JP2000080348A - Method of treating silicon wafer polishing waste liquid and abrasive - Google Patents

Method of treating silicon wafer polishing waste liquid and abrasive

Info

Publication number
JP2000080348A
JP2000080348A JP10248897A JP24889798A JP2000080348A JP 2000080348 A JP2000080348 A JP 2000080348A JP 10248897 A JP10248897 A JP 10248897A JP 24889798 A JP24889798 A JP 24889798A JP 2000080348 A JP2000080348 A JP 2000080348A
Authority
JP
Japan
Prior art keywords
abrasive
component
waste liquid
silicon wafer
zrsio4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10248897A
Other languages
Japanese (ja)
Inventor
Takanori Ochiai
孝則 落合
Setsuo Tani
勢津夫 谷
Tsugunobu Shigenaga
次伸 重永
Noriyuki Motai
規至 馬渡
Hiromitsu Tagi
宏光 多木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIKURA BUSSAN KK
Original Assignee
MIKURA BUSSAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIKURA BUSSAN KK filed Critical MIKURA BUSSAN KK
Priority to JP10248897A priority Critical patent/JP2000080348A/en
Publication of JP2000080348A publication Critical patent/JP2000080348A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of effectively regenerating, with high purity, a used abrasive which is contained in a silicon wafer polishing waste liquid including melted Al2O3 and ZrSiO4 as major components and an abrasive regenerated thereby. SOLUTION: A silicon wafer polishing waste liquid is separated into a solid abrasive and a solution by means of a vacuum type drum filter 1 and the solid component including a mixture of Al2O3 and ZrSiO4 as major components is dispersed in water in a dispersing bath 2 to remove rough foreign matters by a screen 3. The solid component is then separated into the abrasive and silicon by a wet screen 5 which are again dispersed in water to remove iron by an iron removing apparatus 7 followed by being dryed by a drying apparatus 8 and the particle size's being adjusted by a vibrative screen 9 to give an inexpensive abrasive having reliable quality in a high yield.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶融Al2O3成
分とZrSiO4成分を主体とするシリコンウエハ研磨
廃液から使用済み研磨剤を再生する方法及び再生された
研磨剤に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating used abrasives from a silicon wafer polishing waste liquid mainly composed of a molten Al2O3 component and a ZrSiO4 component, and to a regenerated abrasive.

【0002】[0002]

【従来の技術】一般にシリコンウエハ研磨後の廃液は、
どろどろの固形分として研磨剤である溶融アルミナ(A
l2O3)及びジルコン(ZrSiO4)と、研磨機か
らの鉄(Fe)と、ウエハからの珪素(Si)が含まれ
ている。この廃液の処理としては、従来大型の沈降槽を
いくつも用いて固液分離し、上澄み液は濾過後再使用
し、固形分は廃棄処分していた。しかし、このような処
理では、有効資源の無駄であるばかりでなく環境保全上
にも問題があった。
2. Description of the Related Art Generally, waste liquid after polishing a silicon wafer is:
As a mushy solid, fused alumina (A
l2O3) and zircon (ZrSiO4), iron (Fe) from a polisher, and silicon (Si) from a wafer. In the treatment of this waste liquid, solid-liquid separation was conventionally performed using a number of large sedimentation tanks, the supernatant liquid was filtered and reused, and the solid content was discarded. However, such a process not only wastes effective resources but also has a problem in environmental conservation.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記の問題
点を解決するもので、溶融Al2O3成分とZrSiO
4成分の混合物を主体とする研磨剤でシリコンウエハ研
磨後の廃液を処理して研磨剤を高純度で効率的に再生す
る処理方法及び再生された研磨剤に関するものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and includes a molten Al2O3 component and ZrSiO
The present invention relates to a processing method for treating waste liquid after polishing a silicon wafer with an abrasive mainly composed of a mixture of four components to efficiently regenerate the abrasive with high purity, and a regenerated abrasive.

【0004】[0004]

【課題を解決するための手段】前記目的を達成するため
の本発明に係るシリコンウエハ研磨剤廃液の処理方法
は、溶融Al2O3成分とZrSiO4成分を主体とす
るシリコンウエハ研磨廃液を真空式ドラムフィルターで
研磨剤成分と溶液に固液分離し、前記溶融Al2O3成
分とZrSiO4成分の固形分を水に分散させ篩いによ
り粗い異物を除去し、その後、湿式分級機により研磨剤
と珪素に分離し、再度、固形分を水に分散させたのち、
磁力で鉄分を除去し、その後、乾燥して研磨剤を再生す
ることを特徴としている。
According to the present invention, there is provided a method for treating a silicon wafer polishing slurry waste liquid, comprising the steps of: using a vacuum drum filter to remove a silicon wafer polishing waste liquid mainly composed of a molten Al2O3 component and a ZrSiO4 component. Solid-liquid separation into an abrasive component and a solution, the solid content of the molten Al2O3 component and the ZrSiO4 component dispersed in water and coarse foreign substances removed by sieving, then separated into an abrasive and silicon by a wet classifier, and again After dispersing the solids in water,
It is characterized in that iron is removed by magnetic force and then dried to regenerate the abrasive.

【0005】この再生された研磨剤は、溶融アルミナ
(Al2O3)約60〜55%(以下重量%で示す)、
ジルコン(ZrSiO4) 約40〜45%、からな
り、そのままシリコンウエハ研磨工程で研磨剤として再
利用できる程度の純度を保持している。特にこれに溶融
アルミナ(Al2O3)成分、ジルコン(ZrSiO
4)成分を適宜加えて、任意の組成比率にすることによ
って広い範囲の研磨剤の用途が期待できる。
[0005] The regenerated abrasive contains about 60 to 55% (hereinafter referred to as% by weight) of fused alumina (Al2O3),
Zircon (ZrSiO4) is about 40 to 45%, and has such a purity that it can be reused as an abrasive in a silicon wafer polishing process. In particular, a molten alumina (Al2O3) component, zircon (ZrSiO)
4) A wide range of uses of the abrasive can be expected by appropriately adding the components and setting an arbitrary composition ratio.

【0006】[0006]

【発明の実施の形態】本発明の請求項1に記載の発明
は、溶融Al2O3成分とZrSiO4成分の混合物を
主体とするシリコンウエハ研磨廃液を真空式ドラムフィ
ルターで研磨剤成分と溶液に固液分離し、前記溶融Al
2O3成分とZrSiO4成分の混合物の固形分を水に
分散させ篩いにより粗い異物を除去し、その後、湿式分
級機により研磨剤と珪素に分離し、再度、固形分を水に
分散させたのち、磁力で鉄分を除去し、その後、乾燥し
て研磨剤を再生する工程を備えた構成から成るものであ
る。尚、真空式ドラムフィルターを用いることにより研
磨剤成分と溶液に固液分離することが可能であり、溶融
Al2O3成分とZrSiO4成分の混合物を主体とす
る研磨剤としての優れた作用効果をもつた原料粉末とな
る。次いで溶融Al2O3成分とZrSiO4成分の混
合物を主体とする固形分を水に分散させ篩を用いること
により粗い異物を除去する作用効果を有する。次いで、
湿式分級機を用いることにより研磨剤粉末と珪素成分に
分離する作用を有する。次いで再度、固形分を水に分散
させたのち、磁力で鉄分を除去し乾燥することにより、
純度の高い研磨剤の粉末を得る作用効果がある。
BEST MODE FOR CARRYING OUT THE INVENTION According to the first aspect of the present invention, a silicon wafer polishing waste liquid mainly composed of a mixture of a molten Al2O3 component and a ZrSiO4 component is solid-liquid separated into an abrasive component and a solution by a vacuum drum filter. And the molten Al
The solid content of the mixture of the 2O3 component and the ZrSiO4 component is dispersed in water, coarse foreign substances are removed by sieving, then the abrasive and silicon are separated by a wet classifier, and the solid content is again dispersed in water. To remove iron, and then dry to regenerate the abrasive. The use of a vacuum drum filter allows solid-liquid separation into an abrasive component and a solution, and a raw material having an excellent effect as an abrasive mainly composed of a mixture of a molten Al 2 O 3 component and a ZrSiO 4 component. It becomes a powder. Then, a solid content mainly composed of a mixture of the molten Al2O3 component and the ZrSiO4 component is dispersed in water, and the use of a sieve has an effect of removing coarse foreign substances. Then
Using a wet classifier has the effect of separating the abrasive powder and the silicon component. Then, after again dispersing the solid content in water, by removing iron by magnetic force and drying,
There is an effect of obtaining high-purity abrasive powder.

【0007】本発明の請求項2に記載の発明は、真空式
ドラムフィルターの濾材気孔径が3μm〜10μmの範
囲内にある構成から成るものである。尚、真空式ドラム
フィルターの濾材気孔径が3μm〜10μmの範囲内に
あることにより研磨剤廃液中の粒子径の異なる固形分を
正確に抽出する作用がある。尚、3μm未満においては
微粒子の粉末がフイルターの表面に付着し、濾材の機能
を著しく低下させるため好ましくない、また、10μm
以上においては微粒子の粉末が濾材の内部に堆積し、目
詰まりを発生させ、濾過速度を低下させるため好ましく
ない。
According to a second aspect of the present invention, the vacuum drum filter has a filter medium having a pore diameter in a range of 3 μm to 10 μm. When the pore size of the filter medium of the vacuum drum filter is in the range of 3 μm to 10 μm, the solid material having a different particle size in the abrasive waste liquid can be accurately extracted. If the particle size is less than 3 μm, it is not preferable because the fine particle powder adheres to the surface of the filter and significantly reduces the function of the filter medium.
The above is not preferable because the fine particle powder accumulates inside the filter medium, causing clogging and reducing the filtration speed.

【0008】本発明の請求項3に記載の発明は、再生さ
れた溶融Al2O3成分とZrSiO4成分の混合物の
研磨剤成分100に対して溶融Al2O3成分、ZrS
iO4成分の内、1種または2種の合計が1.0〜30.
0重量パ−セントの範囲内で添加混合処理を施こすこと
を備えた構成から成るものである。尚、前記添加成分を
範囲内の添加量で添加し混合処理を施すことによって広
い粒度範囲の研磨剤を得る良好な作用効果がある。添加
成分の動作として、溶融Al2O3成分の添加は、再生
された研磨剤の成分比率を要望する値に補正し粒度範囲
を広げ研磨効果を高める作用がある。ZrSiO4成分
の添加は再生された研磨剤の成分比率を要望する値に補
正し粒度範囲を広げ研磨効果を高める作用がある。尚、
1.0重量パ−セント未満では要望する研磨剤成分に補
正する効果が乏しく好ましくない。また、30.0重量
パ−セント以上では再生された安価な研磨剤が高価にな
る為好ましくない。
According to a third aspect of the present invention, there is provided a polishing composition comprising a mixture of a regenerated molten Al2O3 component and a ZrSiO4 component, and a molten Al2O3 component and a ZrS
Among the iO4 components, the total of one or two is 1.0 to 30.
It is configured to perform addition and mixing within the range of 0% by weight. It is to be noted that the addition of the above-mentioned additive components in an amount within the range and a mixing treatment have a good effect of obtaining an abrasive having a wide particle size range. As the operation of the additive component, the addition of the molten Al2O3 component has the effect of correcting the component ratio of the regenerated abrasive to a desired value, expanding the particle size range, and enhancing the polishing effect. The addition of the ZrSiO4 component has the effect of correcting the component ratio of the regenerated abrasive to a desired value, broadening the particle size range and enhancing the polishing effect. still,
If it is less than 1.0% by weight, the effect of correcting the desired abrasive component is poor, which is not preferable. On the other hand, if it is 30.0% by weight or more, an inexpensive regenerated abrasive becomes expensive, which is not preferable.

【0009】以下、本発明の実施の形態について図1、
図2、図3、図4、(表1)、(表2)、(表3)、
(表4)を用いて説明する。図1は本発明に係るシリコ
ンウエハ研磨廃液の処理方法を詳述する。 図1におい
て、シリコンウエハ研磨後の廃液(研磨廃液)は、通
常、水溶性の潤滑油と研磨剤としての溶融Al2O3成
分及びZrSiO4成分と、研磨機からの研磨屑の鉄分
と、シリコンウエハからの珪素と、その他の微量成分を
含むどろどろの液体である。本発明では、この研磨廃液
を真空式ドラムフィルター1で固液分離する。真空式ド
ラムフィルター1の濾材の平均気孔径は、表1に示すよ
うに廃液濃度によっても濾過率が異なるので一概に特定
できないが、環境基準からいえば濾液中の固形分の含量
が200ppmをこえると廃棄できなくなる。尚、表1
に示すように、例えば気孔径3μmの濾材では、廃液中
の固形分濃度が廃液原液の約2倍近辺で好適範囲の下限
となり、気孔径10μmの濾材では、廃液中の固形分濃
度が廃液原液の約1/3近辺で好適範囲の上限となる。
即ちフィルターの平均気孔径は、3μm〜10μmの範
囲内に有ることが研磨剤成分と溶液に分離でき作業性も
高まり実用的である。尚、分離した溶液はそのままシリ
コンウエハ研磨工程の研磨液として循環再使用すること
もできる。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
2, 3, 4, (Table 1), (Table 2), (Table 3),
This will be described using (Table 4). FIG. 1 illustrates a method for treating a silicon wafer polishing waste liquid according to the present invention. In FIG. 1, the waste liquid after polishing the silicon wafer (polishing waste liquid) is usually composed of a water-soluble lubricating oil, a molten Al2O3 component and a ZrSiO4 component as an abrasive, an iron component of polishing dust from a polishing machine, and a silicon wafer. A muddy liquid containing silicon and other trace components. In the present invention, this polishing waste liquid is solid-liquid separated by the vacuum drum filter 1. As shown in Table 1, the average pore diameter of the filter medium of the vacuum drum filter 1 cannot be specified unconditionally because the filtration rate varies depending on the concentration of the waste liquid. However, in terms of environmental standards, the solid content in the filtrate exceeds 200 ppm. And cannot be discarded. Table 1
As shown in, for example, in the case of a filter medium having a pore size of 3 μm, the solid content concentration in the waste liquid is about 2 times that of the undiluted waste liquid, and the lower limit of the suitable range is obtained. The upper limit of the preferred range is about 1/3 of the range.
That is, when the average pore diameter of the filter is in the range of 3 μm to 10 μm, the filter can be separated into the abrasive component and the solution, and the workability is enhanced, which is practical. The separated solution can be circulated and reused as a polishing liquid in the silicon wafer polishing step as it is.

【0010】次いで、固形分を分散槽2内で水と混合
し、撹拌し、希釈分散する。その後、篩3を用い粗い異
物を除去する。次いで 希釈された分散液は、ポンプ4
を介して湿式分級機5に掛け研磨剤成分と珪素成分に分
離する。これは、粒度分布が、平均粒径12μm程度で
ある研磨剤成分と、平均粒径が1μm以下である珪素と
を比重により分離することができる。分離された珪素は
水とともに抜き取られ排水処理機6へと送られる。次い
で、3500〜10000ガウス程度の磁力を有する永
久磁石を用いた除鉄機7に通し鉄分を除去する。
Next, the solid content is mixed with water in the dispersion tank 2, stirred and diluted and dispersed. Thereafter, coarse foreign substances are removed using the sieve 3. The diluted dispersion is then pump 4
Through a wet classifier 5 to separate into an abrasive component and a silicon component. This means that the abrasive component having a particle size distribution of about 12 μm and the silicon having an average particle diameter of 1 μm or less can be separated by specific gravity. The separated silicon is extracted together with the water and sent to the wastewater treatment device 6. Next, iron is removed through an iron removing machine 7 using a permanent magnet having a magnetic force of about 3500 to 10000 gauss.

【0011】その後、乾燥機8(スプレドライヤ−)を
用い温度200℃で乾燥し研磨剤粉末を得る。また、必
要に応じて研磨剤の粒度の分級として振動篩9を用い必
要な粒子径を持った再生研磨剤を得ることが出来る。そ
の成分は、アルミナ約55〜60% ジルコン約40〜
45%が含まれており、得られた研磨剤粉末は、シリコ
ンウエハ研磨剤としてそのまま再利用できる程度の純度
を有する。この再生されたアルミナ成分とジルコン成分
の混合研磨剤は、新しい研磨剤に比べなんら劣ることの
無い研磨剤である。
Thereafter, the slurry is dried at a temperature of 200 ° C. using a dryer 8 (spray dryer) to obtain an abrasive powder. If necessary, a regenerated abrasive having a required particle diameter can be obtained by using the vibrating sieve 9 as a classification of the particle size of the abrasive. The component is about 55-60% alumina, about 40- zircon.
45%, and the obtained abrasive powder has such a purity that it can be reused as a silicon wafer abrasive as it is. The mixed abrasive of the regenerated alumina component and zircon component is an abrasive which is not inferior to any new abrasive.

【0012】また、本発明において、廃液から再生され
た研磨剤は、そのまま各種セラミックの研磨剤として使
用することもできるが、必要に応じて範囲内の溶融Al
2O3成分、ZrSiO4成分を添加混合し各種の広い
粒度範囲をもった研磨剤としての利用もできる。
In the present invention, the abrasive regenerated from the waste liquid can be used as it is as an abrasive for various ceramics.
A 2O3 component and a ZrSiO4 component are added and mixed, and can be used as an abrasive having a wide range of various particle sizes.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【実施例1】次に、本発明の具体例を説明する。本実施
例におけるシリコンウエハ研磨廃液の処理方法について
説明する。まず、シリコンウエハ研磨後の廃液200リ
ットルを、真空式ドラムフィルター1として、商品名P
Cセパレータ(カネボウ製)を用い真空度は600〜6
40mmHg、濾材には平均気孔径2.0μm〜15.0
μmの範囲のものを使用し研磨剤成分と溶液に固液分離
した。尚、ドラム上に付着した固形分はスクレバーで掻
きとった。固形分は約13.8kg、含水率は約12%
で、色は灰色、平均粒径12.0μmであった。(濾液
はそのままシリコンウエハ研磨工程に循環し再使用する
ことも可能である)固液分離した固形分は分散槽2内
で、粘度を下げるため約100リットルの水を注入し希
釈分散した。その後、400メッシュのナイロン製の篩
3を用い粗い試料片等の異物を除去した。次いで、ポン
プ4を介して湿式分級機5として商品名スーパークリー
ン(村田工業製)に掛け研磨剤成分と珪素成分に分離し
た。尚、真空式ドラムフィルターの濾材の気孔径を変化
させた実験結果を表1に示した。表1より明らかな様
に、濾材において3.0μm〜10.0μmの平均気孔径
を持つ物が収率も良く非常に良好であった。特に5μm
の物が最も安定した品質を得られた。
Embodiment 1 Next, a specific example of the present invention will be described. A method for treating silicon wafer polishing waste liquid in this embodiment will be described. First, 200 liters of waste liquid after polishing a silicon wafer was used as a vacuum drum filter 1 under the trade name P
Vacuum degree is 600-6 using C separator (made by Kanebo)
40 mmHg, average pore size 2.0 μm to 15.0 for filter media
Solid-liquid separation was carried out into an abrasive component and a solution using a powder having a size in the range of μm. The solids adhering to the drum were scraped off with a screver. Solids content is about 13.8kg, moisture content is about 12%
The color was gray and the average particle size was 12.0 μm. (The filtrate can be circulated and reused as it is in the silicon wafer polishing step.) The solid separated from the solid and liquid was diluted and dispersed in the dispersion tank 2 by injecting about 100 liters of water to reduce the viscosity. Thereafter, foreign substances such as coarse sample pieces were removed by using a 400 mesh nylon sieve 3. Next, the mixture was subjected to a super classifier (trade name, manufactured by Murata Industry Co., Ltd.) as a wet classifier 5 via a pump 4 to separate an abrasive component and a silicon component. Table 1 shows the results of experiments in which the pore size of the filter medium of the vacuum drum filter was changed. As is clear from Table 1, the filter medium having an average pore diameter of 3.0 μm to 10.0 μm had a good yield and was very good. Especially 5 μm
The product obtained the most stable quality.

【0015】次いで、研磨剤に含まれている鉄成分の除
去として、商品名マグクリーン(カネテック製)の除鉄
機7で、磁力約3500ガウスの永久磁石を用いた除鉄
機に2回通し鉄分を除去したところ、鉄分約1.5kg
が除去された。(鉄分の除去率は約99.8%であっ
た) 次いで、研磨剤粉末の乾燥として乾燥機8、熱風循環式
スプレードライヤ(大川原製)で温度200℃で乾燥し
水分は1%以下の研磨剤を得た。尚、必要に応じて研磨
剤の精製として振動篩9(日陶科学製)を用い平均粒子
径12.7μmの試料を作製した。
Next, in order to remove the iron component contained in the abrasive, the iron is passed twice through an iron remover using a permanent magnet having a magnetic force of about 3500 gauss with an iron remover 7 (trade name: Magclean, manufactured by Kanetec). After removing iron, about 1.5kg of iron
Has been removed. (The removal rate of iron was about 99.8%.) Then, the abrasive powder was dried at a temperature of 200 ° C. using a dryer 8 and a hot air circulation type spray dryer (manufactured by Okawara) to dry the abrasive powder to 1% or less. Agent was obtained. In addition, a sample having an average particle diameter of 12.7 μm was prepared by using a vibrating sieve 9 (manufactured by Nitto Kagaku) as a polishing agent if necessary.

【0016】上記実施例で得られた再生研磨剤を、FP
法により定量分析した。分析機器は蛍光X線分析装置
(島津製作所製SXF−1200)を用いた。試料はア
ルミリングを用いて全圧300トンで加圧成型し蛍光X
線スペクトルを測定した。得られた蛍光X線スペクトル
に基づく主な検出元素のFP法による推定定量分析結果
を表2に示した。含有量は単純酸化物換算で示した。
The reclaimed abrasive obtained in the above example was replaced with FP
Quantitative analysis was performed by the method. An X-ray fluorescence analyzer (SXF-1200 manufactured by Shimadzu Corporation) was used as an analyzer. The sample is pressed with a total pressure of 300 tons using an aluminum ring and fluorescent X
The line spectrum was measured. Table 2 shows the estimated quantitative analysis results of the main detection elements by the FP method based on the obtained fluorescent X-ray spectrum. The content is shown in terms of simple oxide.

【0017】[0017]

【表2】 [Table 2]

【0018】また、X線回折、粒度分布、顕微鏡観測を
した。その結果としてX線回折を図2(a)に、粒度分
布を図3(a)に、また顕微鏡観察結果を図4(a)に
示した。尚、比較例として新しい未使用の研磨剤を対比
出来るよう図2(b)、図3(b)、図4(b)に示し
た。また、解析条件としては X線回折:(株)島津製
作所製X線回折装置XD−1を用い測定条件は下記のと
おりである。 X線管球 ターゲット :Cu 管電圧 :35 (kV) 管電流 :15 (mA) スリット 発散スリット :1 (deg) 空気散乱防止スリット :1 (deg) 検出スリット :0.30 (mm)
Further, X-ray diffraction, particle size distribution, and microscopic observation were performed. As a result, X-ray diffraction is shown in FIG. 2A, the particle size distribution is shown in FIG. 3A, and the result of microscopic observation is shown in FIG. As a comparative example, FIGS. 2 (b), 3 (b), and 4 (b) are shown so that a new unused abrasive can be compared. The analysis conditions were as follows: X-ray diffraction: X-ray diffractometer XD-1 manufactured by Shimadzu Corporation, and the measurement conditions were as follows. X-ray tube Target: Cu Tube voltage: 35 (kV) Tube current: 15 (mA) Slit Divergence slit: 1 (deg) Air scattering prevention slit: 1 (deg) Detection slit: 0.30 (mm)

【0019】粒度分布の測定:島津レーザ回折式粒度分
布測定装置(SALD−2000)を用い測定条件は下
記のとおりである。 サンプリング マニュアル 屈折率 3.00〜0.20i 測定回数 2 測定間隔(秒) 2 平均回数 64 測定吸光度範囲 (最大値)0.200,(最小値)0.
010
Measurement of particle size distribution: The measurement conditions were as follows using a Shimadzu laser diffraction type particle size distribution analyzer (SALD-2000). Sampling manual Refractive index 3.00 to 0.20i Number of measurements 2 Measurement interval (seconds) 2 Average number 64 Measurement absorbance range (maximum value) 0.200, (minimum value) 0.2
010

【0020】顕微鏡観測:オリンパス株式会社製顕微鏡
を用い倍率は×200であった。
Microscope observation: The magnification was × 200 using a microscope manufactured by Olympus Corporation.

【0021】表2から明らかなように定量分析の結果、
再生品研磨剤は新しい未使用研磨剤と比較して殆どかわ
りがなく高い純度を持った研磨剤であった。また、図
2、図3、図4から明らかなように再生品研磨剤は、新
しい未使用研磨剤と比較してX線回折、粒度分布、顕微
鏡観測結果の全てに於いて劣ることが無く、X線ピーク
パターンではコランダム結晶のアルミナとジルコンのビ
−クが明確に析出している。また、粒度分布、粒子形に
おいても、殆ど変わりのない状態を示しており、そのま
まウエハ研磨剤として十分に再使用できる特性を持った
研磨剤であった。
As is clear from Table 2, the results of the quantitative analysis
The recycled abrasive had almost no change as compared with a new unused abrasive, and had a high purity. Also, as is clear from FIGS. 2, 3 and 4, the reclaimed abrasive is not inferior in all of X-ray diffraction, particle size distribution, and microscopic observation results as compared with a new unused abrasive. In the X-ray peak pattern, a corundum crystal alumina and zircon beak is clearly precipitated. In addition, the particle size distribution and the particle shape showed almost no change, indicating that the abrasive had characteristics that could be sufficiently reused as a wafer abrasive as it was.

【0022】次いで、上記再生品研磨剤と新しい未使用
研磨剤を用い研磨テストを行った。テスト方法としては
研磨剤を水とラッピングオイルに懸濁させ、ラップ盤を
用いて被研磨物を研磨して性能テスト(研削速度、表面
粗さ、スクラッチ)を次の要領で実施しその結果を表3
に示した。
Next, a polishing test was carried out using the above-mentioned recycled abrasive and a new unused abrasive. As a test method, suspend the abrasive in water and wrapping oil, grind the object to be polished using a lapping machine, perform a performance test (grinding speed, surface roughness, scratch) in the following manner, and check the results. Table 3
It was shown to.

【0023】研削速度−被研磨物としてシリコンウエハ
を30枚用い、ラッピング機械として不二越社製マシン
を用い、3インチφのワ−クを加重100g/cm2
回転数60rpm、スラリ−注入量100ml/分で研
磨した。研磨用スラリ−の組成は、研磨剤600gに対
してラッピングオイル450ml、水2250mlであ
る。表面粗さ−上記被研磨物の研磨後のシリコンウエハ
を粗さ計(東京精密製)で測定した。スクラッチ−上記
被研磨物の研磨後のシリコンウエハを40倍の光学顕微
鏡を用い表面のスクラッチ状態を調べた。
Grinding speed--A 30 inch silicon wafer was used as the object to be polished, a machine made by Fujikoshi Co., Ltd. was used as a lapping machine, and a 3 inch φ work was weighted at 100 g / cm 2 .
Polishing was performed at a rotation speed of 60 rpm and a slurry injection amount of 100 ml / min. The composition of the polishing slurry is 450 g of lapping oil and 2250 ml of water with respect to 600 g of the abrasive. Surface roughness—The silicon wafer after polishing of the object to be polished was measured with a roughness meter (Tokyo Seimitsu). Scratch—The scratched surface of the silicon wafer after polishing of the object to be polished was examined using a 40 × optical microscope.

【0024】表3の結果より明らかなように再生品研磨
剤は新しい未使用研磨剤と比較して研削速度、表面粗
さ、スクラッチ等研磨性能において全く遜色の無いこと
が確認できた。
As is clear from the results shown in Table 3, it was confirmed that the reclaimed abrasive had no inferiority in the polishing performance such as the grinding speed, the surface roughness and the scratches as compared with the new unused abrasive.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【実施例2】実施例1で得られた溶融Al2O3成分と
ZrSiO4成分の混合物の再生品研磨剤(12μm平
均粒子径)成分に対して40μmの平均粒子径を持った
溶融Al2O3成分と40μmの平均粒子径を持ったZ
rSiO4成分の添加混合処理として再生した研磨剤1
0kgに対し、溶融Al2O3成分1kgとZrSiO
4成分5kgを加えボールミルで混合した。混合粉末の
粒度は12〜40μmであった。また、再生した研磨剤
10kgに対し、80μmの平均粒子径を持った溶融A
l2O3成分5kgを加えボールミルで混合した。混合
粉末の粒度は12〜80μmであった。尚、粒子径の異
なる溶融Al2O3成分またはZrSiO4成分を添加
混合することによつて研磨剤の粒度を自由に変化させる
ことが可能である。このようにして得た研磨剤の性能テ
スト(研削速度、表面粗さ、スクラッチ)を実施例1と
同じ要領で実施しその結果を表4に示した。表4の結果
より明らかなように再生品研磨剤に新しい溶融Al2O
3成分または、溶融Al2O3成分とZrSiO4成分
を添加混合したことによつて粒度の異なる広い範囲の研
磨剤が得られ研削速度、表面粗さ、スクラッチ等研磨性
能において十分使用が可能であることが確認できた。
Example 2 A regenerated product of a mixture of the molten Al2O3 component and the ZrSiO4 component obtained in Example 1 had an average of 40 μm and a molten Al2O3 component having an average particle size of 40 μm with respect to the abrasive (12 μm average particle size) component. Z with particle size
Abrasive 1 regenerated as addition and mixing treatment of rSiO4 component
0 kg, 1 kg of molten Al2O3 component and ZrSiO
5 kg of the four components were added and mixed with a ball mill. The particle size of the mixed powder was 12 to 40 µm. Also, for 10 kg of the regenerated abrasive, a molten A having an average particle diameter of 80 μm was used.
5 kg of 12O3 component was added and mixed with a ball mill. The particle size of the mixed powder was 12 to 80 μm. The particle size of the abrasive can be freely changed by adding and mixing a molten Al2O3 component or a ZrSiO4 component having different particle diameters. The performance test (grinding speed, surface roughness, scratch) of the abrasive thus obtained was carried out in the same manner as in Example 1, and the results are shown in Table 4. As is clear from the results shown in Table 4, a new molten Al2O
By adding and mixing the three components or the molten Al2O3 component and the ZrSiO4 component, a wide range of abrasives having different particle sizes can be obtained, and it has been confirmed that they can be sufficiently used in grinding speed, surface roughness, scratching and other polishing performance. did it.

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【発明の効果】以上から明らかなように本発明によれ
ば、溶融Al2O3成分とZrSiO4成分の混合物を
主体とするシリコンウエハ研磨廃液を真空式ドラムフィ
ルターで研磨剤成分と溶液に固液分離し、溶融Al2O
3成分とZrSiO4成分の混合物を主体とする固形分
を水に分散させ篩いにより粗い異物を除去し、その後、
湿式分級機により研磨剤と珪素に分離し、再度、固形分
を水に分散させたのち、磁力で鉄分を除去し、その後、
乾燥して研磨剤を再生するシリコンウエハ研磨廃液の処
理方法によれば、廃棄物から新しい安定した研磨剤を得
る作用を持った有効な効果がある。また、真空式ドラム
フィルターの濾材気孔径が3μm〜10μmの範囲内に
あることにより研磨剤廃液中の粒子径の異なる固形分を
正確に抽出する作用を持った効果がある。また、再生さ
れた溶融Al2O3成分とZrSiO4成分の混合物の
研磨剤成分に対して新しい溶融Al2O3成分又はZr
SiO4成分を範囲内で添加混合処理を施こすことによ
って粒度のコントロールが可能となり、広い用途範囲を
持った研磨剤を得る有効な効果がある。そして、得られ
た研磨剤は安価で安定した品質の研磨剤であるという効
果を有する。また、廃棄処理が必要な研磨剤廃棄物を大
幅に減少することが出来るため産業上多大な利点があ
り、環境保全技術としてもすぐれている、さらに廃棄物
処理に要するムダなコストを削減することも出来る。
As is apparent from the above, according to the present invention, a silicon wafer polishing waste liquid mainly composed of a mixture of a molten Al2O3 component and a ZrSiO4 component is solid-liquid separated into an abrasive component and a solution by a vacuum drum filter. Molten Al2O
A solid content mainly composed of a mixture of the three components and the ZrSiO4 component is dispersed in water, and coarse foreign substances are removed by sieving.
Abrasives and silicon were separated by a wet classifier, and again, after solids were dispersed in water, iron was removed by magnetic force.
According to the method for treating a silicon wafer polishing waste liquid by drying and regenerating an abrasive, there is an effective effect of obtaining a new stable abrasive from waste. Further, when the pore size of the filter medium of the vacuum drum filter is in the range of 3 μm to 10 μm, there is an effect that the solid content having a different particle size in the abrasive waste liquid is accurately extracted. Further, a new molten Al2O3 component or Zr is added to the abrasive component of the mixture of the regenerated molten Al2O3 component and the ZrSiO4 component.
By adding and mixing the SiO4 component within the range, the particle size can be controlled, and there is an effective effect of obtaining an abrasive having a wide application range. And the obtained abrasive has the effect of being an inexpensive and stable quality abrasive. In addition, there is a great industrial advantage because the amount of abrasive waste that needs to be disposed of can be significantly reduced, and it is also excellent as an environmental protection technology. Furthermore, it is possible to reduce wasteful costs required for waste disposal. Can also be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るウエハ研磨廃液の処理方法の一例
を示す工程図である。
FIG. 1 is a process chart showing an example of a method for treating a wafer polishing waste liquid according to the present invention.

【図2】再生品研磨剤のX線回折図(a)及び新しい未
使用研磨剤のX線回折図(b)
FIG. 2 is an X-ray diffraction diagram of a recycled abrasive (a) and a new unused abrasive (b)

【図3】再生品研磨剤の粒度分布図(a)及び新しい未
使用研磨剤の粒度分布図(b)
FIG. 3 is a particle size distribution diagram of a recycled abrasive (a) and a particle size distribution diagram of a new unused abrasive (b)

【図4】再生品研磨剤の顕微鏡写真(a)及び新しい未
使用研磨剤の顕微鏡写真(b)
FIG. 4 is a micrograph of a recycled abrasive (a) and a micrograph of a new unused abrasive (b).

【符号の説明】[Explanation of symbols]

1 真空式ドラムフィルター 2 分散槽 3 篩 4 ポンプ 5 湿式分級機 6 排水処理 7 除鉄機 8 乾燥機 9 振動篩 DESCRIPTION OF SYMBOLS 1 Vacuum type drum filter 2 Dispersion tank 3 Sieve 4 Pump 5 Wet classifier 6 Drainage treatment 7 Iron removal machine 8 Dryer 9 Vibrating sieve

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年3月3日(1999.3.3)[Submission date] March 3, 1999 (1999.3.3)

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0020】顕微鏡観測:オリンパス株式会社製顕微鏡
を用い倍率は×2000であった。
Microscope observation: The magnification was × 2000 using a microscope manufactured by Olympus Corporation.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Correction target item name] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0027】[0027]

【表4】 [Table 4]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 多木 宏光 宮崎県宮崎市大字島之内7078番地2 Fターム(参考) 3C047 AA18 AA27 GG13 4D071 AA06 AB70 BA03 DA20  ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hiromitsu Taki 7078 Shimanouchi, Oaza, Miyazaki-shi, Miyazaki F-term (reference) 3C047 AA18 AA27 GG13 4D071 AA06 AB70 BA03 DA20

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 溶融Al2O3成分とZrSiO4成分
の混合物を主体とするシリコンウエハ研磨廃液を真空式
ドラムフィルターで研磨剤成分と溶液に固液分離し、前
記溶融Al2O3成分とZrSiO4成分の混合物を主
体とする固形分を水に分散させ篩いにより粗い異物を除
去し、その後、湿式分級機により研磨剤と珪素に分離
し、再度、固形分を水に分散させたのち、磁力で鉄分を
除去し、その後、乾燥して研磨剤を再生することを特徴
とするシリコンウエハ研磨廃液の処理方法。
1. A silicon wafer polishing waste liquid mainly composed of a mixture of a molten Al2O3 component and a ZrSiO4 component is solid-liquid separated into an abrasive component and a solution by a vacuum drum filter, and the mixture of the molten Al2O3 component and a ZrSiO4 component is mainly formed. Solid matter to be dispersed in water to remove coarse foreign matter by sieving, then separated into abrasive and silicon by a wet classifier, again, after solid matter is dispersed in water, iron is removed by magnetic force, then A method for treating a silicon wafer polishing waste liquid, comprising drying and regenerating an abrasive.
【請求項2】 真空式ドラムフィルターの濾材気孔径が
3μm〜10μmの範囲内に有ることを特徴とする請求
項1記載のシリコンウエハ研磨廃液の処理方法。
2. The method according to claim 1, wherein the pore size of the filter medium of the vacuum drum filter is in the range of 3 μm to 10 μm.
【請求項3】 請求項1記載の方法によって再生された
溶融Al2O3成分とZrSiO4成分の混合物の研磨
剤成分100に対して溶融Al2O3成分、ZrSiO
4成分の内、1種または2種の合計が1.0〜30.0重
量パ−セントの範囲内で添加混合処理を施したことを特
徴とする研磨剤。
3. An abrasive component 100 of a mixture of a molten Al2O3 component and a ZrSiO4 component regenerated by the method according to claim 1, wherein the molten Al2O3 component is ZrSiO.
An abrasive characterized in that one or more of the four components are added and mixed within a range of 1.0 to 30.0 weight percent.
JP10248897A 1998-09-03 1998-09-03 Method of treating silicon wafer polishing waste liquid and abrasive Pending JP2000080348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10248897A JP2000080348A (en) 1998-09-03 1998-09-03 Method of treating silicon wafer polishing waste liquid and abrasive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10248897A JP2000080348A (en) 1998-09-03 1998-09-03 Method of treating silicon wafer polishing waste liquid and abrasive

Publications (1)

Publication Number Publication Date
JP2000080348A true JP2000080348A (en) 2000-03-21

Family

ID=17185071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10248897A Pending JP2000080348A (en) 1998-09-03 1998-09-03 Method of treating silicon wafer polishing waste liquid and abrasive

Country Status (1)

Country Link
JP (1) JP2000080348A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040407A1 (en) * 2000-11-17 2002-05-23 Metallkraft As Method for utilising a waste slurry from silicon wafer production
US6981544B2 (en) 2001-04-27 2006-01-03 Denso Corporation Air-conditioning apparatus including motor-driven compressor for idle stopping vehicles
CN109622212A (en) * 2019-01-08 2019-04-16 海南文盛新材料科技股份有限公司 A method of purification zircon sand is sorted by multi-stage combination process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040407A1 (en) * 2000-11-17 2002-05-23 Metallkraft As Method for utilising a waste slurry from silicon wafer production
US6981544B2 (en) 2001-04-27 2006-01-03 Denso Corporation Air-conditioning apparatus including motor-driven compressor for idle stopping vehicles
US7287583B2 (en) 2001-04-27 2007-10-30 Denso Corporation Air-conditioning apparatus including motor-driven compressor for idle stopping vehicles
CN109622212A (en) * 2019-01-08 2019-04-16 海南文盛新材料科技股份有限公司 A method of purification zircon sand is sorted by multi-stage combination process

Similar Documents

Publication Publication Date Title
CN102189489B (en) Method for recycling cerium oxide abrasive
KR101398904B1 (en) Cerium-based abrasive slurry regeneration method
WO2020145121A1 (en) Method for regenerating polishing agent, and polishing agent recycling treatment system
CN104114324B (en) Grinding-material renovation process
KR20130070541A (en) Method for recovery of cerium oxide
KR101450865B1 (en) Reproduction method of spent abrasives for polishing a glass panel for display
US20150210890A1 (en) Polishing-Material Reclamation Method
JP6107669B2 (en) Abrasive recycling method
JP2000254543A (en) Method for regeneration treatment of silicon carbide abrasive and abrasive
JP2000080348A (en) Method of treating silicon wafer polishing waste liquid and abrasive
US20150247062A1 (en) Polishing-Material Reclamation Method
JP2007073687A (en) Polishing method of semiconductor wafer
JP2013086204A (en) Method for reproducing cerium oxide-based abrasive slurry and reproduced cerium oxide-based abrasive slurry
JP2005313030A (en) Slurry regeneration method
JP3830619B2 (en) Method and apparatus for recycling recycling used composition of lapping machine
KR100370345B1 (en) A Reprocessing Device of Inorganic Abrasive Waste Water
KR20140036986A (en) Regenaration method of spent abrasives containing ceria
JP2010047443A (en) Silicon refining method, silicon refining apparatus and recycled abrasive grain
JP3560121B2 (en) Method for producing rare earth-based abrasive raw materials from waste abrasive
JP4449185B2 (en) Abrasive recovery method
JP2941749B2 (en) Method for treating wafer polishing waste liquid and sintered body mainly containing recovered abrasive
JP2002239906A (en) Method and device for recycling slurry of abrasive grain for lapping
JP6317984B2 (en) Method for producing regenerated cerium oxide abrasive particles
JP3072151U (en) Inorganic abrasive waste liquid regeneration processing equipment
WO2016147968A1 (en) Recovery method for abrasive