JP2003239388A - Stiffening member layout design method for single-layer lattice shell structure - Google Patents

Stiffening member layout design method for single-layer lattice shell structure

Info

Publication number
JP2003239388A
JP2003239388A JP2003028868A JP2003028868A JP2003239388A JP 2003239388 A JP2003239388 A JP 2003239388A JP 2003028868 A JP2003028868 A JP 2003028868A JP 2003028868 A JP2003028868 A JP 2003028868A JP 2003239388 A JP2003239388 A JP 2003239388A
Authority
JP
Japan
Prior art keywords
plane
stiffening member
layer lattice
lattice shell
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003028868A
Other languages
Japanese (ja)
Inventor
Hirohiko Hanya
裕彦 半谷
Takashi Kanayama
敬 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2003028868A priority Critical patent/JP2003239388A/en
Publication of JP2003239388A publication Critical patent/JP2003239388A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stiffening member layout design method for a single-layer lattice shell structure that can obtain required buckling bearing force with required minimum stiffening and rapidly select stiffened parts. <P>SOLUTION: The in-plane displacement Li and out-of-plane displacement Wi of a joint of each grid g in a single-layer lattice shell in the case of not having a stiffening member are computed. The in-plane deformation rate γg of each grid is obtained from the in-plane displacement Li, and the out-of-plane deformation rate ψg of each grid is obtained from the out-of-plane displacement Wi. Weight coefficients wi, wo to the in-plane deformation rate γg and out-of-plane deformation rate ψg are respectively determined according to the constraint degree of each grid, and evaluation coefficients κ which are the functions of all or some of selected numeric values of the in-plane deformation rate γg, out-of-plane deformation rate ψg, weight coefficient wi and weight coefficient wo are computed for every grid. Some grids considered to increase buckling load by arranging in-plane stiffening members are selected on the basis of the evaluation coefficients κ, and the in-plane stiffening members are provided for the grids positioned along a line which connects these grids in a shortest distance. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種大型建築構造
物の架構に用いられる単層ラチスシェル構造物の補剛部
材配置設計方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stiffening member arrangement designing method for a single-layer lattice shell structure used in a frame of various large-scale building structures.

【0002】[0002]

【従来の技術】単層ラチスシェル構造は、架構の構面を
形成する骨組みが一層であり、立体的なトラス部材を持
たない単層ラチス(平面格子)で所要のシェル曲面を構
成する構造形式である。
2. Description of the Related Art A single-layer lattice shell structure has a single frame structure forming a frame structure, and is a structural type in which a required shell curved surface is formed by a single-layer lattice (planar lattice) without a three-dimensional truss member. is there.

【0003】この単層ラチスシェル構造は、従来の複層
のトラス組構造物に比べて、軽量化が図れ、接合部の単
純化等が可能であり、鉄骨のみならず木質系の材料も構
造材とすることができること等から、近年注目を集め、
各種大型建築構造物における軽量屋根膜の骨格として採
用されつつあるが、曲げ剛性が小さく座屈を来しやすい
面があり、座屈荷重に対する耐力を如何に高めるかが実
用化にあたっての重要なポイントとなる。
This single-layer lattice shell structure is lighter in weight than the conventional multi-layer truss structure structure, and the joints can be simplified, and not only steel frames but also wood-based materials are structural materials. Since it can be done, etc.
It is being adopted as a framework for lightweight roof membranes in various large-scale building structures, but it has a small bending rigidity and is liable to buckle, so how to increase the resistance to buckling loads is an important point for practical use. Becomes

【0004】ここで、上記座屈荷重は面内剛性および曲
げ剛性の関数として表せ、単層ラチスシェルの座屈耐力
を高める方法としては、ラチスシェルと他の構造とを複
合してハイブリッド構造化し、面内剛性や曲げ剛性を高
めて補剛することが従来より唱えられている。この補剛
としては、図13(a)、(b)及び図14に示すよう
に基本要素をなす平面トラス格子2のグリッドに対し、
ケーブル4、膜、鋼板6等を面内に配置する面内補剛
(図13)と、ポスト10、ケーブル8、膜等を面外
に配置する面外補剛(図14)とがあり、図14に示す
面外補剛は、不安定四辺形の平面トラス格子2にポスト
10とケーブル8とを組み込んで自己釣り合い応力型の
張力安定トラス12に形成してパーツ化したものであ
る。
The buckling load can be expressed as a function of in-plane rigidity and bending rigidity, and as a method of increasing the buckling resistance of a single-layer lattice shell, a lattice structure is combined with another structure to form a hybrid structure. It has been conventionally advocated to increase the internal rigidity and bending rigidity to stiffen the material. As this stiffening, as shown in FIGS. 13 (a), 13 (b) and 14, the grid of the plane truss lattice 2 which is a basic element is
There are in-plane stiffening (FIG. 13) in which the cable 4, the membrane, the steel plate 6 and the like are arranged in the plane, and out-of-plane stiffening (FIG. 14) in which the post 10, the cable 8, the membrane and the like are arranged out of the plane, The out-of-plane stiffening shown in FIG. 14 is one in which a post 10 and a cable 8 are incorporated into a plane truss lattice 2 of an unstable quadrangle to form a self-balancing stress type tension stable truss 12 and made into parts.

【0005】即ち、図15(a)〜(d)に示すよう
に、このパーツとしての張力安定トラス12は各二本で
構成される二組の直交するケーブル8をトラス主材2a
の対角線上に緩く配置・連結し、その一組のケーブル8
の中点にポスト10を立設し、そのポスト10の上部に
他の組のケーブル8の中点を連結する。そうしてポスト
10に組み込まれた図示しないねじ機構などの伸縮機構
によりポスト10を伸長させ、あるいは、ケーブル8に
組み込まれた図示しないターンバックルによる締め付
け、または図示しない油圧緊張装置によりケーブル8を
緊張し定着させることにより、張力を導入してトラス主
材2aおよびポスト10の圧縮力と釣合わせて、パーツ
となる張力安定トラス12に形成する。ポスト10の長
さは、ケーブル8の導入張力に基づき予め計算された伸
長長さを見込みパーツのライズ・スパン比が設計値を満
たすように設定する。また、以上の組立に加えて、得ら
れた張力安定トラス12に予め屋根仕上げ用二次部材と
して鋼板等の屋根膜14を張付け、この屋根膜14を荷
重支持パーツとして機能させることも考えられている。
That is, as shown in FIGS. 15 (a) to 15 (d), the tension-stable truss 12 as this part has two sets of orthogonal cables 8 each of which is composed of two pieces and has a truss main member 2a.
Loosely arranged and connected on the diagonal of the, and the set of cables 8
The post 10 is erected at the midpoint of the cable, and the midpoint of the other set of cables 8 is connected to the upper portion of the post 10. In this way, the post 10 is extended by an expansion / contraction mechanism such as a screw mechanism (not shown) incorporated in the post 10, or tightened by a turnbuckle (not shown) incorporated in the cable 8, or the cable 8 is tensioned by a hydraulic tension device (not shown). Then, the tension is introduced to balance with the compressive force of the truss main material 2a and the post 10 to form the tension-stable truss 12 as a part. The length of the post 10 is set so that the rise / span ratio of the prospective part satisfies the design value based on the extension length calculated in advance based on the tension introduced into the cable 8. In addition to the above assembly, it is also considered that the obtained tension-stable truss 12 is preliminarily attached with a roof membrane 14 such as a steel plate as a secondary member for roof finishing, and the roof membrane 14 is made to function as a load supporting part. There is.

【0006】そして、この構造の単層ラチスシェルで
は、各パーツの張力安定トラス12をそのトラス主材2
a同士を互いに隣接させて縦横に多数を連ねて配置する
ことにより、所要曲面の単層ラチスシェルの架構に構築
する。
In the single-layer lattice shell having this structure, the tension-stable truss 12 of each part is attached to the truss main material 2
By arranging a in a row so that they are adjacent to each other in a row and column, a single-layer lattice shell having a required curved surface is constructed.

【0007】図16は単層ラチスシェル構造物16に対
するパーツとしての張力安定トラス12の具体的取付け
構造を示している。同図において、構造物16の各単層
ラチスシェル16aの交点位置に連結用のガセットプレ
ート18を固定し、これに対応して、張力安定トラス1
2の四辺にこれと結合するガセットプレート20を固定
しておき、両者を突き合わせた状態で図外のスプライス
プレートをあてがい、これらをボルトナット結合すれ
ば、張力安定トラス12の固定が完了する。
FIG. 16 shows a concrete mounting structure of the tension stabilizing truss 12 as a part to the single-layer lattice shell structure 16. In the figure, a gusset plate 18 for connection is fixed at the intersection of the single-layer lattice shells 16a of the structure 16, and the tension stable truss 1 corresponding to this is fixed.
The gusset plate 20 to be connected to this is fixed to the four sides of 2, and a splice plate (not shown) is applied in a state where they are butted against each other, and these are connected by bolts and nuts, whereby fixing of the tension stable truss 12 is completed.

【0008】[0008]

【発明が解決しようとする課題】ところで、上記張力安
定トラス12のパーツ方式によるハイブリッド単層ラチ
スシェル構造物16は、パーツと称する張力安定トラス
12を単層ラチスシェル16aに取り付け、面内外の剛
性・耐力を高めた構造であり、この構造は、単層ラチス
シェル16aを組み立てた後、別個に組み立てたパーツ
の張力安定トラス12を全てのグリッドに取り付け、軽
量の屋根構造を構築するものである。
By the way, in the hybrid single-layer lattice shell structure 16 based on the parts system of the tension stable truss 12 described above, the tension stable truss 12 referred to as a part is attached to the single layer lattice shell 16a to provide the in-plane rigidity / proof strength. This structure is to construct a lightweight roof structure by assembling the single-layer lattice shell 16a and then attaching separately assembled parts of the tension-stable truss 12 to all the grids.

【0009】しかしながら、パーツの張力安定トラス1
2の上下弦材としてこれに用いているケーブル8は、端
部の接合金具のガセット20が増えると加速度的にコス
トの上昇を招く。つまり、パーツ毎にケーブル8は切ら
れるので、ケーブル8の本数が増えてその組立が煩雑に
なり、工費が割高となる。
However, the tension stable truss 1 for the parts
The cable 8 used as the upper and lower chord members of No. 2 has an accelerating increase in cost when the number of the gussets 20 of the end fittings increases. That is, since the cable 8 is cut for each part, the number of the cables 8 increases, the assembly thereof becomes complicated, and the construction cost becomes expensive.

【0010】そこで、上記張力安定トラス12でなるパ
ーツを全てのグリッドには取り付けずに、一部のグリッ
ド内のみに取り付けるようにすることが、鋭意検討・研
究されている[日本建築学会大会学術講演梗概集(近
畿)1996年9月(パーツ方式によるハイブリッド単
層ラチスシェルの研究その1:研究の背景と目標)参
照]。
Therefore, it has been earnestly studied and studied to mount the parts of the tension-stable truss 12 only on a part of the grids, not on all the grids. Abstracts of lectures (Kinki) September 1996 (Research on hybrid single-layer lattice shell by parts method Part 1: Background and goals of research).

【0011】すなわち、上記研究のものは、補剛材のな
い場合の座屈モードを計算して、座屈モードが生じると
される捩れモードの発生箇所のグリッド内に、補剛材を
組み込むというものである。
That is, in the above research, the buckling mode in the absence of the stiffening material is calculated, and the stiffening material is incorporated in the grid of the twisting mode where the buckling mode is supposed to occur. It is a thing.

【0012】ところが、このようにして捩れモードの発
生箇所を選定して補剛しても、その補剛により捩れモー
ドが変化して、他の箇所が新たに捩れモードの発生箇所
となってしまうので、当該補剛後の条件で再度座屈モー
ドを計算して新たな捩れモードの発生箇所の有無を検討
し直し、この作業を幾度となく繰り返す必要があるほ
か、最終結果からすると所要の座屈耐力に対して必要以
上の箇所のグリッドを補剛しているという無駄を生ずる
虞があった。
However, even if the location where the twist mode is generated is selected and stiffened in this manner, the twist mode changes due to the stiffening, and another location becomes a new location where the twist mode is generated. Therefore, it is necessary to calculate the buckling mode again under the conditions after the stiffening, reconsider whether there is a new twisting mode occurrence point, and repeat this work again and again. There is a risk of waste of stiffening the grids at locations more than necessary with respect to bending strength.

【0013】この発明は、以上の課題を解決するために
なされたものであり、その目的は、単層ラチスシェル構
造物の座屈耐力を、一部グリッド内に補剛部材を組み込
んで向上させるにあたって、所要の座屈耐力に対して必
要最小限の補剛で済ませることができ、しかも補剛箇所
を迅速に選定できる単層ラチスシェル構造物の補剛部材
配設位置選定方法を提供することにある。
The present invention has been made to solve the above problems, and an object thereof is to improve the buckling resistance of a single-layer lattice shell structure by partially incorporating a stiffening member in the grid. It is an object of the present invention to provide a method of selecting a stiffening member disposition position of a single-layer lattice shell structure, which can perform a minimum necessary stiffening with respect to a required buckling strength and can quickly select a stiffening point. .

【0014】[0014]

【課題を解決するための手段】以上の目的を達成するた
め、請求項1にかかる発明の単層ラチスシェル構造物の
補剛部材配置設計方法は、補剛材のない場合の単層ラチ
スシェルにおける各グリッドgの節点の面内変位Liと
面外変位Wiとを算出し、該面内変位Liから各グリッ
ドの面内変形率γgを求めると共に面外変位Wiから各
グリッドの面外変形率ψgを求め、該面内変形率γgと
面外変形率ψgとに対する重み係数wi,woを各グリ
ッドの拘束度に応じてそれぞれ定めて、上記面内変形率
γg、面外変形率ψg、重み係数wi、および重み係数
woのうちの全部、もしくはこれらのうち選ばれたいく
つかの数値の関数である評価係数κを各グリッド毎に算
出し、該評価係数κにより面内補剛部材を配置すること
で座屈荷重を増大せしめるとみなせるグリッドをいくつ
か選択し、それらを最短距離で結んだ線に沿って位置す
るグリッドを面内補剛対象に選定して、任意の補剛部材
配置パターンを案出し、当該補剛部材配置パターンにつ
いてのハイブリッド単層ラチスシェルの座屈解析をし
て、該補剛部材配置パターンでの座屈荷重が所要の座屈
荷重を満たすまで、上記補剛部材配置パターンの案出を
繰り返して行い、該所要の座屈荷重を満たす補剛部材配
置パターンで面内補剛部材を設けることを特徴とする。
In order to achieve the above object, the method for designing stiffening members for a single-layer lattice shell structure according to the first aspect of the present invention is a method for designing a single-layer lattice shell for a single-layer lattice shell without a stiffener. The in-plane displacement Li and the out-of-plane displacement Wi of the nodes of the grid g are calculated, the in-plane deformation rate γg of each grid is obtained from the in-plane displacement Li, and the out-of-plane deformation rate ψg of each grid is calculated from the out-of-plane displacement Wi. Then, the weighting factors wi and wo for the in-plane deformation rate γg and the out-of-plane deformation rate ψg are determined according to the degree of constraint of each grid, and the in-plane deformation rate γg, the out-of-plane deformation rate ψg, and the weighting factor wi. , And all of the weighting factors wo, or an evaluation coefficient κ, which is a function of some numerical values selected from these, is calculated for each grid, and the in-plane stiffening member is arranged by the evaluation coefficient κ. Increase the buckling load with Select some grids that can be considered as the in-plane stiffening target, and select the grids that are located along the line connecting them with the shortest distance as the in-plane stiffening target, and devise any stiffening member arrangement pattern. The buckling analysis of the hybrid single-layer lattice shell for the arrangement pattern is performed, and the stiffening member arrangement pattern is repeatedly devised until the buckling load in the stiffening member arrangement pattern satisfies the required buckling load. The in-plane stiffening member is provided in a stiffening member arrangement pattern that satisfies the required buckling load.

【0015】そして、当該請求項1の構成でなる単層ラ
チスシェル構造物の補剛部材配置設計方法では、グリッ
ドの拘束度に応じた重み付けを行いつつ面内・面外方向
の変形を考慮するため、所定の座屈荷重を得るための補
剛部材の最適配置の決定を迅速に行え、補剛部材の配置
箇所を最小限に留めつつ、大きな座屈荷重を得られ、高
価な補強パーツを有効に利用でき、単層ラチスシェル構
造物の構築コストを可及的に低減できる。
In the stiffening member layout designing method for a single-layer lattice shell structure according to the first aspect of the present invention, in-plane and out-of-plane deformations are taken into consideration while weighting according to the degree of constraint of the grid. , Quickly determine the optimum placement of stiffening members to obtain a predetermined buckling load, obtain a large buckling load while minimizing the location of stiffening members, and use expensive reinforcement parts The construction cost of the single-layer lattice shell structure can be reduced as much as possible.

【0016】請求項2にかかる発明の単層ラチスシェル
構造物の補剛部材配置設計方法は、前記評価係数κが、
κ={(wi・γg)+(wo・ψg)1/2
ある、ことを特徴とする。当該請求項2の構成でなる単
層ラチスシェル構造物の補剛部材配置設計方法では、具
体的数式が決定されるため、熟練を要することなく実施
できる。
In the stiffening member arrangement design method for a single-layer lattice shell structure according to a second aspect of the present invention, the evaluation coefficient κ is
It is characterized in that κ = {(wi · γg) 2 + (wo · ψg) 2 } 1/2 . In the stiffening member arrangement designing method for a single-layer lattice shell structure according to the second aspect of the present invention, since a specific mathematical formula is determined, it can be carried out without requiring skill.

【0017】請求項3にかかる発明の単層ラチスシェル
構造物の補剛部材配置設計方法は、前記評価係数κが、
κ=wi・γgであることを特徴とする。当該請求項3
の構成でなる単層ラチスシェル構造物の補剛部材配置設
計方法では、具体的数式が簡略されるため、計算速度を
早めることができる。
In the stiffening member arrangement design method for a single-layer lattice shell structure according to the third aspect of the present invention, the evaluation coefficient κ is
It is characterized in that κ = wi · γg. Claim 3
In the stiffening member arrangement designing method for the single-layer lattice shell structure having the above configuration, since the concrete mathematical formula is simplified, the calculation speed can be increased.

【0018】請求項4にかかる発明の単層ラチスシェル
構造物の補剛部材配置設計方法は、あらかじめ、補剛部
材を組み込んだ場合の単層ラチスシェル構造物の座屈荷
重と、補剛部材のない場合の同じ単層ラチスシェル構造
物の座屈荷重との比、すなわち、補剛性能指数βを定義
し、単層ラチスシェル構造物の設計にあたり、βの具体
的数値を決定し、一方、任意の補剛部材配置パターンを
案出し、各補剛部材配置パターンについての単層ラチス
シェルの座屈荷重を計算し、上記βの具体的数値を満た
すかどうかにより採用するかしないかを判断し、該βの
具体的数値を満たすまで、補剛部材配置パターンの案出
を繰り返すことを特徴とする。当該請求項4の構成でな
る単層ラチスシェル構造物の補剛部材配置設計方法で
は、あらかじめ、補剛部材のない単層ラチスシェル構造
物と補剛部材との座屈耐力分担を明確にすることによ
り、補剛部材の配設位置の選定を迅速に行うことができ
る。
According to a fourth aspect of the present invention, there is provided a stiffening member arrangement design method for a single-layer lattice shell structure, wherein a buckling load of the single-layer lattice shell structure when the stiffening member is incorporated in advance and no stiffening member are provided. In this case, the ratio to the buckling load of the same single-layer lattice shell structure, that is, the supplemental stiffness capability index β is defined, and the specific numerical value of β is determined in designing the single-layer lattice shell structure. The rigid member arrangement pattern is devised, the buckling load of the single-layer lattice shell for each stiffening member arrangement pattern is calculated, and it is judged whether or not it is adopted depending on whether the specific numerical value of the above β is satisfied. It is characterized in that the stiffening member arrangement pattern is repeatedly devised until a specific numerical value is satisfied. In the stiffening member arrangement design method for a single-layer lattice shell structure having the structure of claim 4, the buckling load sharing between the single-layer lattice shell structure without the stiffening member and the stiffening member is clarified in advance. It is possible to quickly select the disposition position of the stiffening member.

【0019】[0019]

【発明の実施の形態】以下、本発明の好ましい実施の形
態につき、添付図面を参照して詳細に説明する。本発明
の単層ラチスシェル構造物の補剛部材配置設計方法は、
次の(1)〜(6)の手順からなるものである。 (1)補剛材のない場合の単層ラチスシェルにおける各
グリッドgの節点の面内変位Liと面外変位Wiとを算
出する。 (2)上記(1)で求めた面内変位Liから各グリッド
gの面内変形率γgを求める。 (3)上記(1)で求めた面外変位Wiから各グリッド
gの面外変形率ψgを求める。 (4)上記(2)で求めた面内変形率γgと、上記
(3)で求めた面外変形率ψgとに対する重み係数w
i,woを各グリッド位置に応じてそれぞれ定めて、κ
={(wi・γg)+(wo・ψg)1/2なる
式で規定される評価係数κを各グリッドg毎に算出す
る。 (5)上記(4)で求めた評価係数κの大きいグリッド
をいくつか選択し、それらを最短距離で結んだ線に沿っ
て位置するグリッドを面内補剛対象に選定して、任意の
補剛部材配置パターンを案出する。 (6)当該補剛部材配置パターンについてのハイブリッ
ド単層ラチスシェルの座屈解析をして、該補剛部材配置
パターンでの座屈荷重が所要の座屈荷重を満たすまで、
上記補剛部材配置パターンの案出を繰り返して行い、該
所要の座屈荷重を満たす補剛部材配置パターンで面内補
剛部材を設ける。
Preferred embodiments of the present invention will now be described in detail with reference to the accompanying drawings. The stiffening member arrangement design method for the single-layer lattice shell structure of the present invention is
The procedure consists of the following (1) to (6). (1) The in-plane displacement Li and the out-of-plane displacement Wi of the nodes of each grid g in the single-layer lattice shell without the stiffening material are calculated. (2) The in-plane deformation rate γg of each grid g is obtained from the in-plane displacement Li obtained in (1) above. (3) The out-of-plane deformation rate ψg of each grid g is obtained from the out-of-plane displacement Wi obtained in (1) above. (4) Weighting coefficient w for the in-plane deformation rate γg obtained in (2) above and the out-of-plane deformation rate ψg obtained in (3) above
i and wo are determined according to each grid position, and κ
= {(Wi · γg) 2 + (wo · ψg) 2 } 1/2 The evaluation coefficient κ defined by the formula is calculated for each grid g. (5) Select some grids with a large evaluation coefficient κ obtained in (4) above, select grids located along the line connecting them with the shortest distance as in-plane stiffening targets, and select any Create a rigid member placement pattern. (6) Buckling analysis of the hybrid single-layer lattice shell for the stiffening member arrangement pattern is performed until the buckling load in the stiffening member arrangement pattern satisfies the required buckling load,
The above stiffening member arrangement pattern is repeatedly devised to provide the in-plane stiffening member with the stiffening member arrangement pattern that satisfies the required buckling load.

【0020】次に、これらの手順で補剛部材の配設位置
を選定する手法について、順を追って詳述していく。
Next, the method for selecting the arrangement position of the stiffening member by these procedures will be described in detail in order.

【0021】−−−補剛パーツの配置選定手法−−− 種々のパーツの配置パターンを用いた解析結果から、パ
ーツは単層ラチスシェルのグリッド変形が大きい箇所に
配置するのが効果的であると想定できる。そこで、座屈
モードを用いてグリッドの面内および面外変形率を算定
し、以下に示す評価係数を用いて効果的にパーツを組み
込む方法について検討する。
From the analysis results using various part placement patterns, it is effective to place the parts at locations where the grid deformation of the single-layer lattice shell is large. Can be assumed. Therefore, the buckling mode is used to calculate the in-plane and out-of-plane deformation rates of the grid, and a method for effectively incorporating parts using the following evaluation coefficients will be examined.

【0022】−−−設計パラメーターの定義−−− 面内および面外の変形率を以下のように定義する。面内
の変形率の評価(図3参照)は、式(1)で表す対角線
の変化率γを用いて行う。 γ =(L′ik−Lik)/Lik ………(1) γ =(L′jl−Ljl)/Ljl γg=(γ +γ 1/2 ………(2) 面外の変形率の評価には、各節点で主曲率(式(3))
を採用し、差分公式を用いて算出する。グリッドを形成
する4節点の平均値をグリッドの評価値とする。 ψi =(∂Wi/∂x)+(∂Wi/∂y) ………(3) ここに、Wi:面外方向のたわみ
--- Definition of design parameters --- The in-plane and out-of-plane deformation rates are defined as follows. The in-plane deformation rate is evaluated (see FIG. 3) using the diagonal change rate γ expressed by the equation (1). γ 1 = (L'ik-Lik) / Lik ...... (1) γ 2 = (L'jl-Ljl) / Ljl γg = (γ 1 2 + γ 2 2 ) 1/2 ...... (2) plane To evaluate the outer deformation rate, the main curvature (Equation (3)) at each node
Is calculated using the difference formula. The average value of the four nodes forming the grid is taken as the grid evaluation value. ψi = (∂ 2 Wi / ∂x 2 ) + (∂ 2 Wi / ∂y 2 ) ... (3) where Wi: deflection in the out-of-plane direction

【0023】評価係数κの提案 種々のパーツの配置パターンを用いた解析例(図1,図
2)により次のことが言える。 ・面内変形の大きいグリッドにパーツを組み込むこと
が、座屈荷重を高めるのに効果的である。 ・面内および面外変形共に、境界近傍で拘束度が高いほ
どシェルとしての座屈荷重が高まる。そこで面内および
面外変形率のそれぞれに、位置により定めた重み係数w
i、woを乗じて、式(4)で表すκを評価係数とす
る。 κ={(wi・γg)+(wo・ψg)1/2 ………(4)
Proposal of Evaluation Coefficient κ The following can be said from analysis examples (FIGS. 1 and 2) using the arrangement patterns of various parts. -Incorporating parts into a grid with large in-plane deformation is effective for increasing the buckling load.・ For both in-plane and out-of-plane deformation, the higher the degree of restraint near the boundary, the higher the buckling load as a shell. Therefore, for each of the in-plane and out-of-plane deformation rates, the weighting factor w determined by the position
By multiplying i and wo, κ represented by the equation (4) is used as the evaluation coefficient. κ = {(wi · γg) 2 + (wo · ψg) 2 } 1/2 (4)

【0024】−−−計算例による検討−−− 周辺ピン支持と周辺キール支持のモデルについて検討す
る。両モデルとも所要の座屈荷重として単層ラチスシェ
ルの2.0倍を目標とする。重み係数の値は、前述の事
象を考慮して図4のように定め、対称性を考慮して1/
4部分を示す。次に具体的に評価係数κを用いた結果を
図5から図8に示す。ここに図の矢印はκの大きなグリ
ッドにパーツを組み込んだ過程を示している。
---- Study by Calculation Example ---- A model of peripheral pin support and peripheral keel support will be examined. Both models aim at a required buckling load of 2.0 times that of a single layer lattice shell. The value of the weighting factor is set as shown in FIG. 4 in consideration of the above-mentioned phenomenon, and 1 / in consideration of symmetry.
4 parts are shown. Next, the results of using the evaluation coefficient κ are shown in FIGS. 5 to 8. Here, the arrows in the figure show the process of incorporating parts into a large grid of κ.

【0025】(a)周辺ピン支持の場合 D−1では、κの大きなグリッドに境界部との連続性を
考慮してパーツを配置した結果、一回の検討で所要の座
屈荷重に到達しており、κを用いる有効性を示してい
る。次に、B−1では32箇所にパーツを組み込んで座
屈荷重を高めている。さらにκの値に基づき16箇所に
パーツを組み込むことにより、所要の座屈荷重に到達し
ている。これは、パーツ単体の補剛効果にパーツが連続
することによる補剛効果が加わったためと考えられ、κ
を用いた検討により、パーツの連続性による有効性も併
せて評価できることを示している。一方、C−2の配置
は効果的でなく、κにより改善を目指したが、パーツの
全体的な連続性がないため有効でなかった。従って、外
周部がピン支持される矩形平面単層ラチスEPシェル構
造物においては、例えば図5のD−1の配置選定に基づ
いて、図10に示すように、単層ラチスシェル構造物1
6の全体としての外周部の各辺16A〜Dにおいて、そ
の各中点16Am,16Bm,16Cm,16Dmを隣
接するもの同士で結んだ線に沿って位置するグリッド
に、張力安定トラス12などの面内補剛部材を組み込ん
だ構成の矩形平面ハイブリッド単層ラチスEPシェル構
造物が有効なものとなる。
(A) In the case of peripheral pin support In D-1, as a result of arranging parts on a grid with a large κ in consideration of continuity with the boundary, the required buckling load was reached in one examination. , Indicating the effectiveness of using κ. Next, in B-1, parts are incorporated at 32 places to increase the buckling load. Furthermore, the required buckling load is reached by incorporating parts at 16 locations based on the value of κ. This is considered to be due to the stiffening effect of the parts being continuous in addition to the stiffening effect of the individual parts.
It is shown that the effectiveness by the continuity of parts can be evaluated together by the examination using. On the other hand, the arrangement of C-2 was not effective, and the improvement was aimed at by κ, but it was not effective because there was no overall continuity of parts. Therefore, in the rectangular plane single-layer lattice EP shell structure in which the outer peripheral portion is pin-supported, as shown in FIG. 10, for example, the single-layer lattice shell structure 1 based on the arrangement selection of D-1 in FIG.
In each side 16A-D of the outer peripheral portion as a whole of 6, the grids located along the line connecting the respective midpoints 16Am, 16Bm, 16Cm, 16Dm to each other are attached to the surface of the tension stable truss 12 or the like. A rectangular planar hybrid single layer lattice EP shell structure having a structure incorporating an internal stiffening member becomes effective.

【0026】(b)周辺キール支持の場合 C−2はκの最大値を示した位置を含む16箇所にパー
ツを配置したが、座屈荷重の上昇は小さかった。さらに
境界支持点への連続性を考慮してパーツを配置した結
果、所要の座屈荷重に到達した。これに対し、32箇所
にパーツを配置したA−1およびD−1は効果的な結果
を示さなかった。ここで、κにより改善を目指したA−
2では所要の座屈荷重が得られている。これもパーツと
境界支持点との連続性による補剛効果と考えられる。C
−3とD−1の比較により、パーツを組み込む場合に、
境界条件の違いがパーツを組み込むことによる効果に大
きな差を生じることがわかる。
(B) In the case of supporting the peripheral keel, the parts of C-2 were arranged at 16 positions including the position showing the maximum value of κ, but the increase of the buckling load was small. As a result of arranging the parts considering the continuity to the boundary support point, the required buckling load was reached. In contrast, A-1 and D-1 in which parts were arranged at 32 positions did not show effective results. Here, A-
In No. 2, the required buckling load is obtained. This is also considered to be a stiffening effect due to the continuity of the parts and the boundary support points. C
By comparing -3 and D-1, when incorporating parts,
It can be seen that the difference in the boundary conditions makes a great difference in the effect of incorporating the parts.

【0027】以上の検討から、単層ラチスシェルの変形
率に基づく評価係数κを用いてパーツの配置を検討する
手法が、効果的なパーツ配置を決定する上で有効である
ことが確認できた。パーツ単体の補剛効果に加えて、パ
ーツの連続性および境界支持点への連続性による補剛効
果は大きく、パーツを組み込む際にはκの値が大きいこ
と、かつ上記の連続性が満たされることを合わせて考え
ることが重要である。従って、外周辺がキール支持され
る矩形平面ハイブリッド単層ラチスEPシェル構造物に
おいては、例えば図7のC−3の配置選定に基づいて、
図11に示すように、単層ラチスシェル構造物16の対
角線に沿って位置するグリッドに張力安定トラス12等
の面内補剛部材を組み込んだ構成の矩形平面ハイブリッ
ド単層ラチスEPシェル構造物が有効なものとなる。ま
た、図12に示すように、補剛部材は張力安定トラスに
限らず、鋼板などの板状部材であってもよい。
From the above examination, it was confirmed that the method of examining the arrangement of parts using the evaluation coefficient κ based on the deformation rate of the single-layer lattice shell is effective in determining the effective arrangement of parts. In addition to the stiffening effect of the part itself, the stiffening effect due to the continuity of the part and the continuity to the boundary support points is large, and the value of κ is large when incorporating the part, and the above continuity is satisfied. It is important to think together. Therefore, in the rectangular plane hybrid single layer lattice EP shell structure in which the outer periphery is keel supported, for example, based on the arrangement selection of C-3 in FIG.
As shown in FIG. 11, a rectangular flat hybrid single-layer lattice EP shell structure having a structure in which an in-plane stiffening member such as a tension stable truss 12 is incorporated in a grid located along the diagonal line of the single-layer lattice shell structure 16 is effective. It will be Further, as shown in FIG. 12, the stiffening member is not limited to the tension stable truss, and may be a plate member such as a steel plate.

【0028】この手法を用いた、ハイブリッド単層ラチ
スシェルの座屈荷重に対する設計フローを、周辺ピン支
持の場合と周辺キール支持の場合とに共通するものとし
て図9に示す。図示するように、先ず、ハイブリッド単
層ラチスシェルの必要座屈荷重Pの設定をした後、当
該単層ラチスシェルの座屈解析を行って、単層ラチスシ
ェルの座屈荷重のcrの設定をする。次に指標βの
設定をして、補剛パーツの設計を行う。ここに指標β
は、補剛部材を組み込んだ場合の単層ラチスシェル(ハ
イブリッド単層ラチスシェル)構造物の座屈荷重P
と、補剛部材のない場合の同じ単層ラチスシェル構造
物の座屈荷重crとの比であって、ラチスシェルと
補剛パーツの座屈荷重の分担をコントロールするもので
あり、これを満たすようにパーツの配置設計を行う。な
お、指標βは、具体的には2.0〜5.0の範囲が好ま
しい。β=5.0のときは、全てのグリッドに補剛部材
を組み込む必要を生ずる可能性が高いものである。
A design flow for a buckling load of a hybrid single-layer lattice shell using this method is shown in FIG. 9 as common to the case of supporting peripheral pins and the case of supporting peripheral keels. As shown in the figure, first, after setting the required buckling load P n of the hybrid single-layer lattice shell, a buckling analysis of the single-layer lattice shell is performed to set the buckling load s P cr of the single-layer lattice shell. To do. Next, the index β is set and the stiffening parts are designed. Index β here
Is the buckling load P of a single-layer lattice shell (hybrid single-layer lattice shell) structure when a stiffening member is incorporated.
It is the ratio of n and the buckling load s P cr of the same single layer lattice shell structure without stiffening member, which controls the sharing of the buckling load between the lattice shell and the stiffening part. Design the layout of parts to meet the requirements. The index β is preferably in the range of 2.0 to 5.0. When β = 5.0, there is a high possibility that it becomes necessary to incorporate stiffening members in all grids.

【0029】パーツの配置設計においては、単層ラチス
シェルの各グリッドの変形率を上記式(1)〜(3)に
より算定して、評価係数κを上記式(4)にて算定す
る。そして、評価係数κの大きいグリッドをいくつか選
択し、それらを最短距離で結んだ線に沿って位置するグ
リッドを面内補剛対象に選定して、任意の補剛部材配置
パターンを案出し、当該パターンでパーツを組み込んだ
と想定して、当該各補剛部材配置パターンについてのハ
イブリッド単層ラチスシェルの座屈解析をして座屈荷重
crを計算し、上記βの具体的数値を満たすかどう
か、即ち、所要の必要座屈荷重Pが、Pcr
=β・Pcrを満たしているかどうかにより採用する
かしないかを判断し、満たしていればOKとし、満たし
ていない場合にはNGとして、OKとなるまでパーツの
配置設計を繰り返して最適な配置パターンを決定する。
In the layout design of the parts, the deformation rate of each grid of the single-layer lattice shell is calculated by the above equations (1) to (3), and the evaluation coefficient κ is calculated by the above equation (4). Then, select some grids with a large evaluation coefficient κ, select grids located along the line connecting them with the shortest distance as in-plane stiffening targets, and devise any stiffening member arrangement pattern, Assuming that parts are incorporated in the pattern, buckling load is calculated by performing buckling analysis of the hybrid single layer lattice shell for each stiffening member arrangement pattern.
H P cr is calculated to determine whether or not the specific value of β is satisfied, that is, the required necessary buckling load P n is P nH P cr
= Β s · P cr It is judged whether or not it is adopted depending on whether it is satisfied, if it is satisfied, it is decided as OK, and if it is not satisfied, it is decided as NG by repeating the arrangement design of the parts until it becomes OK. Determine the placement pattern.

【0030】また、この指標βを使用することにより、
評価係数κを使用するか否かを問わず、配設位置の選定
を迅速化できる。
Further, by using this index β,
Regardless of whether or not the evaluation coefficient κ is used, the selection of the arrangement position can be speeded up.

【0031】[0031]

【発明の効果】以上に詳細に説明したように、本発明に
よる単層ラチスシェル構造物の補剛部材配設位置選定方
法によれば次のような優れた効果を奏する。
As described in detail above, the method of selecting the stiffening member disposition position of the single-layer lattice shell structure according to the present invention has the following excellent effects.

【0032】請求項1の構成でなる単層ラチスシェル構
造物の補剛部材配置設計方法では、グリッドの拘束度に
応じた重み付けを行いつつ面内・面外方向の変形を考慮
するため、所定の座屈荷重を得るための補剛部材の最適
配置の決定を迅速に行え、補剛部材の配置箇所を最小限
に留めつつ、大きな座屈荷重を得られ、高価な補強パー
ツを有効に利用でき、単層ラチスシェル構造物の構築コ
ストを可及的に低減できる。
In the stiffening member arrangement design method for a single-layer lattice shell structure according to the first aspect of the present invention, since the deformation in the in-plane and out-of-plane directions is taken into consideration while performing weighting according to the degree of constraint of the grid, The optimal placement of stiffening members to obtain the buckling load can be quickly determined, a large buckling load can be obtained, and expensive reinforcing parts can be effectively used while minimizing the location of stiffening members. The construction cost of the single-layer lattice shell structure can be reduced as much as possible.

【0033】請求項2の構成でなる単層ラチスシェル構
造物の補剛部材配置設計方法では、具体的数式が決定さ
れるため、熟練を要することなく実施できる。
In the stiffening member arrangement designing method for a single-layer lattice shell structure according to the second aspect of the invention, since a specific mathematical formula is determined, it can be carried out without requiring skill.

【0034】請求項3の構成でなる単層ラチスシェル構
造物の補剛部材配置設計方法では、具体的数式が簡略さ
れるため、計算速度を早めることができる。
In the stiffening member arrangement design method for the single-layer lattice shell structure having the structure of the third aspect, since the specific mathematical formula is simplified, the calculation speed can be increased.

【0035】請求項4の構成でなる単層ラチスシェル構
造物の補剛部材配置設計方法では、あらかじめ、補剛部
材のない単層ラチスシェル構造物と、補剛部材との座屈
耐力分担を明確にすることにより、補剛部材の配設位置
の選定を迅速に行うことができる。
In the stiffening member arrangement design method for a single-layer lattice shell structure according to the fourth aspect of the present invention, the sharing of buckling strength between the single-layer lattice shell structure without the stiffening member and the stiffening member is clarified in advance. By doing so, the placement position of the stiffening member can be quickly selected.

【図面の簡単な説明】[Brief description of drawings]

【図1】周辺ピン支持モデルの座屈モードの比較図であ
る。
FIG. 1 is a comparison diagram of buckling modes of peripheral pin support models.

【図2】周辺キール支持モデルの座屈モードの比較図で
ある。
FIG. 2 is a comparison diagram of buckling modes of a peripheral keel support model.

【図3】面内変形率の評価についての説明図である。FIG. 3 is an explanatory diagram of evaluation of in-plane deformation rate.

【図4】グリッドに対する重み係数の与え方を例示して
説明する図である。
FIG. 4 is a diagram illustrating an example of how to give a weighting coefficient to a grid.

【図5】周辺ピン支持の場合のパーツ組み込みによるグ
リッド毎の座屈荷重の推移を説明する図である。
FIG. 5 is a diagram illustrating a transition of buckling load for each grid due to incorporation of parts in the case of supporting peripheral pins.

【図6】周辺ピン支持の場合のパーツ組み込みによるグ
リッド毎のκの推移を説明する図である。
FIG. 6 is a diagram for explaining transition of κ for each grid due to incorporation of parts in the case of supporting peripheral pins.

【図7】周辺キール支持の場合のパーツ組み込みによる
グリッド毎の座屈荷重の推移を説明する図である。
FIG. 7 is a diagram illustrating a transition of buckling load for each grid due to incorporation of parts in the case of supporting a peripheral keel.

【図8】周辺キール支持の場合のパーツ組み込みによる
グリッド毎のκの推移を説明する図である。
FIG. 8 is a diagram for explaining transition of κ for each grid due to incorporation of parts in the case of supporting a peripheral keel.

【図9】本発明の単層ラチスシェル構造物の補剛部材配
置設計方法の手順を示す設計フローチャートである。
FIG. 9 is a design flow chart showing the procedure of a stiffening member arrangement design method for a single-layer lattice shell structure according to the present invention.

【図10】周辺ピン支持の矩形平面単層ラチスEPシェ
ル構造物に対して好ましい箇所に補剛部材を組み付けた
一例を示す平面図である。
FIG. 10 is a plan view showing an example in which a stiffening member is attached to a preferable position for a rectangular flat single-layer lattice EP shell structure supporting peripheral pins.

【図11】周辺キール支持の矩形平面単層ラチスEPシ
ェル構造物に対して好ましい箇所に補剛部材を組み付け
た一例を示す平面図である。
FIG. 11 is a plan view showing an example in which a stiffening member is attached to a preferable position for a rectangular flat single-layer lattice EP shell structure supporting a peripheral keel.

【図12】図26中のa−a線部の矢視断面図である。FIG. 12 is a cross-sectional view taken along the line aa in FIG.

【図13】(a)、(b)は面内補剛の例を示す図であ
る。
13A and 13B are diagrams showing an example of in-plane stiffening.

【図14】面外補剛の一例を示す張力安定トラスの説明
図である。
FIG. 14 is an explanatory diagram of a tension stable truss showing an example of out-of-plane stiffening.

【図15】(a)〜(d)はパーツの組立工程を示す説
明図である。
15A to 15D are explanatory views showing a process of assembling parts.

【図16】単層ラチスシェルに対する張力安定トラスの
具体的取付け構造例を示す説明図である。
FIG. 16 is an explanatory diagram showing a specific example of a structure for attaching a tension-stable truss to a single-layer lattice shell.

【符号の説明】[Explanation of symbols]

2 平面トラス 2a トラス主材 4,8 ケーブル 6 鋼板 10 ポスト 12 張力安定トラス(パーツ) 14 屋根膜 16 単層ラチスシェル構造物 18,20 ガセットプレート 2 plane truss 2a Truss main material 4,8 cable 6 steel plate 10 posts 12 Tension stable truss (parts) 14 roof membrane 16 Single-layer lattice shell structure 18,20 Gusset plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金山 敬 大阪府大阪市中央区北浜東4番33号 株式 会社大林組本店内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kei Kanayama             Osaka Prefecture Osaka City Chuo-ku Kitahama East 4-33 shares             Company Obayashi Head Office

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 補剛材のない場合の単層ラチスシェルに
おける各グリッドgの節点の面内変位Liと面外変位W
iとを算出し、 該面内変位Liから各グリッドの面内変形率γgを求め
ると共に面外変位Wiから各グリッドの面外変形率ψg
を求め、 該面内変形率γgと面外変形率ψgとに対する重み係数
wi,woを各グリッドの拘束度に応じてそれぞれ定め
て、上記面内変形率γg、面外変形率ψg、重み係数w
i、および重み係数woのうちの全部、もしくはこれら
のうち選ばれたいくつかの数値の関数である評価係数κ
を各グリッド毎に算出し、 該評価係数κにより面内補剛部材を配置することで座屈
荷重を増大せしめるとみなせるグリッドをいくつか選択
し、それらを最短距離で結んだ線に沿って位置するグリ
ッドを面内補剛対象に選定して、任意の補剛部材配置パ
ターンを案出し、 当該補剛部材配置パターンについて
のハイブリッド単層ラチスシェルの座屈解析をして、該
補剛部材配置パターンでの座屈荷重が所要の座屈荷重を
満たすまで、上記補剛部材配置パターンの案出を繰り返
して行い、該所要の座屈荷重を満たす補剛部材配置パタ
ーンで面内補剛部材を設ける、ことを特徴とする単層ラ
チスシェル構造物の補剛部材配置設計方法。
1. An in-plane displacement Li and an out-of-plane displacement W of a node of each grid g in a single-layer lattice shell without a stiffener.
i and the in-plane deformation rate γg of each grid from the in-plane displacement Li, and the out-of-plane deformation rate ψg of each grid from the out-of-plane displacement Wi.
Then, the weighting factors wi and wo for the in-plane deformation rate γg and the out-of-plane deformation rate ψg are determined according to the degree of constraint of each grid, and the in-plane deformation rate γg, the out-of-plane deformation rate ψg, and the weighting coefficient are determined. w
i and all of the weighting factors wo, or an evaluation coefficient κ that is a function of some numerical values selected from these
For each grid, select some grids that can be considered to increase the buckling load by arranging in-plane stiffening members with the evaluation coefficient κ, and position them along the line connecting them with the shortest distance. A grid to be stiffened is selected as an in-plane stiffening target, an arbitrary stiffening member arrangement pattern is devised, buckling analysis of the hybrid single-layer lattice shell for the stiffening member arrangement pattern is performed, and the stiffening member arrangement pattern is selected. The stiffening member arrangement pattern is repeatedly devised until the buckling load in step S4 satisfies the required buckling load, and the in-plane stiffening member is provided in the stiffening member arrangement pattern satisfying the required buckling load. A design method for stiffening members of a single-layer lattice shell structure, characterized by the above.
【請求項2】 前記評価係数κが、 κ={(wi・γg)+(wo・ψg)1/2 である、 ことを特徴とする請求項1に記載の単層ラチスシェル構
造物の補剛部材配置設計方法。
2. The single-layer lattice shell structure according to claim 1, wherein the evaluation coefficient κ is κ = {(wi · γg) 2 + (wo · ψg) 2 } 1/2 . Stiffening member layout design method.
【請求項3】 前記評価係数κが、 κ=wi・γg である、 ことを特徴とする請求項1に記載の単層ラチスシェル構
造物の補剛部材配置設計方法。
3. The stiffening member arrangement design method for a single-layer lattice shell structure according to claim 1, wherein the evaluation coefficient κ is κ = wi · γg.
【請求項4】 あらかじめ、補剛部材を組み込んだ場合
の単層ラチスシェル構造物の座屈荷重と、補剛部材のな
い場合の同じ単層ラチスシェル構造物の座屈荷重との
比、すなわち、補剛性能指数βを定義し、単層ラチスシ
ェル構造物の設計にあたり、βの具体的数値を決定し、
一方、任意の補剛部材配置パターンを案出し、各補剛部
材配置パターンについての単層ラチスシェルの座屈荷重
を計算し、上記βの具体的数値を満たすかどうかにより
採用するかしないかを判断し、該βの具体的数値を満た
すまで、補剛部材配置パターンの案出を繰り返す、 ことを特徴とする単層ラチスシェル構造物の補剛部材配
置設計方法。
4. The ratio of the buckling load of a single-layer lattice shell structure when a stiffening member is incorporated in advance to the buckling load of the same single-layer lattice shell structure without a stiffening member, that is, Define the stiffness index β, determine the specific value of β when designing the single-layer lattice shell structure,
On the other hand, devise an arbitrary stiffening member arrangement pattern, calculate the buckling load of the single-layer lattice shell for each stiffening member arrangement pattern, and judge whether to adopt it depending on whether the specific value of β above is satisfied Then, the stiffening member arrangement pattern is repeatedly devised until the specific value of β is satisfied, wherein the stiffening member arrangement design method for a single-layer lattice shell structure is characterized.
JP2003028868A 2003-02-05 2003-02-05 Stiffening member layout design method for single-layer lattice shell structure Pending JP2003239388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003028868A JP2003239388A (en) 2003-02-05 2003-02-05 Stiffening member layout design method for single-layer lattice shell structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003028868A JP2003239388A (en) 2003-02-05 2003-02-05 Stiffening member layout design method for single-layer lattice shell structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP29750598A Division JP3444799B2 (en) 1998-09-11 1998-09-11 Rectangular planar hybrid single layer lattice EP shell structure

Publications (1)

Publication Number Publication Date
JP2003239388A true JP2003239388A (en) 2003-08-27

Family

ID=27785769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003028868A Pending JP2003239388A (en) 2003-02-05 2003-02-05 Stiffening member layout design method for single-layer lattice shell structure

Country Status (1)

Country Link
JP (1) JP2003239388A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117350160A (en) * 2023-10-18 2024-01-05 河海大学 Single-layer reticulated shell member replacement optimal sequence determining method based on deep learning

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117350160A (en) * 2023-10-18 2024-01-05 河海大学 Single-layer reticulated shell member replacement optimal sequence determining method based on deep learning
CN117350160B (en) * 2023-10-18 2024-04-26 河海大学 Single-layer reticulated shell member replacement optimal sequence determining method based on deep learning

Similar Documents

Publication Publication Date Title
KR101714018B1 (en) Composite corrugated deck unified inverted triangle truss and distributing bar
US7143550B1 (en) Double network reticulated frame structure
KR100882341B1 (en) Manufacturing method of compositebeam with reinforced steel beam for stiffness and rhmen bridge manufacturing method using compositebeam with reinforced steel beam
Timler et al. Experimental and analytical studies of steel plate shear walls as applied to the design of tall buildings
Hoenderkamp et al. Preliminary analysis of high-rise braced frames with facade riggers
JP2003239388A (en) Stiffening member layout design method for single-layer lattice shell structure
JP3444799B2 (en) Rectangular planar hybrid single layer lattice EP shell structure
JP4618805B2 (en) Reinforcement structure of multi-layer metal flat plate
CN115506228A (en) Steel-concrete combined pier bottom structure and construction method thereof
TWI678454B (en) Beam connection structure, design method of the beam connection structure, and manufacturing method of the beam connection structure
JP3474743B2 (en) Cross-shaped buckling restraint bracing members
JP2022111579A (en) Floor structure, design method of floor structure, and construction method of floor structure
Károlyfi et al. Architectural and structural design of free-form structures–Case Study
Diop et al. Degree of sophistication required for the dynamic modeling of a steel-aluminium hybrid bridge with extruded aluminium deck
JP2021075888A (en) Roof structure and roof construction method
CN109868725B (en) Bridge span assembly of hollow double-fold-line pedestrian bridge
KR20140045819A (en) Thermal prestressed girder for temporary structure using h-shaped steel member and method for manufacturing the same
KATO et al. Practical analysis methods for continuous girder and cable stayed bridges composed of beams with corrugated steel webs
JP4438637B2 (en) Structure design method of diagonal lattice braces and oblique lattice braces designed by the structure design method
Leemans et al. Design and construction of the ReciPlyDome, a lightweight modular reciprocal dome
Akbaba Stiffnes requirements of shear diaphragms used to brace steel I-beams
JPH05179708A (en) Construction of shell structure
BACIU et al. Effect of Different Bracing Systems on the Performance of Metallic Tower
Elgaaly Plate and box girders
JP2002227126A (en) Bridge and aseismatic strength reinforcing method for bridge

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040928