice shell structure according to the third aspect of the present invention, the specific mathematical expressions are simplified, so that the calculation speed can be increased.

【0031】請求項4の構成でなる単層ラチスシェル構
造物の補剛部材配設位置選定方法では、あらかじめ、補
剛部材のない単層ラチスシェル構造物と、補剛部材との
座屈耐力分担を明確にすることにより、補剛部材の配設
位置の選定を迅速に行うことができる。
According to the fourth aspect of the present invention, in the method for selecting a stiffening member disposing position of a single-layer lattice shell structure, the buckling resistance sharing between the single-layer lattice shell structure without the stiffening member and the stiffening member is performed in advance. By clarifying, the arrangement position of the stiffening member can be quickly selected.

【0032】ここで、上記補剛位置の選定方法により、
請求項5にかかる発明に示すような、外周部がピン支持
される矩形平面ハイブリッド単層ラチスEPシェル構造
物において、該構造物周縁の各隣接する辺の中点同士を
結ぶ線に沿って位置するグリッドに面内補剛部材を組み
込んだ構成の矩形平面ハイブリッド単層ラチスEPシェ
ル構造物を迅速に得ることができる。
Here, according to the method of selecting the stiffening position,
In the rectangular flat hybrid single-layer lattice EP shell structure whose outer peripheral portion is supported by a pin as set forth in the invention according to claim 5, a position is set along a line connecting midpoints of adjacent sides of the peripheral edge of the structure. Thus, it is possible to quickly obtain a rectangular flat hybrid single-layer lattice EP shell structure having a configuration in which an in-plane stiffening member is incorporated in a grid.

【0033】また、上記補剛位置の選定方法により、請
求項6にかかる発明に示すような、外周部がキール支持
され、かつ4隅がピン支持される矩形平面ハイブリッド
単層ラチスEPシェル構造物において、該構造物の対角
線に沿って位置するグリッドに面内補剛部材を組み込ん
だ構成の矩形平面ハイブリッド単層ラチスEPシェル構
造物を迅速に得ることができる。
According to the above-mentioned method of selecting a stiffening position, a rectangular flat hybrid single-layer lattice EP shell structure in which the outer peripheral portion is keel-supported and the four corners are pin-supported as described in the invention according to claim 6. In the above, a rectangular flat hybrid single-layer lattice EP shell structure having a configuration in which an in-plane stiffening member is incorporated in a grid located along a diagonal line of the structure can be obtained quickly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】周辺ピン支持モデルの座屈モードの比較図であ
る。
FIG. 1 is a comparison diagram of a buckling mode of a peripheral pin support model.

【図2】周辺キール支持モデルの座屈モードの比較図で
ある。
FIG. 2 is a comparison diagram of a buckling mode of a peripheral keel support model.

【図3】面内変形率の評価についての説明図である。FIG. 3 is an explanatory diagram of evaluation of an in-plane deformation rate.

【図4】グリッドに対する重み係数の与え方を例示して
説明する図である。
FIG. 4 is a diagram illustrating an example of how to assign a weight coefficient to a grid;

【図5】周辺ピン支持の場合のパーツ組み込みによるグ
リッド毎の座屈荷重の推移を説明する図である。
FIG. 5 is a diagram illustrating a transition of a buckling load for each grid due to the incorporation of parts in the case of peripheral pin support.

【図6】周辺ピン支持の場合のパーツ組み込みによるグ
リッド毎のκの推移を説明する図である。
FIG. 6 is a diagram illustrating a transition of κ for each grid by incorporating parts in the case of supporting peripheral pins.

【図7】周辺キール支持の場合のパーツ組み込みによる
グリッド毎の座屈荷重の推移を説明する図である。
FIG. 7 is a diagram illustrating a transition of a buckling load for each grid due to the incorporation of parts in the case of supporting a peripheral keel.

【図8】周辺キール支持の場合のパーツ組み込みによる
グリッド毎のκの推移を説明する図である。
FIG. 8 is a diagram illustrating a transition of κ for each grid by incorporating parts in the case of supporting a peripheral keel.

【図9】本発明の単層ラチスシェル構造物の補剛部材配
設位置選定方法の手順を示す設計フローチャートであ
る。
FIG. 9 is a design flowchart showing a procedure of a method for selecting a stiffening member arrangement position of a single-layer lattice shell structure of the present invention.

【図10】周辺ピン支持の矩形平面単層ラチスEPシェ
ル構造物に対して好ましい箇所に補剛部材を組み付けた
一例を示す平面図である。
FIG. 10 is a plan view showing an example in which a stiffening member is assembled at a preferred position with respect to a rectangular flat single-layer lattice EP shell structure supporting a peripheral pin.

【図11】周辺キール支持の矩形平面単層ラチスEPシ
ェル構造物に対して好ましい箇所に補剛部材を組み付け
た一例を示す平面図である。
FIG. 11 is a plan view showing an example in which a stiffening member is assembled at a preferred position with respect to a rectangular flat single-layer lattice EP shell structure supporting a peripheral keel.

【図12】図26中のa−a線部の矢視断面図である。FIG. 12 is a sectional view taken along the line aa in FIG. 26;

【図13】(a)、(b)は面内補剛の例を示す図であ
る。
13A and 13B are diagrams illustrating an example of in-plane stiffening.

【図14】面外補剛の一例を示す張力安定トラスの説明
図である。
FIG. 14 is an explanatory diagram of a tension stable truss showing an example of out-of-plane stiffening.

【図15】(a)〜(d)はパーツの組立工程を示す説
明図である。
FIGS. 15A to 15D are explanatory diagrams showing a part assembling process.

【図16】単層ラチスシェルに対する張力安定トラスの
具体的取付け構造例を示す説明図である。
FIG. 16 is an explanatory view showing a specific example of a structure for attaching a tension stable truss to a single-layer lattice shell.

【符号の説明】[Explanation of symbols]

2 平面トラス 2a トラス主材 4,8 ケーブル 6 鋼板 10 ポスト 12 張力安定トラス(パーツ) 14 屋根膜 16 単層ラチスシェル構造物 18,20 ガセットプレート 2 Plane truss 2a Truss main material 4,8 Cable 6 Steel plate 10 Post 12 Tension stable truss (parts) 14 Roof membrane 16 Single layer lattice shell structure 18,20 Gusset plate

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2E125 AA42 AB13 AC18 AG20 BB09 BC09 BD01 BE02 BF03 BF08 CA05 CA15 2E163 FA01 FA09 FB06 FB32  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2E125 AA42 AB13 AC18 AG20 BB09 BC09 BD01 BE02 BF03 BF08 CA05 CA15 2E163 FA01 FA09 FB06 FB32

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 補剛材のない場合の単層ラチスシェルに
おける各グリッドgの節点の面内変位Liと面外変位W
iとを算出し、 該面内変位Liから各グリッドの面内変形率γgを求め
ると共に面外変位Wiから各グリッドの面外変形率ψg
を求め、 該面内変形率γgと面外変形率ψgとに対する重み関数
wi,woを各グリッドの拘束度に応じてそれぞれ定め
て、上記面内変形率γg、面外変形率ψg、重み関数w
i、および重み関数woのうちの全部、もしくはこれら
のうち選ばれたいくつかの数値の関数である評価係数κ
を各グリッド毎に算出し、 該評価係数κにより面内補剛部材を配置することで座屈
荷重を増大せしめるとみなせるグリッドをいくつか選択
し、それらを最短距離で結んだ線に沿って位置するグリ
ッドに対し、面内補剛部材を設ける、 ことを特徴とする単層ラチスシェル構造物の補剛部材配
設位置選定方法。
1. An in-plane displacement Li and an out-of-plane displacement W at a node of each grid g in a single-layer lattice shell without a stiffener.
i, an in-plane deformation rate γg of each grid is obtained from the in-plane displacement Li, and an out-of-plane deformation rate ψg of each grid is obtained from the out-of-plane displacement Wi.
The weighting functions wi and wo for the in-plane deformation rate γg and the out-of-plane deformation rate ψg are respectively determined according to the degree of constraint of each grid, and the above-mentioned in-plane deformation rate γg, out-of-plane deformation rate ψg, w
i, and an evaluation coefficient κ which is a function of all of the weight functions wo or some numerical value selected from these.
Is calculated for each grid, and several grids that can be considered to increase the buckling load by arranging the in-plane stiffening members based on the evaluation coefficient κ are selected, and the positions along the line connecting them at the shortest distance are selected. An in-plane stiffening member is provided for a grid to be formed, and a stiffening member disposition position selecting method for a single-layer lattice shell structure is provided.
【請求項2】 前記評価係数κが、 κ={(wi・γg)+(wo・ψg)1/2 である、 ことを特徴とする請求項1に記載の単層ラチスシェル構
造物の補剛部材配設位置選定方法。
2. The single-layer lattice shell structure according to claim 1, wherein the evaluation coefficient κ is κ = {(wi · γg) 2 + (wo · ψg) 21/2 . Stiffening member arrangement position selection method.
【請求項3】 前記評価係数κが、 κ=wi・γg である、 ことを特徴とする請求項1に記載の単層ラチスシェル構
造物の補剛部材配設位置選定方法。
3. The method according to claim 1, wherein the evaluation coefficient κ is κ = wi · γg.
【請求項4】 あらかじめ、補剛部材を組み込んだ場合
の単層ラチスシェル構造物の座屈荷重と、補剛部材のな
い場合の同じ単層ラチスシェル構造物の座屈荷重との
比、すなわち、補剛性能指数βを定義し、単層ラチスシ
ェル構造物の設計にあたり、βの具体的数値を決定し、
一方、任意の補剛部材配置パターンを案出し、各補剛部
材配置パターンについての単層ラチスシエルの座屈荷重
を計算し、上記βの具体的数値を満たすかどうかにより
採用するかしないかを判断する、ことを特徴とする単層
ラチスシェル構造物の補剛部材配設位置選定方法。
4. The ratio between the buckling load of a single-layer lattice shell structure in which a stiffening member is incorporated in advance and the buckling load of the same single-layer lattice shell structure in the absence of a stiffening member, Define the stiffness index β, determine the specific numerical value of β in the design of a single-layer lattice shell structure,
On the other hand, an arbitrary stiffening member arrangement pattern is devised, the buckling load of the single-layer lattice shell for each stiffening member arrangement pattern is calculated, and it is determined whether or not to adopt the specific value of β described above. A stiffening member disposing position selecting method for a single-layer lattice shell structure.
【請求項5】 外周部がピン支持される矩形平面単層ラ
チスEPシェル構造物において、該構造物周縁の各隣接
する辺の中点同士を結ぶ線に沿って位置するグリッドに
面内補剛部材を組み込んだことを特徴とする矩形平面ハ
イブリッド単層ラチスEPシェル構造物。
5. A rectangular planar single-layer latticed EP shell structure whose outer peripheral portion is supported by a pin. In-plane stiffening is performed on a grid located along a line connecting midpoints of adjacent sides of the peripheral edge of the structure. A rectangular planar hybrid single-layer lattice EP shell structure comprising a member incorporated therein.
【請求項6】 外周部がキール支持され、かつ4隅がピ
ン支持される矩形平面単層ラチスEPシェル構造物にお
いて、該構造物の対角線に沿って位置するグリッドに面
内補剛部材を組み込んだことを特徴とする矩形平面ハイ
ブリッド単層ラチスEPシェル構造物。
6. A rectangular planar single-layer lattice EP shell structure in which an outer peripheral portion is keel-supported and four corners are pin-supported, and an in-plane stiffening member is incorporated in a grid located along a diagonal line of the structure. A rectangular planar hybrid single layer lattice EP shell structure characterized by the following:
JP29750598A 1998-09-11 1998-09-11 Rectangular planar hybrid single layer lattice EP shell structure Expired - Fee Related JP3444799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29750598A JP3444799B2 (en) 1998-09-11 1998-09-11 Rectangular planar hybrid single layer lattice EP shell structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29750598A JP3444799B2 (en) 1998-09-11 1998-09-11 Rectangular planar hybrid single layer lattice EP shell structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003028868A Division JP2003239388A (en) 2003-02-05 2003-02-05 Stiffening member layout design method for single-layer lattice shell structure

Publications (2)

Publication Number Publication Date
JP2000087447A true JP2000087447A (en) 2000-03-28
JP3444799B2 JP3444799B2 (en) 2003-09-08

Family

ID=17847392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29750598A Expired - Fee Related JP3444799B2 (en) 1998-09-11 1998-09-11 Rectangular planar hybrid single layer lattice EP shell structure

Country Status (1)

Country Link
JP (1) JP3444799B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102454218A (en) * 2011-11-08 2012-05-16 浙江东南网架股份有限公司 Tube-in-tube structure for reinforced concrete core tubes and integrally-assembled space steel grids

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102454218A (en) * 2011-11-08 2012-05-16 浙江东南网架股份有限公司 Tube-in-tube structure for reinforced concrete core tubes and integrally-assembled space steel grids
CN102454218B (en) * 2011-11-08 2013-09-11 浙江东南网架股份有限公司 Tube-in-tube structure for reinforced concrete core tubes and integrally-assembled space steel grids

Also Published As

Publication number Publication date
JP3444799B2 (en) 2003-09-08

Similar Documents

Publication Publication Date Title
JP5312387B2 (en) Support platform for solar array
US5271197A (en) Earthquake resistant multi-story building
Bayati et al. Optimized use of multi-outriggers system to stiffen tall buildings
US7143550B1 (en) Double network reticulated frame structure
KR100882341B1 (en) Manufacturing method of compositebeam with reinforced steel beam for stiffness and rhmen bridge manufacturing method using compositebeam with reinforced steel beam
JP6029267B2 (en) Solar panel mount
JP2000087447A (en) Method for selecting placement position of stiffening member for single-latticed shell structure and rectangular planar hybrid single-latticed ep shell structure
JP4618805B2 (en) Reinforcement structure of multi-layer metal flat plate
CN115506228A (en) Steel-concrete combined pier bottom structure and construction method thereof
JP2003239388A (en) Stiffening member layout design method for single-layer lattice shell structure
CN108755941A (en) Assembly concrete frame Mixed Architecture
JPH11152929A (en) Earthquake resistant reinforcing method for building of steel frame construction
JP3758964B2 (en) Steel plate concrete structural beam, construction having the same, and manufacturing method thereof
CN210002660U (en) kinds of floor plate structures, floor plate beam structure and truss floor structure
JP4001545B2 (en) Bridge and main tower of the bridge
JPS63500877A (en) Adjustable space frame
JP2022111579A (en) Floor structure, design method of floor structure, and construction method of floor structure
JPH08246547A (en) Pole-beam junction structure
CN109868725B (en) Bridge span assembly of hollow double-fold-line pedestrian bridge
JP3639552B2 (en) Damping structure for ramen frame
JPH09184322A (en) Damping stud
JPH04368528A (en) Frame construction using void beam
Gathman et al. Design of a Full-Scale Aluminum Plate Tensegrity Structure
CN218116108U (en) Plate unit, combined beam structure and bridge
De Matteis et al. Seismic protection of steel buildings by pure aluminium shear panels

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees