JP2000077912A - Connection structure of dielectric waveguide line - Google Patents

Connection structure of dielectric waveguide line

Info

Publication number
JP2000077912A
JP2000077912A JP24428898A JP24428898A JP2000077912A JP 2000077912 A JP2000077912 A JP 2000077912A JP 24428898 A JP24428898 A JP 24428898A JP 24428898 A JP24428898 A JP 24428898A JP 2000077912 A JP2000077912 A JP 2000077912A
Authority
JP
Japan
Prior art keywords
dielectric waveguide
waveguide line
dielectric
main conductor
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24428898A
Other languages
Japanese (ja)
Other versions
JP3522120B2 (en
Inventor
Takeshi Takenoshita
健 竹之下
Hiroshi Uchimura
弘志 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP24428898A priority Critical patent/JP3522120B2/en
Priority to FR9905188A priority patent/FR2778024B1/en
Priority to DE19918567A priority patent/DE19918567C2/en
Priority to US09/298,399 priority patent/US6515562B1/en
Publication of JP2000077912A publication Critical patent/JP2000077912A/en
Application granted granted Critical
Publication of JP3522120B2 publication Critical patent/JP3522120B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/121Hollow waveguides integrated in a substrate

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Waveguides (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a connection structure having an excellent transmission characteristic about a structure which orthogonally crosses and connects laminated dielectric waveguide lines capable of being formed in a dielectric substrate. SOLUTION: In these dielectric waveguide lines 6A and 6B consisting of a pair of main conductor layers 2 and 3 inserting a dielectric substrate 1 between them, two lines of penetration conductors groups 4 for side walls formed by connecting the main conductor layers 2 and 3 with less than 1/2 signal wavelength repeated interval in the transmission direction of a high frequency signal and with prescribed width and sub-conductor layers 5 formed in parallel with the layers 2 and 3 and connected with the groups 4, one of the layers 2 and 3 is overlapped and arranged so as to orthogonally cross the transmission directions of the high frequency signals and also a window 7 for connection is formed on the layers 2 and 3 of the overlapped parts. This makes a connection structure with an excellent transmission characteristic which has small transmission loss.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はマイクロ波帯やミリ
波帯等の高周波信号を伝達するための誘電体導波管線路
の接続構造に関し、特に、直交する2つの誘電体導波管
線路を接続して成る誘電体導波管線路の接続構造に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connection structure of a dielectric waveguide line for transmitting a high-frequency signal in a microwave band, a millimeter wave band or the like, and more particularly, to a structure for connecting two orthogonal dielectric waveguide lines. The present invention relates to a connection structure for connecting dielectric waveguide lines.

【0002】[0002]

【従来の技術】近年、マイクロ波帯やミリ波帯等の高周
波信号を用いた移動体通信および車間レーダ等の研究が
盛んに進められている。これらの高周波回路において高
周波信号を伝送するための伝送線路には小型で伝送損失
が小さいことが求められている。特に、高周波回路を構
成する基板上または基板内に形成できると小型化の面で
有利となることから、従来、そのような伝送線路として
ストリップ線路やマイクロストリップ線路・コプレーナ
線路・誘電体導波管線路等が用いられてきた。
2. Description of the Related Art In recent years, researches on mobile communication and inter-vehicle radar using a high frequency signal in a microwave band, a millimeter wave band or the like have been actively conducted. In these high-frequency circuits, transmission lines for transmitting high-frequency signals are required to be small and have small transmission loss. In particular, since it is advantageous in terms of miniaturization if it can be formed on or in a substrate constituting a high-frequency circuit, conventionally, such a transmission line is a strip line, a microstrip line, a coplanar line, or a dielectric waveguide. Tracks and the like have been used.

【0003】これらのうちストリップ線路・マイクロス
トリップ線路・コプレーナ線路は誘電体基板と線路導体
層とグランド(接地)導体層とで構成されており、線路
導体層とグランド導体層の周囲の空間および誘電体基板
中を高周波信号の電磁波が伝播するものである。これら
の線路は30GHz帯域までの信号伝送に対しては問題な
いが、30GHz以上では伝送損失が生じやすいという問
題点がある。
[0003] Of these, strip lines, microstrip lines, and coplanar lines are composed of a dielectric substrate, a line conductor layer, and a ground (ground) conductor layer. An electromagnetic wave of a high-frequency signal propagates through the body substrate. These lines have no problem for signal transmission up to the 30 GHz band, but have a problem that transmission loss easily occurs at 30 GHz or higher.

【0004】これに対して導波管型の伝送線路は30GH
z以上のミリ波帯域においても伝送損失が小さい点で有
利である。このような導波管の優れた伝送特性を活かし
た、誘電体多層基板内に形成可能な伝送線路として、誘
電体導波管線路が提案されている。
On the other hand, the transmission line of the waveguide type is 30 GHz.
This is advantageous in that the transmission loss is small even in the millimeter wave band of z or more. A dielectric waveguide line has been proposed as a transmission line that can be formed in a dielectric multilayer substrate, utilizing the excellent transmission characteristics of such a waveguide.

【0005】例えば、特開平6−53711 号公報におい
て、誘電体基板を一対の主導体層で挟み、さらに主導体
層間を接続する2列に配設された複数のビアホールによ
って側壁を形成した導波管線路が提案されている。この
導波管線路は誘電体材料の四方を一対の主導体層とビア
ホールによる疑似的な導体壁で囲むことによって導体壁
内の領域を信号伝送用の線路としたものである。このよ
うな構成によれば、構成がいたって簡単となって装置全
体の小型化も図り得るというものである。
For example, in Japanese Patent Application Laid-Open No. 6-53711, a waveguide in which a dielectric substrate is sandwiched between a pair of main conductor layers, and a side wall is formed by a plurality of via holes arranged in two rows connecting the main conductor layers. Pipe lines have been proposed. In this waveguide line, a region in the conductor wall is used as a signal transmission line by surrounding four sides of a dielectric material with a pseudo conductor wall formed by a pair of main conductor layers and via holes. According to such a configuration, the configuration becomes very simple, and the overall size of the apparatus can be reduced.

【0006】さらに、本発明者は特願平8−229925号に
おいて誘電体基板中に形成した多層構造による誘電体導
波管線路を提案した。これは積層型導波管と呼ばれるも
のであり、前述のような誘電体導波管線路を誘電体層と
一対の主導体層と貫通導体群とで形成し、さらに貫通導
体群に加えて副導体層を形成することにより、電気的な
壁としての側壁を強化したものである。前述のような誘
電体導波管線路では導波管内に貫通導体に平行でない電
界が存在すると側壁から電界の漏れが発生するが、この
積層型導波管では副導体層があるためにこのような電界
の漏れが発生しない優れたものとなる。
Further, the present inventor has proposed a dielectric waveguide line having a multilayer structure formed in a dielectric substrate in Japanese Patent Application No. 8-229925. This is called a laminated waveguide, and the above-described dielectric waveguide line is formed by a dielectric layer, a pair of main conductor layers, and a group of through conductors. By forming the conductor layer, the side wall as an electric wall is reinforced. In the above-described dielectric waveguide line, when an electric field that is not parallel to the through conductor exists in the waveguide, electric field leakage occurs from the side wall. It is an excellent device that does not cause any significant electric field leakage.

【0007】[0007]

【発明が解決しようとする課題】一般に、伝送線路を用
いて高周波回路を構成する場合、特にアレイアンテナの
給電線等を形成する場合等には、伝送線路の配線回路に
おいて伝送線路同士を接続し、あるいは分岐を設けるこ
とが必要となる。
In general, when a high-frequency circuit is formed by using transmission lines, particularly when a feed line or the like of an array antenna is formed, the transmission lines are connected to each other in a wiring circuit of the transmission lines. Alternatively, it is necessary to provide a branch.

【0008】しかしながら、ストリップ線路やマイクロ
ストリップ線路・コプレーナ線路は線路導体層がグラン
ド導体層で完全に覆われていないため、伝送線路の途中
に分岐を設けるとその分岐から電磁波の放射が起こり、
伝送損失が大きくなるという問題点があった。
However, since the line conductor layer of the strip line, the microstrip line, and the coplanar line is not completely covered with the ground conductor layer, if a branch is provided in the middle of the transmission line, electromagnetic waves are emitted from the branch.
There is a problem that transmission loss increases.

【0009】また、誘電体導波管線路としては、例えば
誘電体線路を2枚のグランド導体板で挟持し、グランド
導体板間の誘電体線路以外の部分に空気が満たされた構
造のNRDガイドがある。これに分岐を設けるためには
屈曲した2本の線路を結合させて方向性結合器を形成す
る方法が用いられる。
[0009] Further, as the dielectric waveguide line, for example, an NRD guide having a structure in which a dielectric line is sandwiched between two ground conductor plates and a portion other than the dielectric line between the ground conductor plates is filled with air. There is. In order to provide a branch therefor, a method of forming a directional coupler by coupling two bent lines is used.

【0010】しかし、線路に屈曲部がある場合はその形
状によっては異なる伝播モードが発生して伝送損失が大
きくなることがあるため設計上の制約が大きいという問
題点があった。また、誘電体線路は通常フッ素樹脂等で
作製されているが、特に高周波領域で使用するものは線
路の寸法が小さくなるため、屈曲部等の加工が困難であ
り量産が難しいという問題点もあった。さらに、高周波
回路の配線として誘電体基板上または基板内に形成する
ことが困難であるという問題点もあった。
However, if the line has a bent portion, a different propagation mode may occur depending on the shape of the line, resulting in an increase in transmission loss. In addition, dielectric lines are usually made of fluororesin or the like, but those used in high-frequency regions have a problem that the dimensions of the line are small, so that it is difficult to process bent portions and the like and mass production is difficult. Was. Further, there is a problem that it is difficult to form a wiring for a high-frequency circuit on or in a dielectric substrate.

【0011】また、通常の導波管は金属の壁で囲まれた
空間を電磁波が伝播する構造となっており、誘電体によ
る損失がないため高周波での損失が小さく、分岐があっ
ても放射損失はないが、誘電体を利用した伝送線路と比
較して寸法が大きくなるという問題点があった。これに
対し、導波管内に比誘電率がεr の誘電体を充填した誘
電体導波管は通常の導波管の1/√εr の寸法で作製で
きるが、これも誘電体基板上または基板内に形成するこ
とが困難であるという問題点があった。
An ordinary waveguide has a structure in which an electromagnetic wave propagates in a space surrounded by a metal wall. Since there is no loss due to a dielectric, a loss at a high frequency is small, and even if there is a branch, radiation occurs. Although there is no loss, there is a problem that the size is larger than that of a transmission line using a dielectric. In contrast, although the dielectric constant in the waveguide can be produced at a size of 1 / √ε r of ε dielectric dielectric waveguide filled with the r normal waveguide, which is also a dielectric substrate Alternatively, there is a problem that it is difficult to form it in a substrate.

【0012】さらに、特開平6−53711 号公報に提案さ
れたような誘電体導波管線路において、その一対の導体
層と2列のビアホールによる疑似的な導体壁で囲まれた
信号伝送用の線路に単純に分岐を設けた場合は、電磁界
に乱れが生じるため伝送損失が大きくなるという問題点
があった。
Further, in a dielectric waveguide line proposed in Japanese Patent Application Laid-Open No. 6-53711, a signal transmission line surrounded by pseudo conductor walls formed by a pair of conductor layers and two rows of via holes. When a branch is simply provided in a line, there is a problem that a transmission loss increases due to disturbance of an electromagnetic field.

【0013】従って、誘電体基板内にアレイアンテナの
給電線等を形成するための分岐を設けた伝送線路の配線
回路を作製して高周波回路を構成するために、誘電体基
板内に形成でき、電磁波の放射が無く伝送損失が小さい
誘電体導波管線路の分岐構造が求められていた。
Therefore, in order to form a high-frequency circuit by forming a wiring circuit of a transmission line provided with a branch for forming a feed line or the like of an array antenna in the dielectric substrate, the wiring circuit can be formed in the dielectric substrate. There has been a demand for a branch structure of a dielectric waveguide line which does not emit electromagnetic waves and has a small transmission loss.

【0014】また、誘電体導波管線路は誘電体基板の平
面方向には自由に形成して配設できるが、小型化および
高集積化のためには上下に配置して形成された誘電体導
波管線路同士を容易に接続できる接続の実現が必要とな
る。
Although the dielectric waveguide line can be freely formed and disposed in the plane direction of the dielectric substrate, the dielectric waveguide line is formed vertically for miniaturization and high integration. It is necessary to realize a connection that can easily connect the waveguide lines.

【0015】本発明は上記事情に鑑みて案出されたもの
であり、その目的は、従来の多層化技術によって容易に
作製することのできる誘電体導波管線路において、誘電
体基板内に互いに直交するように上下に積層して形成さ
れた誘電体導波管線路同士を容易に接続することができ
る誘電体導波管線路の接続構造を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a dielectric waveguide line which can be easily manufactured by a conventional multilayering technique, in which a dielectric waveguide line is formed in a dielectric substrate. It is an object of the present invention to provide a connection structure of dielectric waveguide lines which can easily connect dielectric waveguide lines formed by being vertically stacked so as to be orthogonal to each other.

【0016】また、本発明の目的は、誘電体基板内に形
成でき、高周波信号の電磁波の放射・漏洩が無く、2つ
の誘電体導波管線路を交差させて結合することにより1
本の線路をT字状あるいは直交する3本の線路に伝送損
失が小さく良好な伝送特性で接続して分岐できる誘電体
導波管線路の接続構造を提供することにある。
Another object of the present invention is to form a dielectric substrate by crossing and coupling two dielectric waveguide lines without being radiated or leaked of electromagnetic waves of a high-frequency signal.
It is an object of the present invention to provide a connection structure for a dielectric waveguide line which can be connected to three T-shaped or orthogonal three lines with small transmission loss and good transmission characteristics and can be branched.

【0017】[0017]

【課題を解決するための手段】本発明者は、上記の問題
点に対して検討を重ねた結果、誘電体基板内において下
層側に形成された誘電体導波管線路の上側の主導体層の
一部と、それに直交するように上層側に形成された誘電
体導波管線路の下側の主導体層の一部とを共有するよう
に2つの誘電体導波管線路を上下に重ねて形成し、その
共有させた主導体層の一部に高周波信号の結合用窓を主
導体層の非形成部として設けることにより、上下の誘電
体導波管線路を電磁的に結合して接続できることを見出
した。
The present inventor has studied the above problems, and as a result, has found that the main conductor layer above the dielectric waveguide line formed on the lower layer side in the dielectric substrate. And two dielectric waveguide lines are stacked one on top of the other to share a part of the main conductor layer below the dielectric waveguide line formed on the upper layer side so as to be orthogonal to it. The upper and lower dielectric waveguide lines are electromagnetically coupled and connected by providing a window for coupling high-frequency signals as a non-formed portion of the main conductor layer in a part of the shared main conductor layer. I found what I could do.

【0018】この接続構造によれば、一方の誘電体導波
管線路より入力された高周波信号を、結合用窓を通して
直交する他方の出力側の誘電体導波管線路において同位
相で2方向に伝播させることができる。このように2つ
の導波管線路の間に設ける導体非形成部である結合用の
窓は、従来より導波管線路においてベーテ孔と呼ばれ、
分岐構造もしくは方向性結合器に利用されているものと
同様のものである。
According to this connection structure, the high-frequency signal input from one of the dielectric waveguide lines is transmitted through the coupling window in the two directions at the same phase in the other dielectric waveguide line on the other output side. Can be propagated. The coupling window, which is a conductor-free portion provided between two waveguide lines, is conventionally called a Bethe hole in a waveguide line,
This is the same as that used in a branch structure or a directional coupler.

【0019】また本発明者は、2つの誘電体導波管線路
の接続部における誘電体導波管線路の幅を広くするか厚
みを薄くすることにより、その部分をインピーダンスマ
ッチング用の整合部としてインピーダンスの不連続性に
よる高周波信号の反射を低減できることも見出した。
The present inventor has proposed that the width of the dielectric waveguide line at the connecting portion between the two dielectric waveguide lines is increased or reduced so that the portion is used as a matching portion for impedance matching. It has also been found that reflection of a high-frequency signal due to impedance discontinuity can be reduced.

【0020】本発明の誘電体導波管線路の接続構造は、
誘電体基板を挟持する一対の主導体層と、高周波信号の
伝送方向に信号波長の2分の1未満の繰り返し間隔で、
かつ前記伝送方向と直交する方向に所定の幅で前記主導
体層間を電気的に接続して形成された2列の側壁用貫通
導体群と、前記主導体層間に主導体層と平行に形成さ
れ、前記側壁用貫通導体群と電気的に接続された副導体
層とを具備して成り、前記主導体層、側壁用貫通導体群
および副導体層で囲まれた領域によって高周波信号を伝
送する誘電体導波管線路を2つ、前記高周波信号の伝送
方向が直交するように前記主導体層の一方を重ねて配置
するとともに、この重ねた部位の主導体層に結合用窓を
形成したことを特徴とするものである。
The connection structure of the dielectric waveguide of the present invention is as follows.
A pair of main conductor layers sandwiching the dielectric substrate, and a repetition interval of less than half the signal wavelength in the transmission direction of the high-frequency signal;
And two rows of side wall penetrating conductor groups formed by electrically connecting the main conductor layers with a predetermined width in a direction orthogonal to the transmission direction, and formed between the main conductor layers in parallel with the main conductor layers. A sub-conductor layer electrically connected to the side wall through conductor group, and a dielectric for transmitting a high frequency signal by a region surrounded by the main conductor layer, the side wall through conductor group and the sub conductor layer. Two body waveguide lines, one of the main conductor layers being overlapped so that the transmission direction of the high-frequency signal is orthogonal, and a coupling window formed in the main conductor layer in the overlapped portion. It is a feature.

【0021】また、本発明の誘電体導波管線路の接続構
造は、上記構成において、前記結合用窓の中心から前記
伝送方向に前記高周波信号の管内波長以下の位置に、そ
の誘電体導波管線路の伝送方向の直交方向に前記信号波
長の2分の1未満の間隔で前記主導体層間を電気的に接
続して形成された端面用貫通導体群と、前記主導体層間
に主導体層と平行に形成され、前記副導体層および前記
端面用貫通導体群と電気的に接続された端面用副導体層
とを形成したことを特徴とするものである。
Further, the connection structure of the dielectric waveguide line according to the present invention, in the above structure, is arranged such that the dielectric waveguide is located at a position not more than the guide wavelength of the high-frequency signal in the transmission direction from the center of the coupling window. A through conductor group for an end face formed by electrically connecting the main conductor layers at an interval of less than half the signal wavelength in a direction orthogonal to the transmission direction of the pipeline, and a main conductor layer between the main conductor layers And an end face sub-conductor layer electrically connected to the sub-conductor layer and the end face through conductor group.

【0022】さらに、本発明の誘電体導波管線路の接続
構造は、上記各構成において、前記誘電体導波管線路を
重ねた部位における誘電体導波管線路の前記2列の側壁
用貫通導体群の幅を前記所定の幅よりも広くしたことを
特徴とするものである。
Further, in the connection structure for a dielectric waveguide line according to the present invention, in each of the above-described structures, the two rows of side wall penetrations of the dielectric waveguide line at a portion where the dielectric waveguide lines are overlapped. The width of the conductor group is wider than the predetermined width.

【0023】また、本発明の誘電体導波管線路の接続構
造は、上記各構成において、前記誘電体導波管線路を重
ねた部位における誘電体導波管線路の前記一対の主導体
層の間隔を他の部位における間隔よりも狭くしたことを
特徴とするものである。
Further, the connection structure of the dielectric waveguide line according to the present invention, in each of the above-described structures, is a structure of the pair of main conductor layers of the dielectric waveguide line at a portion where the dielectric waveguide line is overlapped. The interval is narrower than the intervals at other parts.

【0024】本発明の誘電体導波管線路の接続構造によ
れば、第1の誘電体導波管線路とそれに直交するように
重ねて配置される第2の誘電体導波管線路とを設けて、
両者の重ねた部位の主導体層に結合用窓を導体非形成部
として設けたことから、2つの誘電体導波管線路は電磁
界で結合され、一方の誘電体導波管線路から入力された
高周波信号は結合用窓を介して他方の誘電体導波管線路
にも伝播する。他方の誘電体導波管線路において伝播で
きる方向が2つあるので、高周波信号はその2つの方向
に伝播して元の誘電体導波管線路の伝送方向と合わせて
3方向に分岐されることとなる。
According to the connection structure of the dielectric waveguide line of the present invention, the first dielectric waveguide line and the second dielectric waveguide line which are disposed so as to be orthogonal to each other are arranged. Provided,
Since the coupling window is provided as a conductor non-formed portion in the main conductor layer at the portion where both are overlapped, the two dielectric waveguide lines are coupled by an electromagnetic field, and input from one of the dielectric waveguide lines. The high frequency signal propagates to the other dielectric waveguide line via the coupling window. Since there are two directions that can be propagated in the other dielectric waveguide line, the high-frequency signal propagates in the two directions and is branched into three directions in accordance with the transmission direction of the original dielectric waveguide line. Becomes

【0025】また、本発明の誘電体導波管線路の接続構
造によれば、上記構成において、結合用窓の中心から所
定の位置に端面用貫通導体群と端面用副導体層とを形成
したことから、一方の誘電体導波管線路にそれらを形成
した場合にはT字状に高周波信号を分岐できるものとな
る。また、両方の誘電体導波管線路にそれらを形成した
場合にはL字状に高周波信号を伝播できるものとなる。
Further, according to the connection structure of the dielectric waveguide line of the present invention, in the above configuration, the end face through conductor group and the end face sub-conductor layer are formed at predetermined positions from the center of the coupling window. Therefore, when they are formed on one of the dielectric waveguide lines, a high-frequency signal can be branched in a T-shape. Further, when they are formed on both of the dielectric waveguide lines, a high-frequency signal can be propagated in an L-shape.

【0026】さらに、本発明の誘電体導波管線路の接続
構造によれば、上記各構成において、誘電体導波管線路
を重ねた部位における少なくとも一方の誘電体導波管線
路についてその幅すなわち伝送方向と直交する方向の側
壁用貫通導体群の幅を広げるか、またはその厚みを薄く
すなわち一対の主導体層の間隔を狭くすることにより、
接続部における誘電体導波管線路のインピーダンスの不
連続を小さくして高周波信号の反射や伝送損失の小さい
接続を実現することができる。このように幅を広げるこ
とおよび厚みを薄くすることは、両方の誘電体導波管線
路に適用しても、これらを組み合わせて適用してもよ
い。
Further, according to the connection structure of the dielectric waveguide lines of the present invention, in each of the above-described configurations, the width of at least one of the dielectric waveguide lines at the portion where the dielectric waveguide lines are overlapped, that is, the width, By increasing the width of the side wall penetrating conductor group in the direction orthogonal to the transmission direction, or by reducing its thickness, that is, by narrowing the interval between the pair of main conductor layers,
By reducing the discontinuity of the impedance of the dielectric waveguide line at the connection portion, it is possible to realize connection with low reflection and transmission loss of a high-frequency signal. Such widening and thinning may be applied to both dielectric waveguide lines, or may be applied in combination.

【0027】[0027]

【発明の実施の形態】以下、本発明の誘電体導波管線路
の接続構造について図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A connection structure of a dielectric waveguide according to the present invention will be described below with reference to the drawings.

【0028】図1は本発明に用いる誘電体導波管線路の
構成例を説明するための概略斜視図である。図1におい
て、1は誘電体基板、2および3は誘電体基板1を挟持
する一対の主導体層、4は信号伝送方向に信号波長の2
分の1未満の繰り返し間隔cで、かつ信号伝送方向と直
交する方向に所定の幅bで一対の主導体層2・3間を電
気的に接続するように形成された2列の側壁用貫通導体
群である。また、5は側壁用貫通導体群4の各列を形成
する貫通導体同士を電気的に接続する、主導体層2・3
と平行に形成された副導体層である。6はこれら一対の
主導体層2・3と側壁用貫通導体群4および副導体層5
により形成される誘電体導波管線路である。このように
一対の主導体層2・3と側壁用貫通導体群4とで囲まれ
た領域に対してさらに副導体層5を形成することによ
り、誘電体導波管線路6の内部から見るとその側壁は側
壁用貫通導体群4と副導体層5とによって細かな格子状
になり、様々な方向の電磁波が遮蔽される。
FIG. 1 is a schematic perspective view for explaining a configuration example of a dielectric waveguide line used in the present invention. In FIG. 1, reference numeral 1 denotes a dielectric substrate, 2 and 3 denote a pair of main conductor layers sandwiching the dielectric substrate 1, and 4 denotes a signal wavelength of 2 in the signal transmission direction.
Two rows of side wall penetrations formed so as to electrically connect between the pair of main conductor layers 2 and 3 with a repetition interval c of less than 1 and a predetermined width b in a direction perpendicular to the signal transmission direction. It is a conductor group. Reference numeral 5 denotes main conductor layers 2 and 3 for electrically connecting through conductors forming each column of the side wall through conductor group 4 to each other.
The sub-conductor layer is formed in parallel with the sub-conductor layer. 6 is a pair of the main conductor layers 2 and 3, the side wall through conductor group 4, and the sub conductor layer 5
Is a dielectric waveguide line formed by: By further forming the sub-conductor layer 5 in the region surrounded by the pair of main conductor layers 2 and 3 and the through-hole conductor group 4 for the side wall, when viewed from inside the dielectric waveguide line 6, The side walls are formed into a fine lattice shape by the side wall through conductor group 4 and the sub-conductor layer 5, so that electromagnetic waves in various directions are shielded.

【0029】図1に示すように、所定の厚みaの誘電体
基板1を挟持する位置に一対の主導体層2・3が形成さ
れており、主導体層2・3は誘電体基板1の少なくとも
伝送線路形成位置を挟む上下面に形成されている。ま
た、主導体層2・3間には主導体層2と3とを電気的に
接続するスルーホール導体やビアホール導体等の貫通導
体が多数設けられ、これら多数の貫通導体により2列の
側壁用貫通導体群4を形成している。
As shown in FIG. 1, a pair of main conductor layers 2 and 3 are formed at positions sandwiching a dielectric substrate 1 having a predetermined thickness a. It is formed on the upper and lower surfaces sandwiching at least the transmission line forming position. A large number of through conductors, such as through-hole conductors and via-hole conductors, for electrically connecting the main conductor layers 2 and 3 are provided between the main conductor layers 2 and 3, and these large number of through conductors form two rows of side walls. A through conductor group 4 is formed.

【0030】2列の貫通導体群4は、図示するように、
高周波信号の伝送方向すなわち線路形成方向に信号波長
の2分の1未満の所定の繰り返し間隔cで、かつ伝送方
向と直交する方向に所定の一定の間隔(幅)bをもって
形成されている。これにより、この誘電体導波管線路6
における電気的な側壁を形成している。
As shown, the two rows of through conductor groups 4
They are formed at a predetermined repetition interval c of less than half the signal wavelength in the transmission direction of the high-frequency signal, that is, the line forming direction, and at a predetermined constant interval (width) b in a direction orthogonal to the transmission direction. As a result, the dielectric waveguide line 6
Are formed.

【0031】ここで、誘電体基板1の厚みaすなわち一
対の主導体層2・3間の間隔に対する制限は特にない
が、シングルモードで用いる場合には間隔bに対して2
分の1程度または2倍程度とすることがよく、図1の例
では誘電体導波管線路6のH面に当たる部分が主導体層
2・3で、E面に当たる部分が側壁用貫通導体群4およ
び副導体層5でそれぞれ形成される。また、間隔bに対
して厚みaを2倍程度とすれば、誘電体導波管線路6の
E面に当たる部分が主導体層2・3で、H面に当たる部
分が側壁用貫通導体群4および副導体層5でそれぞれ形
成されることとなる。
Here, there is no particular limitation on the thickness a of the dielectric substrate 1, that is, the distance between the pair of main conductor layers 2 and 3.
In the example of FIG. 1, the portion corresponding to the H-plane of the dielectric waveguide line 6 is the main conductor layers 2 and 3, and the portion corresponding to the E-plane is the through-hole conductor group for the side wall. 4 and the sub-conductor layer 5. Further, if the thickness a is about twice as large as the interval b, the portion corresponding to the E surface of the dielectric waveguide line 6 is the main conductor layers 2 and 3, and the portion corresponding to the H surface is the side wall conductor group 4 and Each of the sub-conductor layers 5 is formed.

【0032】また、間隔cが信号波長の2分の1未満の
間隔に設定されることで側壁用貫通導体群4により電気
的な壁が形成できる。この間隔cは、望ましくは信号波
長の4分の1未満である。
Further, by setting the interval c to be less than half the signal wavelength, an electric wall can be formed by the side wall through conductor group 4. This spacing c is preferably less than one quarter of the signal wavelength.

【0033】平行に配置された一対の主導体層2・3間
にはTEM波が伝播できるため、側壁用貫通導体群4の
各列における貫通導体の間隔cが信号波長λの2分の1
(λ/2)よりも大きいと、この誘電体導波管線路6に
電磁波を給電しても電磁波は側壁用貫通導体群4の間か
ら漏れてしまい、ここで作られる疑似的な導波管線路に
沿って伝播しない。しかし、側壁用貫通導体群4の間隔
cがλ/2よりも小さいと、電気的な側壁を形成するこ
ととなって電磁波は誘電体導波管線路6に対して垂直方
向に伝播することができず、反射しながら誘電体導波管
線路6の信号伝送方向に伝播される。その結果、図1の
ような構成によれば、一対の主導体層2・3と2列の側
壁用貫通導体群4および副導体層5とによって囲まれる
断面積がa×bのサイズの領域が誘電体導波管線路6と
なる。
Since a TEM wave can propagate between the pair of main conductor layers 2 and 3 arranged in parallel, the distance c between the through conductors in each row of the group of side wall through conductors 4 is 2 of the signal wavelength λ.
If it is larger than (λ / 2), the electromagnetic wave leaks from between the side wall penetrating conductor groups 4 even if the electromagnetic wave is supplied to the dielectric waveguide line 6, and the pseudo waveguide formed here Does not propagate along the track. However, if the distance c between the side wall through conductor groups 4 is smaller than λ / 2, an electric side wall is formed, and the electromagnetic wave can propagate in a direction perpendicular to the dielectric waveguide line 6. It cannot be reflected and propagates in the signal transmission direction of the dielectric waveguide line 6 while being reflected. As a result, according to the configuration as shown in FIG. 1, the cross-sectional area surrounded by a pair of main conductor layers 2 and two rows of penetrating conductor groups 4 for side walls and sub-conductor layers 5 is a region of a × b size. Becomes the dielectric waveguide line 6.

【0034】図1に示した態様では側壁用貫通導体群4
は2列に形成したが、この側壁用貫通導体群4を4列あ
るいは6列に配設して、側壁用貫通導体群4による疑似
的な導体壁を2重・3重に形成することにより導体壁か
らの電磁波の漏れをより効果的に防止することもでき
る。
In the embodiment shown in FIG.
Are formed in two rows, but the through conductor groups 4 for side walls are arranged in four rows or six rows, and pseudo conductor walls by the through conductor groups 4 for side walls are formed in two or three layers. Leakage of electromagnetic waves from the conductor wall can be prevented more effectively.

【0035】このような誘電体導波管線路6によれば、
誘電体導波管による伝送線路となるので、誘電体基板1
の比誘電率をεr とするとその導波管サイズは通常の導
波管の1/√εr の大きさになる。従って、誘電体基板
1を構成する材料の比誘電率εr を大きいものとするほ
ど導波管サイズを小さくすることができて高周波回路の
小型化を図ることができ、高密度に配線が形成される多
層配線基板または半導体素子収納用パッケージあるいは
車間レーダの伝送線路としても利用可能な大きさの誘電
体導波管線路6とすることができる。
According to such a dielectric waveguide line 6,
Since the transmission line is formed by a dielectric waveguide, the dielectric substrate 1
Its waveguide size when the relative dielectric constant and epsilon r is the magnitude of 1 / √ε r of conventional waveguide. Therefore, it is possible to reduce the size of the high-frequency circuit can reduce the waveguide size enough to be larger the dielectric constant epsilon r of the material constituting the dielectric substrate 1, high-density wiring is formed The dielectric waveguide line 6 can also be used as a multilayer wiring board, a package for storing semiconductor elements, or a transmission line of an inter-vehicle radar.

【0036】なお、側壁用貫通導体群4を構成する貫通
導体は前述のように信号波長の2分の1未満の繰り返し
間隔cで配設されており、この間隔cは良好な伝送特性
を実現するためには一定の繰り返し間隔とすることが望
ましいが、信号波長の2分の1未満の間隔であれば、適
宜変化させたりいくつかの値を組み合わせたりしてもよ
い。
The through conductors forming the side wall through conductor group 4 are arranged at a repetition interval c of less than half the signal wavelength as described above, and this interval c realizes good transmission characteristics. In order to achieve this, it is desirable to set a constant repetition interval. However, if the interval is less than half the signal wavelength, the interval may be appropriately changed or some values may be combined.

【0037】このような誘電体導波管線路6を構成する
誘電体基板1としては、誘電体として機能し高周波信号
の伝送を妨げることのない特性を有するものであればと
りわけ限定するものではないが、伝送線路を形成する際
の精度および製造の容易性の点からは、誘電体基板1は
セラミックスから成ることが望ましい。
The dielectric substrate 1 constituting such a dielectric waveguide line 6 is not particularly limited as long as it functions as a dielectric and has characteristics that do not hinder transmission of a high-frequency signal. However, the dielectric substrate 1 is desirably made of ceramics from the viewpoint of accuracy in forming the transmission line and easiness of manufacturing.

【0038】このようなセラミックスとしてはこれまで
様々な比誘電率を持つセラミックスが知られているが、
本発明に係る誘電体導波管線路によって高周波信号を伝
送するためには常誘電体であることが望ましい。これ
は、一般に強誘電体セラミックスは高周波領域では誘電
損失が大きく伝送損失が大きくなるためである。従っ
て、誘電体基板1の比誘電率εr は4〜100 程度が適当
である。
As such ceramics, ceramics having various relative dielectric constants are known.
In order to transmit a high-frequency signal by the dielectric waveguide according to the present invention, it is preferable that the dielectric waveguide is a paraelectric. This is because ferroelectric ceramics generally have large dielectric loss and high transmission loss in a high frequency range. Therefore, the relative dielectric constant ε r of the dielectric substrate 1 is suitably about 4 to 100.

【0039】また、一般に多層配線基板や半導体素子収
納用パッケージあるいは車間レーダに形成される配線層
の線幅は最大でも1mm程度であることから、比誘電率
が100 の材料を用い、上部がH面すなわち磁界が上側の
面に平行に巻く電磁界分布になるように用いた場合は、
用いることのできる最小の周波数は15GHzと算出さ
れ、マイクロ波帯の領域でも利用可能となる。
Since the line width of a wiring layer formed on a multilayer wiring board, a package for housing semiconductor elements or an inter-vehicle radar is generally at most about 1 mm, a material having a relative dielectric constant of 100 is used, and When used so that the surface, that is, the magnetic field distribution is such that the magnetic field winds parallel to the upper surface,
The minimum frequency that can be used is calculated as 15 GHz, and can be used even in the microwave band.

【0040】一方、一般的に誘電体基板1として用いら
れる樹脂からなる誘電体は、比誘電率εr が2程度であ
るため、線幅が1mmの場合は約100 GHz以上でない
と利用することができないものとなる。
On the other hand, dielectric consisting of commonly resin used as the dielectric substrate 1, since the dielectric constant epsilon r of about 2, when the line width is 1mm to use and not about 100 GHz or higher Can not be done.

【0041】また、このような常誘電体セラミックスの
中にはアルミナやシリカ等のように誘電正接が非常に小
さなものが多いが、全ての常誘電体セラミックスが利用
可能であるわけではない。誘電体導波管線路の場合は導
体による損失はほとんどなく、信号伝送時の損失のほと
んどは誘電体による損失である。その誘電体による損失
α(dB/m)は次のように表わされる。 α=27.3×tanδ/〔λ/{1−(λ/λc )2
1/2 〕 式中、tanδ:誘電体の誘電正接 λ :誘電体中の波長 λc :遮断波長 規格化された矩形導波管(WRJシリーズ)形状に準ず
ると、上式中の{1−(λ/λc )2 1/2 は0.75程度
である。
Further, among such paraelectric ceramics, many have very small dielectric loss tangents, such as alumina and silica, but not all paraelectric ceramics can be used. In the case of a dielectric waveguide, there is almost no loss due to the conductor, and most of the loss during signal transmission is due to the dielectric. The loss α (dB / m) due to the dielectric is expressed as follows. α = 27.3 × tan δ / [λ / {1- (λ / λc) 2 }
1/2 ] where tan δ: dielectric loss tangent of the dielectric λ: wavelength in the dielectric λc: cut-off wavelength According to the standardized rectangular waveguide (WRJ series) shape, {1- ( λ / λc) 21/2 is about 0.75.

【0042】従って、実用に供し得る伝送損失である−
100 dB/m以下にするには、次の関係が成立するよう
に誘電体を選択することが必要である。 f×εr 1/2 ×tanδ≦0.8 式中、fは使用する高周波信号の周波数(GHz)であ
る。
Therefore, the transmission loss is practically usable.
In order to make it 100 dB / m or less, it is necessary to select a dielectric so that the following relationship is satisfied. f × ε r 1/2 × tan δ ≦ 0.8 In the equation, f is the frequency (GHz) of the high-frequency signal to be used.

【0043】このような誘電体基板1としては、例えば
アルミナセラミックスやガラスセラミックス・窒化アル
ミニウムセラミックス等がある。これらによる誘電体基
板1は、例えばセラミックス原料粉末に適当な有機溶剤
・溶媒を添加混合して泥漿状になすとともに、これを従
来周知のドクターブレード法やカレンダーロール法等を
採用してシート状となすことによって複数枚のセラミッ
クグリーンシートを得て、しかる後、これらセラミック
グリーンシートの各々に適当な打ち抜き加工を施すとと
もにこれらを積層し、アルミナセラミックスの場合は15
00〜1700℃、ガラスセラミックスの場合は850 〜1000
℃、窒化アルミニウムセラミックスの場合は1600〜1900
℃の温度で焼成することによって製作される。
Examples of such a dielectric substrate 1 include alumina ceramics, glass ceramics, and aluminum nitride ceramics. The dielectric substrate 1 is formed into a slurry by adding and mixing an appropriate organic solvent and a solvent to the ceramic raw material powder, for example, and forming the slurry into a sheet by employing a conventionally known doctor blade method, calender roll method, or the like. To obtain a plurality of ceramic green sheets. Thereafter, each of these ceramic green sheets is subjected to appropriate punching and laminated, and in the case of alumina ceramic, 15
00-1700 ° C, 850-1000 for glass ceramics
℃, 1600-1900 for aluminum nitride ceramics
It is manufactured by firing at a temperature of ° C.

【0044】また、一対の主導体層2・3は、例えば誘
電体基板1がアルミナセラミックスから成る場合には、
タングステン等の金属粉末に適当なアルミナ・シリカ・
マグネシア等の酸化物や有機溶剤・溶媒等を添加混合し
てペースト状にしたものを用いて厚膜印刷法により少な
くとも伝送線路を完全に覆うようにセラミックグリーン
シート上に印刷し、しかる後、約1600℃の高温で焼成
し、厚み10〜15μm以上となるようにして形成する。な
お、金属粉末としては、ガラスセラミックスの場合は銅
・金・銀が、窒化アルミニウムセラミックスの場合はタ
ングステン・モリブデンが好適である。また、主導体層
2・3の厚みは一般的に5〜50μm程度とされる。
The pair of main conductor layers 2 and 3 are formed, for example, when the dielectric substrate 1 is made of alumina ceramics.
Suitable for metal powder such as tungsten, alumina, silica,
An oxide such as magnesia, an organic solvent, a solvent, etc. are added and mixed to form a paste, which is then printed on a ceramic green sheet by a thick film printing method so as to completely cover at least the transmission line. It is formed by firing at a high temperature of 1600 ° C. to have a thickness of 10 to 15 μm or more. The metal powder is preferably copper, gold, and silver in the case of glass ceramics, and tungsten and molybdenum in the case of aluminum nitride ceramics. The thickness of the main conductor layers 2 and 3 is generally about 5 to 50 μm.

【0045】また、側壁用貫通導体群4を構成する貫通
導体は、例えばビアホール導体やスルーホール導体等に
より形成すればよい。その断面形状は製作が容易な円形
の他、矩形や菱形等の多角形であってもよい。これら貫
通導体は、例えばセラミックグリーンシートに打ち抜き
加工を施して作製した貫通孔に主導体層2・3と同様の
金属ペーストを埋め込み、しかる後、誘電体基板1と同
時に焼成して形成する。なお、貫通導体は直径50〜300
μmが適当である。次に、このような誘電体導波管線路
を用いた、本発明の誘電体導波管線路の接続構造の実施
の形態の一例を図2に示す。
The through conductor constituting the side wall through conductor group 4 may be formed of, for example, a via hole conductor or a through hole conductor. The cross-sectional shape may be a polygon, such as a rectangle or a rhombus, in addition to a circle which is easy to manufacture. These through conductors are formed, for example, by embedding a metal paste similar to that of the main conductor layers 2 and 3 in a through hole formed by punching a ceramic green sheet and then firing the same at the same time as the dielectric substrate 1. The through conductor has a diameter of 50 to 300
μm is appropriate. Next, FIG. 2 shows an example of an embodiment of a connection structure of a dielectric waveguide line of the present invention using such a dielectric waveguide line.

【0046】図2は一方の誘電体導波管線路の端部の上
に高周波信号の伝送方向が直交するように他方の誘電体
導波管線路を重ねて接続したものであり、図2(a)は
誘電体導波管線路を接続する前の状態を示す分解斜視
図、図2(b)は誘電体導波管線路を接続した状態を示
す斜視図、図2(c)は理解を容易にするために誘電体
導波管線路を輪郭で表示した状態の斜視図である。な
お、これらの図において図1と同様の箇所には同じ符号
を付してある。ただし、誘電体基板は表示を省略してあ
る。また、主導体層2の一部を破断して透視した状態で
示している。
FIG. 2 shows a state in which the other dielectric waveguide line is overlapped on the end of one dielectric waveguide line so that the transmission direction of the high-frequency signal is orthogonal, and FIG. FIG. 2A is an exploded perspective view showing a state before connecting a dielectric waveguide line, FIG. 2B is a perspective view showing a state connecting a dielectric waveguide line, and FIG. FIG. 5 is a perspective view of a state in which a dielectric waveguide line is indicated by an outline for facilitation. In these figures, the same parts as those in FIG. 1 are denoted by the same reference numerals. However, the display of the dielectric substrate is omitted. Also, a part of the main conductor layer 2 is shown in a cut-away and transparent state.

【0047】図2において2・3は一対の主導体層、4
は2列の側壁用貫通導体群、5は副導体層であり、6A
・6Bは誘電体導波管線路である。これら2つの誘電体
導波管線路6A・6Bは高周波信号の伝送方向が直交す
るように主導体層の一方を重ねて配置される。この例で
は、誘電体導波管線路6Aの上側の主導体層2と誘電体
導波管線路6Bの下側の主導体層3とを重ねて配置して
いる。そして、重ねて配置された部位の両者の主導体層
2および3には、導体層の非形成部として結合用窓7
(主導体層2・3中に斜線を施して示した)が設けられ
ている。
In FIG. 2, reference numerals 2 and 3 denote a pair of main conductor layers,
Is a through conductor group for side walls in two rows, 5 is a sub-conductor layer, and 6A
6B is a dielectric waveguide line. These two dielectric waveguide lines 6A and 6B are arranged so that one of the main conductor layers overlaps so that the transmission direction of the high-frequency signal is orthogonal. In this example, the main conductor layer 2 on the upper side of the dielectric waveguide line 6A and the main conductor layer 3 on the lower side of the dielectric waveguide line 6B are arranged so as to overlap each other. The main windows 2 and 3 of the overlapping portions are provided with coupling windows 7 as non-formed portions of the conductor layers.
(Shown by hatching in the main conductor layers 2 and 3).

【0048】ここで、誘電体導波管線路6Aの主導体層
2と誘電体導波管線路6Bの主導体層3とは、重ねた部
位において共有させておいてその共有させた主導体層に
結合用窓7を形成すると、接続部において高周波信号の
良好な伝送特性が得られる点で好ましいものとなる。
Here, the main conductor layer 2 of the dielectric waveguide line 6A and the main conductor layer 3 of the dielectric waveguide line 6B are shared in the overlapping portion, and the shared main conductor layer is used. The formation of the coupling window 7 is preferable in that good transmission characteristics of a high-frequency signal can be obtained at the connection portion.

【0049】また、この例では一方の誘電体導波管線路
6Aの端部に他方の誘電体導波管線路6Bを接続してお
り、誘電体導波管線路6Aには端面を形成するための端
面用貫通導体群8と端面用副導体層9とが形成されてい
る。端面用貫通導体群8は、誘電体導波管線路6Aの主
導体層2に設けた結合用窓7の中心から伝送方向に高周
波信号の管内波長以下の位置に、その誘電体導波管線路
6Aの伝送方向の直交方向に信号波長の2分の1未満の
繰り返し間隔で主導体層2・3間を電気的に接続して形
成されている。また、端面用副導体層9は、主導体層2
・3間に主導体層2・3と平行に形成され、副導体層5
および端面用貫通導体群8と電気的に接続されている。
In this example, one end of one dielectric waveguide line 6A is connected to the other dielectric waveguide line 6B, and an end face is formed in the dielectric waveguide line 6A. The end face through conductor group 8 and the end face sub-conductor layer 9 are formed. The end face through conductor group 8 is located at a position below the guide wavelength of the high frequency signal in the transmission direction from the center of the coupling window 7 provided in the main conductor layer 2 of the dielectric waveguide line 6A. The main conductor layers 2 and 3 are electrically connected at a repetition interval of less than half the signal wavelength in a direction orthogonal to the transmission direction of 6A. Further, the sub-conductor layer 9 for the end face is composed of the main conductor layer 2.
3 is formed in parallel with the main conductor layers 2 and 3 and the sub conductor layer 5
And it is electrically connected with the through conductor group 8 for end faces.

【0050】このように2つの誘電体導波管線路6A・
6Bを直交させ互いの主導体層2・3の一方を重ねて上
下に配置し、この重ねた部位の主導体層2・3に結合用
窓7を形成することにより、2つの誘電体導波管線路6
A・6Bは結合用窓7を介して電磁界で結合される。そ
して、この例ではT字状の誘電体導波管線路の分岐構造
を構成することとなり、誘電体導波管線路6Aのポート
10から入力された高周波信号は結合用窓7を介して誘電
体導波管線路6Bに伝播するとともにその2つの方向に
同位相で分岐され、それぞれポート11・12へ出力され
る。
As described above, the two dielectric waveguide lines 6A
6B are perpendicular to each other, one of the main conductor layers 2 and 3 is overlapped and arranged one above the other, and a coupling window 7 is formed in the main conductor layers 2 and 3 at the overlapped portion to form two dielectric waveguides. Pipe line 6
A and 6B are coupled by an electromagnetic field through a coupling window 7. In this example, a branch structure of the T-shaped dielectric waveguide line is formed, and the port of the dielectric waveguide line 6A is formed.
The high-frequency signal input from 10 propagates through the coupling window 7 to the dielectric waveguide line 6B, branches in the two directions in the same phase, and is output to the ports 11 and 12, respectively.

【0051】なお、誘電体導波管線路6Aに端面用貫通
導体群8および端面用副導体層9を形成せず、誘電体導
波管線路6Aの途中と誘電体導波管線路6Bの途中とを
接続すれば十字状の誘電体導波管線路の分岐構造を構成
することとなる。この場合、誘電体導波管線路6Aのポ
ート10から入力された高周波信号は、誘電体導波管線路
6Aを伝送するものと、結合用窓7を介して誘電体導波
管線路6Bに伝播してその2つの方向に同位相で分岐さ
れてそれぞれポート11・12へ伝送されるものとに分かれ
ることとなり、1本の線路を直交する3本の線路に分岐
できる誘電体導波管線路の分岐構造となる。
The end face through conductor group 8 and the end face sub-conductor layer 9 are not formed on the dielectric waveguide line 6A, and the dielectric waveguide line 6A and the dielectric waveguide line 6B are not formed. Are connected to form a branch structure of a cross-shaped dielectric waveguide line. In this case, the high-frequency signal input from the port 10 of the dielectric waveguide 6A propagates to the dielectric waveguide 6B via the coupling window 7 and the transmission through the dielectric waveguide 6A. Then, the two waveguides are branched into the same phase and transmitted to ports 11 and 12, respectively, so that one waveguide can be branched into three orthogonal waveguides. It has a branched structure.

【0052】このような本発明の誘電体導波管線路の接
続構造によれば、結合を給電ピンによって行なう従来の
導波管線路の接続構造の場合に比べて、誘電体基板1の
厚さによる特性の制限はない。また、誘電体基板1とな
るグリーンシートの積層前に2つの誘電体導波管線路6
A・6Bが重なる部位の主導体層2・3を印刷する際に
結合用窓7のパターンを形成できるので、生産性が高く
安価な製造が可能なものとなる。
According to such a connection structure of a dielectric waveguide line of the present invention, the thickness of the dielectric substrate 1 is smaller than that of a conventional connection structure of a waveguide line in which coupling is performed by a feed pin. There are no restrictions on characteristics due to Before the green sheets to be the dielectric substrate 1 are laminated, two dielectric waveguide lines 6 are stacked.
Since the pattern of the coupling window 7 can be formed when printing the main conductor layers 2 and 3 where the portions A and 6B overlap, high productivity and inexpensive manufacturing are possible.

【0053】また、本発明の誘電体導波管線路の接続構
造によれば、一方の誘電体導波管線路6Aを伝播してき
た電磁波エネルギーは結合用窓7によって他方の誘電体
導波管線路6Bの電磁波エネルギーと直接に結合するの
で、抵抗成分による発熱等のようなエネルギーロスが発
生することがなく、伝送損失が小さい良好な伝送特性の
接続構造となる。
Further, according to the connection structure of the dielectric waveguide line of the present invention, the electromagnetic wave energy propagating through one dielectric waveguide line 6A is transmitted through the coupling window 7 to the other dielectric waveguide line. Since it is directly coupled with the electromagnetic wave energy of 6B, energy loss such as heat generation due to the resistance component does not occur, and a connection structure having good transmission characteristics with small transmission loss is obtained.

【0054】本発明の誘電体導波管線路の接続構造にお
いて結合用窓7を形成する場合、その位置・形状および
大きさについては、接続構造に要求される周波数特性・
結合量および反射量が複雑に関与する。このため、要求
される周波数特性を満足するように電磁界解析により繰
り返し計算することによって、所望の接続特性を有する
結合用窓7の位置・形状および大きさ等が決定されるこ
ととなる。
When the coupling window 7 is formed in the connection structure of the dielectric waveguide line of the present invention, its position, shape and size are determined by the frequency characteristics required for the connection structure.
The amount of coupling and the amount of reflection are complicatedly involved. Therefore, the position, shape, size, and the like of the coupling window 7 having desired connection characteristics are determined by repeatedly performing calculations by electromagnetic field analysis so as to satisfy the required frequency characteristics.

【0055】また、本発明の誘電体導波管線路の接続構
造において、図2に示した誘電体導波管線路6Bのよう
に端面用貫通導体群8および端面用副導体層9を形成す
る場合、その位置は、要求された特性に応じて電磁界解
析により求めればよく、その特性が満足できればどこで
も良いが、結合用窓7の中心から管内波長以下の位置に
最適な位置がある。これは、端面の位置により結合用窓
7の中心における位相を調整するわけであるが、その位
相は管内波長λg毎に繰り返されるためである。
In the connection structure of the dielectric waveguide of the present invention, the through conductor group 8 for the end face and the sub-conductor layer 9 for the end face are formed like the dielectric waveguide 6B shown in FIG. In this case, the position may be obtained by electromagnetic field analysis according to the required characteristics. Any position may be used as long as the characteristics are satisfied. However, there is an optimum position from the center of the coupling window 7 to a position which is equal to or less than the guide wavelength. This is because the phase at the center of the coupling window 7 is adjusted according to the position of the end face, and the phase is repeated for each guide wavelength λg.

【0056】また、端面用貫通導体群8および端面用副
導体層9による誘電体導波管線路6Aの端部はその目的
に応じて形成すればよいものであって、前述のように、
必ずしも形成する必要はない。また、必要に応じて誘電
体導波管線路6Bにも形成してもよい。例えば、図2の
ように誘電体導波管線路6Aの端部を形成するとともに
誘電体導波管線路6Bにもそのポート11側に端面用貫通
導体群8および端面用副導体層9を形成して端部を形成
した場合には、誘電体導波管線路6Aのポート10側から
入力された電磁波は、結合用窓7を介して誘電体導波管
線路6Bに伝播し、誘電体導波管線路6Bのポート12側
から出力される。つまり、この場合には下層側の誘電体
導波管線路6Aと上層側の誘電体導波管線路6BとがL
字状に接続された接続構造となる。
The end of the dielectric waveguide line 6A formed by the end face through conductor group 8 and the end face sub-conductor layer 9 may be formed according to the purpose.
It is not always necessary to form them. Further, if necessary, it may be formed on the dielectric waveguide line 6B. For example, as shown in FIG. 2, the end portion of the dielectric waveguide line 6A is formed, and the through conductor group 8 for the end surface and the sub-conductor layer 9 for the end surface are also formed on the port 11 side of the dielectric waveguide line 6B. When the end is formed, the electromagnetic wave input from the port 10 side of the dielectric waveguide line 6A propagates through the coupling window 7 to the dielectric waveguide line 6B, It is output from the port 12 side of the waveguide 6B. In other words, in this case, the lower dielectric waveguide line 6A and the upper dielectric waveguide line 6B are L
It becomes a connection structure connected in a letter shape.

【0057】次に、図3に本発明の誘電体導波管線路の
接続構造の実施の形態の他の例を示す。
Next, FIG. 3 shows another embodiment of the connection structure of the dielectric waveguide line according to the present invention.

【0058】図3は、図2に示した例と同様の誘電体導
波管線路の接続構造において、接続部における下層側の
誘電体導波管線路の幅と結合用窓の幅とを広げたもので
あり、図3(a)は誘電体導波管線路を接続する前の状
態を示す分解斜視図、図3(b)は誘電体導波管線路を
接続した状態を示す斜視図、図3(c)は理解を容易に
するために誘電体導波管線路を輪郭で表示した状態の斜
視図である。なお、これらの図においても図1・図2と
同様の箇所には同じ符号を付してある。また、誘電体基
板は表示を省略してあり、主導体層2の一部を破断して
透視した状態で示している。
FIG. 3 shows a connection structure of a dielectric waveguide line similar to that shown in FIG. 2 in which the width of the lower dielectric waveguide line and the width of the coupling window in the connection portion are increased. FIG. 3A is an exploded perspective view showing a state before connecting a dielectric waveguide line, FIG. 3B is a perspective view showing a state connecting a dielectric waveguide line, FIG. 3C is a perspective view showing a state in which the dielectric waveguide line is represented by an outline for easy understanding. In these figures, the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals. In addition, the illustration of the dielectric substrate is omitted, and a part of the main conductor layer 2 is broken and shown in a see-through state.

【0059】図3において2・3は一対の主導体層、4
は2列の側壁用貫通導体群、5は副導体層であり、6A
・6Bは誘電体導波管線路である。これら2つの誘電体
導波管線路6A・6Bは高周波信号の伝送方向が直交す
るように主導体層の一方を重ねて配置される。この例で
は、誘電体導波管線路6Aの上側の主導体層2と誘電体
導波管線路6Bの下側の主導体層3とを重ねて配置して
いる。また、8は端面用貫通導体群、9は端面用副導体
層、10〜12はポートである。
In FIG. 3, reference numerals 2 and 3 denote a pair of main conductor layers,
Is a through conductor group for side walls in two rows, 5 is a sub-conductor layer, and 6A
6B is a dielectric waveguide line. These two dielectric waveguide lines 6A and 6B are arranged so that one of the main conductor layers overlaps so that the transmission direction of the high-frequency signal is orthogonal. In this example, the main conductor layer 2 on the upper side of the dielectric waveguide line 6A and the main conductor layer 3 on the lower side of the dielectric waveguide line 6B are arranged so as to overlap each other. Reference numeral 8 denotes a through conductor group for an end face, 9 denotes a sub-conductor layer for an end face, and 10 to 12 denote ports.

【0060】この例では、誘電体導波管線路6A・6B
を重ねた部位における下層側の誘電体導波管線路6Aの
2列の側壁用貫通導体群4の幅を前記所定の幅(図1に
示したb)よりも広くしてある。そして、重ねて配置さ
れた部位の両者の主導体層2および3には、導体層の非
形成部として結合用窓7(主導体層2・3中に斜線を施
して示した)が設けられている。この結合用窓7の幅、
ここでは誘電体導波管線路6Aの2列の側壁用貫通導体
群4の幅方向の開口寸法も、誘電体導波管線路6Aの2
列の側壁用貫通導体群4の幅に合わせるようにして広く
してある。
In this example, the dielectric waveguide lines 6A and 6B
The width of the through-hole conductor group 4 for the side walls in the two rows of the lower dielectric waveguide line 6A at the portion where the layers are overlapped is made larger than the predetermined width (b shown in FIG. 1). In both of the main conductor layers 2 and 3 which are arranged in an overlapping manner, a coupling window 7 (shown by hatching in the main conductor layers 2 and 3) is provided as a non-formed portion of the conductor layer. ing. The width of this coupling window 7,
Here, the opening dimension in the width direction of the two rows of through-hole conductor groups 4 for the side walls of the dielectric waveguide line 6A is also equal to the width of the dielectric waveguide line 6A.
The width is increased so as to match the width of the through conductor group 4 for the side wall of the row.

【0061】これにより2つの誘電体導波管線路6A・
6Bは結合用窓7を介して電磁界で結合されて接続され
る。そして、このように誘電体導波管線路6A・6Bの
接続部の幅、ここでは誘電体導波管線路6Aの2列の側
壁用貫通導体群4の幅方向の間隔と、結合用窓7の大き
さとを適切に変えることにより、誘電体導波管線路6A
・6Bの接続部での高周波信号の反射を低減でき、低損
失な接続構造が得られる。
As a result, the two dielectric waveguide lines 6A
6B are coupled and connected by an electromagnetic field via a coupling window 7. In this manner, the width of the connection portion of the dielectric waveguide lines 6A and 6B, in this case, the widthwise interval between the two rows of side wall through conductor groups 4 of the dielectric waveguide line 6A, and the coupling window 7 By appropriately changing the size of the dielectric waveguide line 6A
The reflection of high-frequency signals at the 6B connection portion can be reduced, and a low-loss connection structure can be obtained.

【0062】なお、このように誘電体導波管線路6A・
6Bを重ねた部位における2列の側壁用貫通導体群4の
幅を前記所定の幅bよりも広くする構成は、下層側の誘
電体導波管線路6Aでなく上層側の誘電体導波管線路6
Bに適用してもよく、両方の誘電体導波管線路6A・6
Bに適用してもよい。また、このように接続部において
2列の側壁用貫通導体群4の幅を前記所定の幅bよりも
広くする場合、その広くする幅はその所定の幅bの1〜
2倍の範囲で設定すればよい。
As described above, the dielectric waveguide line 6A
The configuration in which the width of the two rows of side wall through conductor groups 4 in the portion where the 6B is superimposed is wider than the predetermined width b is not the lower dielectric waveguide line 6A but the upper dielectric waveguide. Track 6
B may be applied to both dielectric waveguide lines 6A and 6A.
B may be applied. Further, when the width of the two rows of side wall through conductor groups 4 in the connecting portion is made wider than the predetermined width b, the width to be widened is 1 to 1 of the predetermined width b.
What is necessary is just to set in the range of 2 times.

【0063】次に、図4に本発明の誘電体導波管線路の
接続構造の実施の形態のさらに他の例を示す。
Next, FIG. 4 shows still another example of the embodiment of the connection structure of the dielectric waveguide lines according to the present invention.

【0064】図4は、図2に示した例と同様の誘電体導
波管線路の接続構造において、接続部における下層側の
誘電体導波管線路の厚みを薄くしたものであり、図4
(a)は誘電体導波管線路を接続する前の状態を示す分
解斜視図、図4(b)は誘電体導波管線路を接続した状
態を示す斜視図、図4(c)は理解を容易にするために
誘電体導波管線路を輪郭で表示した状態の斜視図であ
る。なお、これらの図においても図1〜図3と同様の箇
所には同じ符号を付してある。また、誘電体基板は表示
を省略してあり、主導体層2の一部を破断して透視した
状態で示している。
FIG. 4 shows a connection structure of a dielectric waveguide line similar to the example shown in FIG. 2 in which the thickness of the lower dielectric waveguide line at the connection portion is reduced.
4A is an exploded perspective view showing a state before connecting a dielectric waveguide line, FIG. 4B is a perspective view showing a state connecting a dielectric waveguide line, and FIG. FIG. 6 is a perspective view showing a state in which a dielectric waveguide line is displayed with an outline in order to facilitate the operation. In these figures, the same parts as those in FIGS. 1 to 3 are denoted by the same reference numerals. In addition, the illustration of the dielectric substrate is omitted, and a part of the main conductor layer 2 is broken and shown in a see-through state.

【0065】図4において2・3は一対の主導体層、4
は2列の側壁用貫通導体群、5は副導体層であり、6A
・6Bは誘電体導波管線路である。これら2つの誘電体
導波管線路6A・6Bは高周波信号の伝送方向が直交す
るように主導体層の一方を重ねて配置される。この例で
は、誘電体導波管線路6Aの上側の主導体層2と誘電体
導波管線路6Bの下側の主導体層3とを重ねて配置して
いる。また、7は結合用窓、8は端面用貫通導体群、9
は端面用副導体層、10〜12はポートである。
In FIG. 4, reference numerals 2 and 3 denote a pair of main conductor layers,
Is a through conductor group for side walls in two rows, 5 is a sub-conductor layer, and 6A
6B is a dielectric waveguide line. These two dielectric waveguide lines 6A and 6B are arranged so that one of the main conductor layers overlaps so that the transmission direction of the high-frequency signal is orthogonal. In this example, the main conductor layer 2 on the upper side of the dielectric waveguide line 6A and the main conductor layer 3 on the lower side of the dielectric waveguide line 6B are arranged so as to overlap each other. Reference numeral 7 denotes a coupling window, 8 denotes a through conductor group for an end face, 9
Is an end face sub-conductor layer, and 10 to 12 are ports.

【0066】この例では、誘電体導波管線路6A・6B
を重ねた部位における下層側の誘電体導波管線路6Aの
主導体層2を階段状に主導体層3側に近づけて形成する
ことにより、誘電体導波管線路6Aの厚みを薄く、すな
わち一対の主導体層2・3の間隔(誘電体導波管線路6
Aの主導体層2と誘電体導波管線路6Bの主導体層3と
を共有させた場合は誘電体導波管線路6Aの主導体層3
と誘電体導波管線路6Bの主導体層3の間隔)を他の部
位における間隔(図1に示したa)よりも狭くしてい
る。
In this example, the dielectric waveguide lines 6A and 6B
By forming the main conductor layer 2 of the lower dielectric waveguide line 6A at the portion where the layers are overlapped with each other so as to be closer to the main conductor layer 3 side in a stepwise manner, the thickness of the dielectric waveguide line 6A is reduced. The distance between the pair of main conductor layers 2 and 3 (dielectric waveguide line 6
When the main conductor layer 2 of the dielectric waveguide line 6A and the main conductor layer 3 of the dielectric waveguide line 6B are shared, the main conductor layer 3 of the dielectric waveguide line 6A is used.
And the distance between the main conductor layers 3 of the dielectric waveguide line 6B (the distance between the main conductor layers 3) is narrower than the distance between other parts (a shown in FIG. 1).

【0067】なお、このように階段状に高さを変えて形
成した主導体層2間(または誘電体導波管線路6Aの主
導体層2と誘電体導波管線路6Bの主導体層2間)は、
図4に示すように高さ方向に形成した導体層によって電
気的に接続してもよく、後述する主導体層接続用貫通導
体群により接続してもよい。
Note that the main conductor layers 2 of the dielectric waveguide line 6A and the main conductor layers 2 of the dielectric waveguide line 6B are formed between the main conductor layers 2 having the heights changed stepwise. Between)
As shown in FIG. 4, electrical connection may be made by a conductor layer formed in the height direction, or connection may be made by a main conductor layer connection through conductor group described later.

【0068】これにより2つの誘電体導波管線路6A・
6Bは結合用窓7を介して電磁界で結合されて接続され
る。そして、このように誘電体導波管線路の接続部近傍
の厚み、ここでは誘電体導波管線路6Aの主導体層2側
を異なる高さに形成して一対の主導体層2・3の間隔
(または誘電体導波管線路6Aの主導体層3と誘電体導
波管線路6Bの主導体層3の間隔)を他の部位における
間隔よりも狭くして適切に変えることにより、誘電体導
波管線路6A・6Bの接続部での高周波信号の反射を低
減でき、低損失な接続構造が得られる。
As a result, the two dielectric waveguide lines 6A
6B are coupled and connected by an electromagnetic field via a coupling window 7. Then, the thickness near the connection portion of the dielectric waveguide line, here, the main conductor layer 2 side of the dielectric waveguide line 6A is formed at a different height to form the pair of main conductor layers 2.3. By appropriately changing the interval (or the interval between the main conductor layer 3 of the dielectric waveguide line 6A and the main conductor layer 3 of the dielectric waveguide line 6B) to be narrower than other portions, the dielectric The reflection of the high-frequency signal at the connection between the waveguide lines 6A and 6B can be reduced, and a low-loss connection structure can be obtained.

【0069】次に、図5に本発明の誘電体導波管線路の
接続構造の実施の形態のさらに他の例を示す。
FIG. 5 shows still another embodiment of the connection structure of the dielectric waveguide line according to the present invention.

【0070】図5は、図2に示した例と同様の誘電体導
波管線路の接続構造において、接続部における上層側の
誘電体導波管線路の厚みを薄くしたものであり、図5
(a)は誘電体導波管線路を接続する前の状態を示す分
解斜視図、図5(b)は誘電体導波管線路を接続した状
態を示す斜視図、図5(c)は理解を容易にするために
誘電体導波管線路を輪郭で表示した状態の斜視図であ
る。なお、これらの図においても図1〜図4と同様の箇
所には同じ符号を付してある。また、誘電体基板は表示
を省略してあり、主導体層2の一部を破断して透視した
状態で示している。
FIG. 5 shows a connection structure of a dielectric waveguide line similar to the example shown in FIG. 2 in which the thickness of the upper dielectric waveguide line at the connection portion is reduced.
5A is an exploded perspective view showing a state before connecting a dielectric waveguide line, FIG. 5B is a perspective view showing a state where a dielectric waveguide line is connected, and FIG. FIG. 6 is a perspective view showing a state in which a dielectric waveguide line is displayed with an outline in order to facilitate the operation. In these figures, the same parts as those in FIGS. 1 to 4 are denoted by the same reference numerals. In addition, the illustration of the dielectric substrate is omitted, and a part of the main conductor layer 2 is broken and shown in a see-through state.

【0071】図5において2・3は一対の主導体層、4
は2列の側壁用貫通導体群、5は副導体層であり、6A
・6Bは誘電体導波管線路である。これら2つの誘電体
導波管線路6A・6Bは高周波信号の伝送方向が直交す
るように主導体層の一方を重ねて配置される。この例で
は、誘電体導波管線路6Aの上側の主導体層2と誘電体
導波管線路6Bの下側の主導体層3とを重ねて配置して
いる。また、7は結合用窓、8は端面用貫通導体群、9
は端面用副導体層、10〜12はポートである。
In FIG. 5, reference numerals 2 and 3 denote a pair of main conductor layers,
Is a through conductor group for side walls in two rows, 5 is a sub-conductor layer, and 6A
6B is a dielectric waveguide line. These two dielectric waveguide lines 6A and 6B are arranged so that one of the main conductor layers overlaps so that the transmission direction of the high-frequency signal is orthogonal. In this example, the main conductor layer 2 on the upper side of the dielectric waveguide line 6A and the main conductor layer 3 on the lower side of the dielectric waveguide line 6B are arranged so as to overlap each other. Reference numeral 7 denotes a coupling window, 8 denotes a through conductor group for an end face, 9
Is an end face sub-conductor layer, and 10 to 12 are ports.

【0072】この例では、誘電体導波管線路6A・6B
を重ねた部位における上層側の誘電体導波管線路6Bの
主導体層2を階段状に主導体層3側に近づけて形成する
ことにより、誘電体導波管線路6Bの厚みを薄く、すな
わち一対の主導体層2・3の間隔を他の部位における間
隔(図1に示したa)よりも狭くしている。
In this example, the dielectric waveguide lines 6A and 6B
By forming the main conductor layer 2 of the dielectric waveguide line 6B on the upper layer side in a portion where the layers are overlapped with each other in a stepwise manner close to the main conductor layer 3 side, the thickness of the dielectric waveguide line 6B is reduced, that is, The interval between the pair of main conductor layers 2 and 3 is narrower than the interval (a shown in FIG. 1) in other portions.

【0073】ここで、主導体層2は誘電体導波管線路6
A・6Bの接続部における部分を他の部位における部分
とは別の面、この例では副導体層5の1つと同じ平面に
導体層を形成し、接続部における主導体層2と他の部位
における主導体層2とを主導体層接続用貫通導体群13に
より電気的に接続している。このような主導体層接続用
貫通導体群13は、側壁用貫通導体群4や端面用貫通導体
群8と同様に、誘電体導波管線路6Bの伝送方向の直交
方向に信号波長の2分の1未満の繰り返し間隔で高さの
異なる主導体層2間を電気的に接続するように形成すれ
ばよい。
Here, the main conductor layer 2 is a dielectric waveguide line 6
A portion at the connection portion of A.6B is formed on a surface different from that at the other portion, in this example, on the same plane as one of the sub-conductor layers 5, and the main conductor layer 2 and the other portion at the connection portion are formed. Are electrically connected to the main conductor layer 2 by a through conductor group 13 for connecting the main conductor layer. Like the penetrating conductor group 4 for the side wall and the penetrating conductor group 8 for the end face, the penetrating conductor group 13 for connecting the main conductor layer has a signal wavelength of two minutes in a direction orthogonal to the transmission direction of the dielectric waveguide line 6B. The main conductor layers 2 having different heights may be formed so as to be electrically connected at a repetition interval of less than 1.

【0074】なお、この主導体層接続用貫通導体群13に
代えて、高さの異なる主導体層2間を高さ方向に形成し
た導体層により電気的に接続するようにしてもよい。
In place of the main conductor layer connecting through conductor group 13, the main conductor layers 2 having different heights may be electrically connected by conductor layers formed in the height direction.

【0075】これにより2つの誘電体導波管線路6A・
6Bは結合用窓7を介して電磁界で結合されて接続され
る。そして、このように誘電体導波管線路の接続部近傍
の厚み、ここでは誘電体導波管線路6Bの主導体層2側
を異なる高さに形成して一対の主導体層2・3の間隔を
他の部位における間隔よりも狭くして適切に変えること
によっても、誘電体導波管線路6A・6Bの接続部での
高周波信号の反射を低減でき、低損失な接続構造が得ら
れる。
As a result, the two dielectric waveguide lines 6A
6B are coupled and connected by an electromagnetic field via a coupling window 7. In this way, the thickness near the connection portion of the dielectric waveguide line, here, the main conductor layer 2 side of the dielectric waveguide line 6B is formed at different heights to form the pair of main conductor layers 2.3. By appropriately changing the spacing to be smaller than the spacing at other portions, reflection of high-frequency signals at the connection between the dielectric waveguide lines 6A and 6B can be reduced, and a low-loss connection structure can be obtained.

【0076】以上のように、誘電体導波管線路6A・6
Bを重ねた部位における一対の主導体層2・3の間隔を
他の部位における間隔よりも狭くする構成は、下層側の
誘電体導波管線路6Aまたは上層側の誘電体導波管線路
6Bのいずれに適用してもよく、両方の誘電体導波管線
路6A・6Bに同時に適用してもよい。また、下層側の
誘電体導波管線路6Aの主導体層3の高さや上層側の誘
電体導波管線路6Bの主導体層3の高さを変えることに
より一対の主導体層2・3の間隔を変えてもよく、これ
らを適宜組み合わせてもよい。
As described above, the dielectric waveguide lines 6A and 6A
The structure in which the interval between the pair of main conductor layers 2 and 3 in the portion where B is overlapped is smaller than the interval in the other portions is that the lower dielectric waveguide line 6A or the upper dielectric waveguide line 6B And may be applied to both dielectric waveguide lines 6A and 6B at the same time. Further, by changing the height of the main conductor layer 3 of the lower dielectric waveguide line 6A and the height of the main conductor layer 3 of the upper dielectric waveguide line 6B, a pair of main conductor layers 2 and 3 are formed. May be changed, or these may be appropriately combined.

【0077】なお、このように接続部において一対の主
導体層2・3の間隔を他の部位における間隔よりも狭く
する場合、その狭くする間隔は、他の部位における間隔
aの1/2〜1倍の範囲に設定すればよい。
When the interval between the pair of main conductor layers 2 and 3 at the connection portion is made narrower than the interval at the other portion, the interval to be narrowed is 1/2 to the interval a at the other portion. What is necessary is just to set it in the range of 1 time.

【0078】[0078]

【実施例】〔例1〕図2に示した構成の本発明の誘電体
導波管線路の接続構造について、T字状の分岐を含む伝
送線路の伝送特性としてSパラメータのレベルおよび位
相の周波数特性を有限要素法により計算して算出した。
計算のための条件としては、主導体層2・3および貫通
導体の材料には導電率が5.8 ×107 (1/Ωm)の純銅
を用い、誘電体基板1にはホウ珪酸ガラス75重量%とア
ルミナ25重量%とを焼成して作製した比誘電率が5で誘
電正接が0.001 のガラスセラミックス焼結体を用い、誘
電体基板1の厚みaを0.62mm、貫通導体の直径を0.1
mm、側壁用貫通導体群4の繰り返し間隔cを0.25m
m、側壁用貫通導体群4の所定の幅bを1.2 mmとし、
伝送線路の長さは2.25mmとした。
[Example 1] In the connection structure of the dielectric waveguide line according to the present invention having the structure shown in FIG. 2, the transmission characteristics of the transmission line including the T-shaped branch are the level of the S parameter and the frequency of the phase. The characteristics were calculated by the finite element method.
The conditions for the calculation are as follows. Pure copper having a conductivity of 5.8 × 10 7 (1 / Ωm) is used for the material of the main conductor layers 2 and 3 and the through conductor, and borosilicate glass 75% by weight is used for the dielectric substrate 1. And a 25% by weight of alumina were sintered to produce a sintered ceramic body having a relative dielectric constant of 5 and a dielectric tangent of 0.001. The thickness a of the dielectric substrate 1 was 0.62 mm, and the diameter of the through conductor was 0.1.
mm, the repetition interval c of the side wall through conductor group 4 is 0.25 m.
m, the predetermined width b of the side wall through conductor group 4 is 1.2 mm,
The length of the transmission line was 2.25 mm.

【0079】また、副導体層5は主導体層3から0.154
mm・0.308 mm・0.462 mmの3箇所の位置に設けて
4層構造とし、結合用窓7の寸法および形状は1.2 mm
×1.2 mmの正方形とした。
The sub-conductor layer 5 is 0.154 from the main conductor layer 3.
mm, 0.308 mm, 0.462 mm at three positions to form a four-layer structure, and the dimensions and shape of the coupling window 7 are 1.2 mm
× 1.2 mm square.

【0080】なお、誘電体導波管線路6Aの端面用貫通
導体群8は、他方の誘電体導波管線路6Bの一方の側壁
要貫通導体群4を延長するようにして形成し、貫通導体
の直径および繰り返し間隔は側壁用貫通導体群4と同様
とした。また、端面用副導体層9の位置は副導体層5と
同様とした。
The through conductor group 8 for the end face of the dielectric waveguide line 6A is formed by extending the through conductor group 4 requiring one side wall of the other dielectric waveguide line 6B. And the repetition interval were the same as those of the penetrating conductor group 4 for side walls. The position of the end face sub-conductor layer 9 was the same as that of the sub-conductor layer 5.

【0081】これらの結果を図6(a)にSパラメータ
のレベルの周波数特性について、図6(b)にSパラメ
ータの位相の周波数特性についてそれぞれ線図で示す。
図6(a)において横軸は周波数(GHz)、縦軸はS
パラメータのうちS11・S21・S31のレベルの値(d
B)を表わし、図中の特性曲線は各Sパラメータの周波
数特性を示している。また、図6(b)において横軸は
周波数(GHz)、縦軸はSパラメータのうちS21・S
31の位相の値(度)を表わし、図中の特性曲線は各Sパ
ラメータの周波数特性を示している。
FIG. 6A is a diagram showing the frequency characteristics of the level of the S parameter, and FIG. 6B is a diagram showing the frequency characteristics of the phase of the S parameter.
In FIG. 6A, the horizontal axis is frequency (GHz), and the vertical axis is S
The value of the level of S 11 · S 21 · S 31 of the parameters (d
B), and the characteristic curve in the figure shows the frequency characteristic of each S parameter. The horizontal axis represents the frequency (GHz) in FIG. 6 (b), the vertical axis of the S parameter S 21 · S
31 represents the phase value (degree), and the characteristic curve in the figure shows the frequency characteristic of each S parameter.

【0082】ここで、図2に示した構成の誘電体導波管
線路の接続構造に対して、S11はポート10から入力され
た電力に対し反射してポート10に戻ってくる電力の割合
を、S21はポート10から入力された電力に対しポート11
から出力される電力の割合を、S31はポート10から入力
された電力に対しポート12から出力される電力の割合を
それぞれ示すものである。
Here, in the connection structure of the dielectric waveguide line having the configuration shown in FIG. 2, S 11 is a ratio of the power reflected from the power input from the port 10 and returned to the port 10. the, S 21 port 11 to power inputted from the port 10
The ratio of the power output from, S 31 shows a ratio of the power output from port 12 to power inputted from the port 10, respectively.

【0083】図6(a)に示した結果より、S21とS31
はほぼ等しく、高周波信号が接続部を良好に透過するこ
とが分かる。S21とS31の比率は計算した周波数範囲内
でほぼ一定で1:1となっている。また、分岐後の位相
は同位相となっている。S11は設計中心周波数である77
GHz近傍でピークを持ち、−15dB程度であり、反射
が小さいことが分かる。
From the results shown in FIG. 6A, S 21 and S 31
Are almost equal, and it can be seen that the high-frequency signal is transmitted well through the connection. The ratio of S 21 and S 31 is 1 at the calculated frequency range substantially constant: 1. The phase after the branch is the same. S 11 is a design center frequency 77
It has a peak near GHz and is about -15 dB, indicating that the reflection is small.

【0084】一方、図6(b)に示した結果より、S21
とS31の位相を示す特性曲線はほとんど重なっており、
同位相であることが分かる。
[0084] On the other hand, from the results shown in FIG. 6 (b), S 21
A characteristic curve showing the phase of S 31 are almost overlapped,
It can be seen that they are in phase.

【0085】〔例2〕次に、図5に示した構成の本発明
の誘電体導波管線路の接続構造について、T字状の分岐
を含む伝送線路の伝送特性としてSパラメータのレベル
および位相の周波数特性を有限要素法により計算して算
出した。計算のための条件としては、〔例1〕と同様の
材料を用い、誘電体基板1の厚みa=0.62mm、貫通導
体の直径を0.1 mm、側壁用貫通導体群4の繰り返し間
隔c=0.25mm、側壁用貫通導体群4の所定の幅b=1.
2 mm、接続部における誘電体導波管線路6Bの一対の
主導体層2・3の間隔(誘電体導波管線路6Bの厚み)
を0.15mmとし、階段状に形成した主導体層2間は側壁
用貫通導体群4と同様の直径および繰り返し間隔の貫通
導体により接続した。伝送線路の長さは2.25mmとし
た。
Example 2 Next, regarding the connection structure of the dielectric waveguide line of the present invention having the structure shown in FIG. 5, the level and phase of the S parameter as the transmission characteristics of the transmission line including the T-shaped branch are described. Was calculated by the finite element method. The conditions for the calculation were the same materials as in [Example 1], the thickness a of the dielectric substrate 1 was 0.62 mm, the diameter of the through conductor was 0.1 mm, and the repetition interval c of the side wall through conductor group 4 was c = 0.25. mm, the predetermined width b of the through conductor group 4 for the side wall b = 1.
2 mm, distance between the pair of main conductor layers 2 and 3 of the dielectric waveguide line 6B at the connection part (thickness of the dielectric waveguide line 6B)
Was set to 0.15 mm, and the main conductor layers 2 formed in steps were connected by through conductors having the same diameter and repetition interval as the side wall through conductor group 4. The length of the transmission line was 2.25 mm.

【0086】また、端面用貫通導体群8および端面用副
導体層9は〔例1〕と同様に形成し、結合用窓7の寸法
および形状は、1.5 mm×1.2 mmの四角形とした。
The end face through conductor group 8 and the end face sub-conductor layer 9 were formed in the same manner as in [Example 1], and the dimensions and shape of the coupling window 7 were 1.5 mm × 1.2 mm square.

【0087】これらの結果を図7(a)にSパラメータ
のレベルの周波数特性について、図6(b)にSパラメ
ータの位相の周波数特性についてそれぞれ図6(a)お
よび(b)と同様の線図で示す。
The results are shown in FIG. 7 (a) for the frequency characteristic of the level of the S parameter, and FIG. 6 (b) for the frequency characteristic of the phase of the S parameter, as shown in FIG. 7 (a) and FIG. Shown in the figure.

【0088】図7(a)に示した結果より、S21とS31
はほぼ等しく、高周波信号が〔例1〕の場合よりさらに
広帯域で接続部を良好に透過することが分かる。S21
31の比率は計算した周波数範囲内でほぼ一定で1:1
となっている。また、分岐後の位相は同位相となってい
る。S11については、整合部を設けたことによりさらに
反射が小さくなり、77GHzで−19.5dBとなってい
る。このように、接続部における誘電体導波管線路の厚
みを薄くして高周波信号の伝送に対する整合部を設けた
ことから、〔例1〕の結果と比較してS11が小さくな
り、71〜79GHzの範囲でS21とS31とがほぼ一定の値
となっている。
From the results shown in FIG. 7A, S 21 and S 31
Are almost equal, and it can be seen that the high-frequency signal passes through the connecting portion better in a wider band than in the case of [Example 1]. Substantially constant in the frequency range ratio calculated in S 21 and S 31 1: 1
It has become. The phase after the branch is the same. For S 11 is further reflected is reduced, a -19.5dB at 77GHz by providing the matching portion. Thus, since the provision of the matching portion for the transmission of high frequency signals by reducing the thickness of the dielectric waveguide line at the connecting portion, it becomes small S 11 as compared to the results of EXAMPLE 1, 71 to and the S 21 and S 31 are substantially a constant value in the range of 79 GHz.

【0089】一方、図7(b)に示した結果より、S21
とS31の位相が同位相となっていることが分かる。
[0089] On the other hand, from the results shown in FIG. 7 (b), S 21
It can be seen that the phase of S 31 is in the same phase as the.

【0090】〔例3〕〔例1〕と同様にして、接続部に
おける下層側の誘電体導波管線路6Aの幅と結合用窓7
の幅とを広げた、図3に示した構成の本発明の誘電体導
波管線路の接続構造についてSパラメータのレベルおよ
び位相の周波数特性を求めたところ、〔例1〕の結果に
比べて高周波電力の反射、すなわちS11のピークが小さ
くなり、整合部を設けたことによりさらに反射が小さく
なることが確認できた。
[Example 3] In the same manner as in [Example 1], the width of the lower dielectric waveguide line 6A at the connection portion and the coupling window 7
The level characteristics and phase frequency characteristics of the S parameter of the connection structure of the dielectric waveguide line of the present invention having the configuration shown in FIG. reflection of the high frequency power, i.e. the smaller the peak of S 11, it was confirmed that the further reflection is reduced by providing the matching portion.

【0091】また、〔例1〕と同様にして、接続部にお
ける下層側の誘電体導波管線路6Aの厚みを薄くした、
図4に示した本発明の誘電体導波管線路の接続構造につ
いてSパラメータのレベルおよび位相の周波数特性を求
めたところ、〔例1〕の結果に比べて高周波信号の通過
帯域が広くなり、優れた接続特性を有することが確認で
きた。
Further, in the same manner as in [Example 1], the thickness of the lower dielectric waveguide line 6A at the connection portion was reduced.
When the frequency characteristics of the level and the phase of the S parameter were obtained for the connection structure of the dielectric waveguide line of the present invention shown in FIG. 4, the pass band of the high-frequency signal became wider than the result of [Example 1]. It was confirmed that it had excellent connection characteristics.

【0092】以上の結果より、本発明の誘電体導波管線
路の接続構造によれば、誘電体基板内に互いに直交する
ように上下に積層して形成された誘電体導波管線路同士
を、伝送損失が小さく良好な伝送特性で容易に接続する
ことができることが確認できた。また、2つの誘電体導
波管線路を交差させて1本の線路をT字状に良好な伝送
特性で接続して分岐できることも確認できた。
According to the above results, according to the connection structure of the dielectric waveguide lines of the present invention, the dielectric waveguide lines formed by being vertically stacked in the dielectric substrate so as to be orthogonal to each other are connected to each other. It has been confirmed that the connection can be easily performed with low transmission loss and good transmission characteristics. Also, it was confirmed that two dielectric waveguide lines could be crossed and one line could be connected in a T-shape with good transmission characteristics and branched.

【0093】なお、本発明は以上の実施の形態の例に限
定されるものではなく、本発明の要旨を逸脱しない範囲
で種々の変更・改良を施すことは何ら差し支えない。
The present invention is not limited to the above-described embodiment, and various changes and improvements can be made without departing from the scope of the present invention.

【0094】[0094]

【発明の効果】以上詳述した通り、本発明の誘電体導波
管線路の接続構造によれば、いずれの構成によっても接
続部の前後の誘電体導波管線路の特性インピーダンスの
不整合を小さくできるため接続部での高周波信号の反射
が小さくなり、しかも接続部における伝播モードに乱れ
が生じることがないため、伝送損失が小さく良好な伝送
特性を有する誘電体導波管線路の接続構造を得ることが
できた。
As described in detail above, according to the connection structure of the dielectric waveguide line of the present invention, the mismatch of the characteristic impedance of the dielectric waveguide line before and after the connection portion is obtained by any structure. Because it can be made smaller, the reflection of high-frequency signals at the connection part is reduced, and the propagation mode at the connection part is not disturbed, so that the connection structure of the dielectric waveguide line with small transmission loss and good transmission characteristics I got it.

【0095】すなわち、本発明の誘電体導波管線路の接
続構造によれば、誘電体基板内で伝送方向が直交するよ
うに上下に重ねて配置された下層側の誘電体導波管線路
と上層側の誘電体導波管線路の接続部において、主導体
層の一方、すなわち下層側の誘電体導波管線路の上側の
主導体層と上層側の誘電体導波管線路の下側の主導体層
とを重ねて配置するとともに、この重ねた部位の主導体
層に結合用窓を形成したことから、2つの誘電体導波管
線路は電磁界で結合され、一方の誘電体導波管線路から
入力された高周波信号は結合用窓を介して他方の誘電体
導波管線路にも伝播させることができる。他方の誘電体
導波管線路において伝播できる方向が2つあるので、高
周波信号はその2つの方向に伝播してもとの誘電体導波
管線路の伝送方向と合わせて3方向に分岐させることが
できる。
That is, according to the connection structure of the dielectric waveguide line of the present invention, the dielectric waveguide line of the lower layer, which is vertically arranged in the dielectric substrate so that the transmission directions are orthogonal to each other, At the connection portion of the upper dielectric waveguide line, one of the main conductor layers, that is, the upper main conductor layer above the lower dielectric waveguide line and the lower dielectric waveguide line below the upper dielectric waveguide line. The two dielectric waveguide lines are coupled by an electromagnetic field because the main conductor layer and the main conductor layer are overlapped and a coupling window is formed in the main conductor layer at the overlapped portion. The high-frequency signal input from the pipeline can be propagated to the other dielectric waveguide via the coupling window. Since there are two directions that can be propagated in the other dielectric waveguide line, the high-frequency signal is propagated in the two directions and branched in three directions in accordance with the transmission direction of the original dielectric waveguide line. Can be.

【0096】また、本発明の誘電体導波管線路の接続構
造によれば、上記構成において、結合用窓の中心から所
定の位置に端面用貫通導体群と端面用副導体層とを形成
したことから、一方の誘電体導波管線路にそれらを形成
した場合にはT字状に高周波信号を分岐でき、両方の誘
電体導波管線路にそれらを形成した場合にはL字状に高
周波信号を伝播できる。
Further, according to the connection structure of the dielectric waveguide line of the present invention, in the above configuration, the end face through conductor group and the end face sub-conductor layer are formed at predetermined positions from the center of the coupling window. Therefore, when they are formed on one of the dielectric waveguide lines, high-frequency signals can be branched in a T-shape, and when they are formed on both dielectric waveguide lines, the high-frequency signals can be formed in an L-shape. Signal can be propagated.

【0097】さらに、本発明の誘電体導波管線路の接続
構造によれば、上記各構成において、誘電体導波管線路
を重ねた部位における少なくとも一方の誘電体導波管線
路についてその幅すなわち伝送方向と直交する方向の側
壁用貫通導体群の幅を広げるか、または、その厚みを薄
くすなわち一対の主導体層の間隔を狭くすることによ
り、接続部における誘電体導波管線路のインピーダンス
の不連続を小さくして高周波信号の反射や伝送損失の小
さい接続を実現することができる。
Further, according to the connection structure of the dielectric waveguide lines of the present invention, in each of the above-described structures, the width of at least one of the dielectric waveguide lines at the portion where the dielectric waveguide lines are overlapped, that is, By increasing the width of the side wall through conductor group in the direction orthogonal to the transmission direction, or by reducing the thickness, that is, by reducing the distance between the pair of main conductor layers, the impedance of the dielectric waveguide line at the connection portion is reduced. By making the discontinuity small, it is possible to realize connection with low reflection and transmission loss of a high-frequency signal.

【0098】以上により、本発明によれば、従来の多層
化技術によって容易に作製することのできる誘電体導波
管線路において、誘電体基板内に互いに直交するように
上下に積層して形成された誘電体導波管線路同士を容易
に接続することができる誘電体導波管線路の接続構造を
提供することができた。
As described above, according to the present invention, in a dielectric waveguide line which can be easily manufactured by the conventional multi-layering technique, the dielectric waveguide lines are formed by being vertically stacked on a dielectric substrate so as to be orthogonal to each other. Thus, it is possible to provide a connection structure of the dielectric waveguide lines which can easily connect the dielectric waveguide lines.

【0099】また、本発明によれば、誘電体基板内に形
成でき、高周波信号の電磁波の放射・漏洩が無く、2つ
の誘電体導波管線路を交差させて結合することにより1
本の線路をT字状あるいは直交する3本の線路に伝送損
失が小さく良好な伝送特性で接続して分岐できる誘電体
導波管線路の接続構造を提供することができた。
Further, according to the present invention, there is no radiation / leakage of electromagnetic waves of a high-frequency signal, which can be formed in a dielectric substrate, so that two dielectric waveguide lines can be crossed and coupled.
It is possible to provide a connection structure of a dielectric waveguide line that can be branched by connecting the three lines to three T-shaped or orthogonal lines with low transmission loss and excellent transmission characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いる誘電体導波管線路の例を説明す
るための概略斜視図である。
FIG. 1 is a schematic perspective view for explaining an example of a dielectric waveguide line used in the present invention.

【図2】(a)は本発明の誘電体導波管線路の接続構造
の実施の形態の一例について誘電体導波管線路を接続す
る前の状態を示す分解斜視図、(b)は誘電体導波管線
路を接続した状態を示す斜視図、(c)は理解を容易に
するために誘電体導波管線路を輪郭で表示した状態の斜
視図である。
FIG. 2A is an exploded perspective view showing a state before connecting a dielectric waveguide line in an embodiment of a connection structure of a dielectric waveguide line of the present invention, and FIG. FIG. 3C is a perspective view showing a state where the body waveguide is connected, and FIG. 4C is a perspective view showing a state where the dielectric waveguide is displayed with an outline for easy understanding.

【図3】(a)は本発明の誘電体導波管線路の接続構造
の実施の形態の他の例について誘電体導波管線路を接続
する前の状態を示す分解斜視図、(b)は誘電体導波管
線路を接続した状態を示す斜視図、(c)は理解を容易
にするために誘電体導波管線路を輪郭で表示した状態の
斜視図である。
FIG. 3A is an exploded perspective view showing a state before connecting a dielectric waveguide line in another embodiment of the connection structure of the dielectric waveguide line of the present invention, and FIG. FIG. 4 is a perspective view showing a state where the dielectric waveguide lines are connected, and FIG. 4 (c) is a perspective view showing a state where the dielectric waveguide lines are displayed in outline for easy understanding.

【図4】(a)は本発明の誘電体導波管線路の接続構造
の実施の形態のさらに他の例について誘電体導波管線路
を接続する前の状態を示す分解斜視図、(b)は誘電体
導波管線路を接続した状態を示す斜視図、(c)は理解
を容易にするために誘電体導波管線路を輪郭で表示した
状態の斜視図である。
FIG. 4A is an exploded perspective view showing a state before connecting a dielectric waveguide line in still another embodiment of the connection structure of the dielectric waveguide line of the present invention, and FIG. () Is a perspective view showing a state where the dielectric waveguide lines are connected, and (c) is a perspective view showing a state where the dielectric waveguide lines are indicated by outlines for easy understanding.

【図5】(a)は本発明の誘電体導波管線路の接続構造
の実施の形態のさらに他の例について誘電体導波管線路
を接続する前の状態を示す分解斜視図、(b)は誘電体
導波管線路を接続した状態を示す斜視図、(c)は理解
を容易にするために誘電体導波管線路を輪郭で表示した
状態の斜視図である。
5A is an exploded perspective view showing a state before connecting a dielectric waveguide line in still another example of the embodiment of the connection structure of the dielectric waveguide line of the present invention, FIG. () Is a perspective view showing a state where the dielectric waveguide lines are connected, and (c) is a perspective view showing a state where the dielectric waveguide lines are indicated by outlines for easy understanding.

【図6】(a)は本発明の誘電体導波管線路の接続構造
におけるSパラメータのレベルの周波数特性を示す線
図、(b)はSパラメータの位相の周波数特性を示す線
図である。
6A is a diagram illustrating frequency characteristics of S parameter levels in a connection structure of a dielectric waveguide line according to the present invention, and FIG. 6B is a diagram illustrating frequency characteristics of S parameter phases. .

【図7】(a)は本発明の誘電体導波管線路の接続構造
におけるSパラメータのレベルの周波数特性を示す線
図、(b)はSパラメータの位相の周波数特性を示す線
図である。
FIG. 7A is a diagram illustrating a frequency characteristic of an S parameter level in a connection structure of a dielectric waveguide line according to the present invention, and FIG. 7B is a diagram illustrating a frequency characteristic of a phase of the S parameter. .

【符号の説明】[Explanation of symbols]

1・・・・・誘電体基板 2、3・・・主導体層 4・・・・・側壁用貫通導体群 5・・・・・副導体層 6・・・・・誘電体導波管線路 6A・・・・第1(下層側)の誘電体導波管線路 6B・・・・第2(上層側)の誘電体導波管線路 7・・・・・結合用窓 8・・・・・端面用貫通導体群 9・・・・・端面用副導体層 1 ... dielectric substrate 2, 3 ... main conductor layer 4 ... penetrating conductor group for side wall 5 ... sub-conductor layer 6 ... dielectric waveguide line 6A... First (lower layer side) dielectric waveguide line 6B... Second (upper layer side) dielectric waveguide line 7... Coupling window 8. .End face through-conductor group 9... End face sub-conductor layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 誘電体基板を挟持する一対の主導体層
と、高周波信号の伝送方向に信号波長の2分の1未満の
繰り返し間隔で、かつ前記伝送方向と直交する方向に所
定の幅で前記主導体層間を電気的に接続して形成された
2列の側壁用貫通導体群と、前記主導体層間に主導体層
と平行に形成され、前記側壁用貫通導体群と電気的に接
続された副導体層とを具備して成り、前記主導体層、側
壁用貫通導体群および副導体層で囲まれた領域によって
高周波信号を伝送する誘電体導波管線路を2つ、前記高
周波信号の伝送方向が直交するように前記主導体層の一
方を重ねて配置するとともに、この重ねた部位の主導体
層に結合用窓を形成したことを特徴とする誘電体導波管
線路の接続構造。
1. A pair of main conductor layers sandwiching a dielectric substrate, a repetition interval of less than half of a signal wavelength in a transmission direction of a high-frequency signal, and a predetermined width in a direction orthogonal to the transmission direction. Two rows of penetrating conductor groups for side walls formed by electrically connecting the main conductor layers, and formed between the main conductor layers in parallel with the main conductor layer and electrically connected to the penetrating conductor groups for side wall; Two dielectric waveguide lines for transmitting a high-frequency signal by a region surrounded by the main conductor layer, the side wall through conductor group, and the sub-conductor layer. A connection structure for a dielectric waveguide line, wherein one of the main conductor layers is overlapped so that transmission directions are orthogonal to each other, and a coupling window is formed in the main conductor layer at the overlapped portion.
【請求項2】 前記結合用窓の中心から前記伝送方向に
前記高周波信号の管内波長以下の位置に、その誘電体導
波管線路の伝送方向の直交方向に前記信号波長の2分の
1未満の間隔で前記主導体層間を電気的に接続して形成
された端面用貫通導体群と、前記主導体層間に主導体層
と平行に形成され、前記副導体層および前記端面用貫通
導体群と電気的に接続された端面用副導体層とを形成し
たことを特徴とする請求項1記載の誘電体導波管線路の
接続構造。
2. A signal wavelength less than half the signal wavelength in a direction orthogonal to the transmission direction of the dielectric waveguide line at a position below the guide wavelength of the high-frequency signal in the transmission direction from the center of the coupling window. An end face through conductor group formed by electrically connecting the main conductor layers at an interval of; a sub conductor layer and the end face through conductor group formed parallel to the main conductor layer between the main conductor layers; 2. The connection structure for a dielectric waveguide line according to claim 1, further comprising an end face sub-conductor layer that is electrically connected.
【請求項3】 前記誘電体導波管線路を重ねた部位にお
ける誘電体導波管線路の前記2列の側壁用貫通導体群の
幅を前記所定の幅よりも広くしたことを特徴とする請求
項1または請求項2記載の誘電体導波管線路の接続構
造。
3. A width of the two rows of through conductor groups for the side walls of the dielectric waveguide line at a portion where the dielectric waveguide lines are overlapped is larger than the predetermined width. 3. The connection structure for a dielectric waveguide line according to claim 1 or 2.
【請求項4】 前記誘電体導波管線路を重ねた部位にお
ける誘電体導波管線路の前記一対の主導体層の間隔を他
の部位における間隔よりも狭くしたことを特徴とする請
求項1または請求項2記載の誘電体導波管線路の接続構
造。
4. The distance between said pair of main conductor layers of said dielectric waveguide line at a portion where said dielectric waveguide lines are overlapped is smaller than the distance at other portions. 3. A connection structure for a dielectric waveguide line according to claim 2.
JP24428898A 1998-04-23 1998-08-31 Connection structure of dielectric waveguide line Expired - Fee Related JP3522120B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP24428898A JP3522120B2 (en) 1998-08-31 1998-08-31 Connection structure of dielectric waveguide line
FR9905188A FR2778024B1 (en) 1998-04-23 1999-04-23 CONNECTION STRUCTURE FOR DIELECTRIC WAVEGUIDE LINES
DE19918567A DE19918567C2 (en) 1998-04-23 1999-04-23 Connection arrangement for dielectric waveguides
US09/298,399 US6515562B1 (en) 1998-04-23 1999-04-23 Connection structure for overlapping dielectric waveguide lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24428898A JP3522120B2 (en) 1998-08-31 1998-08-31 Connection structure of dielectric waveguide line

Publications (2)

Publication Number Publication Date
JP2000077912A true JP2000077912A (en) 2000-03-14
JP3522120B2 JP3522120B2 (en) 2004-04-26

Family

ID=17116521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24428898A Expired - Fee Related JP3522120B2 (en) 1998-04-23 1998-08-31 Connection structure of dielectric waveguide line

Country Status (1)

Country Link
JP (1) JP3522120B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111327A (en) * 2000-09-28 2002-04-12 Kyocera Corp Connection structure of dielectric waveguide line
WO2010013721A1 (en) * 2008-07-31 2010-02-04 京セラ株式会社 High-frequency substrate and high-frequency module
JP2010103982A (en) * 2008-09-25 2010-05-06 Sony Corp Millimeter wave transmission device, millimeter wave transmission method, and millimeter wave transmission system
WO2011052694A1 (en) * 2009-10-29 2011-05-05 京セラ株式会社 Mode polarization converter
WO2019008859A1 (en) * 2017-07-07 2019-01-10 株式会社フジクラ Transmission line

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111327A (en) * 2000-09-28 2002-04-12 Kyocera Corp Connection structure of dielectric waveguide line
WO2010013721A1 (en) * 2008-07-31 2010-02-04 京セラ株式会社 High-frequency substrate and high-frequency module
JP5269902B2 (en) * 2008-07-31 2013-08-21 京セラ株式会社 High frequency substrate and high frequency module
JP2010103982A (en) * 2008-09-25 2010-05-06 Sony Corp Millimeter wave transmission device, millimeter wave transmission method, and millimeter wave transmission system
US9608683B2 (en) 2008-09-25 2017-03-28 Sony Corporation Millimeter wave transmission device, millimeter wave transmission method, and millimeter wave transmission system
US9825667B2 (en) 2008-09-25 2017-11-21 Sony Corporation Millimeter wave transmission device, millimeter wave transmission method, and millimeter wave transmission system
WO2011052694A1 (en) * 2009-10-29 2011-05-05 京セラ株式会社 Mode polarization converter
JP5343134B2 (en) * 2009-10-29 2013-11-13 京セラ株式会社 Mode polarization converter
WO2019008859A1 (en) * 2017-07-07 2019-01-10 株式会社フジクラ Transmission line
JP2019016955A (en) * 2017-07-07 2019-01-31 株式会社フジクラ Transmission line
US11158922B2 (en) 2017-07-07 2021-10-26 Fujikura Ltd. Transmission line

Also Published As

Publication number Publication date
JP3522120B2 (en) 2004-04-26

Similar Documents

Publication Publication Date Title
US6515562B1 (en) Connection structure for overlapping dielectric waveguide lines
US6023210A (en) Interlayer stripline transition
US6380825B1 (en) Branch tee dielectric waveguide line
JP3996879B2 (en) Coupling structure of dielectric waveguide and microstrip line, and filter substrate having this coupling structure
JP3493265B2 (en) Dielectric waveguide line and wiring board
JP4199395B2 (en) Multilayer Magic T
JP3517143B2 (en) Connection structure between dielectric waveguide line and high-frequency line conductor
JPH10303611A (en) Coupling structure for high frequency transmission line and multi-layer wiring board having the same
JPH11308001A (en) Connection structure for dielectric waveguide line
JP3981346B2 (en) Connection structure between dielectric waveguide line and waveguide, and antenna device and filter device using the structure
JP3522138B2 (en) Connection structure between dielectric waveguide line and rectangular waveguide
JP3517148B2 (en) Connection structure between dielectric waveguide line and high-frequency line conductor
JP3522120B2 (en) Connection structure of dielectric waveguide line
JPH1174701A (en) Connection structure for dielectric waveguide line
JPH11308025A (en) Directional coupler
JP4803869B2 (en) Connection structure of dielectric waveguide line
JP3517097B2 (en) Branch structure of dielectric waveguide
JP3439973B2 (en) Branch structure of dielectric waveguide
JP4203404B2 (en) Branch structure of waveguide structure and antenna substrate
JPH07120888B2 (en) Multi-plane waveguide coupler
JP3517140B2 (en) Connection structure between dielectric waveguide line and high frequency line
JP3512626B2 (en) Branch structure of dielectric waveguide
JP4203405B2 (en) Branch structure of waveguide structure and antenna substrate
JP2004104816A (en) Dielectric waveguide line and wiring board
JP2004357042A (en) Connection structure between dielectric waveguide line and waveguide, as well as antenna substrate and filter substrate using its structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees