JP2004357042A - Connection structure between dielectric waveguide line and waveguide, as well as antenna substrate and filter substrate using its structure - Google Patents

Connection structure between dielectric waveguide line and waveguide, as well as antenna substrate and filter substrate using its structure Download PDF

Info

Publication number
JP2004357042A
JP2004357042A JP2003153190A JP2003153190A JP2004357042A JP 2004357042 A JP2004357042 A JP 2004357042A JP 2003153190 A JP2003153190 A JP 2003153190A JP 2003153190 A JP2003153190 A JP 2003153190A JP 2004357042 A JP2004357042 A JP 2004357042A
Authority
JP
Japan
Prior art keywords
dielectric
waveguide
line
conductor
dielectric waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003153190A
Other languages
Japanese (ja)
Other versions
JP4058381B2 (en
Inventor
Naoyuki Shino
直行 志野
Hiroshi Uchimura
弘志 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003153190A priority Critical patent/JP4058381B2/en
Publication of JP2004357042A publication Critical patent/JP2004357042A/en
Application granted granted Critical
Publication of JP4058381B2 publication Critical patent/JP4058381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Connection Structure (AREA)
  • Waveguides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connection structure which can connect a dielectric waveguide line of a lamination type formed within a dielectric substrate and a square waveguide by reducing a reflection of a high frequency signal, with a low loss, and almost at the right angle. <P>SOLUTION: A dielectric waveguide line 6 having a pair of conductor layers 2 and 3 formed at both sides of an dielectric substrate and two rows of through-conductor group 4 formed by electrically connecting between the conductor layers 2 and 3 at repeated intervals of less than half of a signal wavelength in a direction of transmission of a high frequency signal, and a predetermined width in an orthogonal direction to the transmission direction is provided. A combining window 7 is provided to one of the pair of conductor layers 2 and 3, and a square metal waveguide 8 whose opening end faces are opposed is connected to the combining window 7 through a dielectric layer 16 so that a transmission direction of the high frequency signal may be different. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はマイクロ波帯やミリ波帯等の高周波信号を伝達するための誘電体導波管線路と導波管との接続構造に関し、特に高周波信号の伝送方向がほぼ直交する場合に、信頼性が高く、低損失に接続することができる誘電体導波管線路と導波管との接続構造に関するものである。
【0002】
【従来の技術】
近年、マイクロ波帯やミリ波帯等の高周波信号を用いた移動体通信及び車間レーダ等の研究が盛んに進められている。これらの通信を扱う高周波回路において、高周波信号を伝送するための伝送線路には小型で伝送損失が小さいことが求められている。特に、伝送線路を、高周波回路を構成する基板上または基板内に形成できると小型化の面で有利となることから、従来、そのような伝送線路として、ストリップ線路やマイクロストリップ線路、コプレーナ線路、誘電体導波管線路等が用いられてきた。
【0003】
これらのうちストリップ線路・マイクロストリップ線路・コプレーナ線路は誘電体基板と線路導体層とグランド(接地)導体層とで構成されており、線路導体層とグランド導体層の周囲の空間又は誘電体基板中を高周波信号の電磁波が伝搬するものである。これらの線路は30GHz帯域までの信号伝送に対しては良好に伝送できるが、30GHz以上では伝送損失が生じやすいという問題点がある。
これに対して導波管型の伝送線路は30GHz以上のミリ波帯域においても伝送損失が小さい点で有利である。
【0004】
このうち方形導波管は、断面が方形の金属壁で囲まれた空気中を電磁波が伝搬する構造となっており、誘電体による損失がないため30GHz以上のミリ波帯域においても伝送損失が非常に小さいものである。
しかし、線路断面の長手方向の長さを、伝搬する信号波長の2分の1以上とする必要があるため、寸法が大きく高密度での配線が困難であるという問題点がある。また、金属壁で構成されるため、高精度な加工が困難であり加工コストが高いという問題点もある。
【0005】
これに対し、導波管の優れた伝送特性を活かした、誘電体多層基板内に形成可能な伝送線路である誘電体導波管線路は、導体壁あるいは擬似的な導体壁で囲まれた領域の内部に誘電体が満たされた構造となっているため、誘電体による伝送損失があるものの、損失の小さい誘電体を用いれば伝送損失を実用上問題ない程度に小さくすることができる。方形導波管と同じ周波数範囲で信号を伝搬させようとすると、誘電体の比誘電率をεr としたときに線路の断面のサイズを1/√εr と小型にできるメリットがある。
【0006】
例えば、特開平6−53711 号公報において、誘電体基板を一対の主導体層で挟み、さらに主導体層間を接続する2列に配設された複数のビアホールによって側壁を形成した誘電体導波管線路が提案されている。この誘電体導波管線路は誘電体材料の四方を一対の主導体層とビアホールによる疑似的な導体壁で囲むことによって導体壁内の領域を信号伝送用の線路としたものである。このような構成によれば、構成がいたって簡単となって装置全体の小型化も図ることができる。
【0007】
さらに、特開平10−75108号公報において、誘電体基板中に形成した多層構造による誘電体導波管線路が提案されている。これは積層型導波管と呼ばれるものであり、前述のような誘電体導波管線路を、誘電体層と一対の主導体層と貫通導体群とで形成し、さらに貫通導体群に加えて副導体層を形成することにより、電気的な壁としての側壁を強化したものである。前述の誘電体導波管線路では導波管内に貫通導体に平行でない電界が存在すると側壁から電界の漏れが発生するおそれがあるが、この積層型導波管では副導体層があるためにこのような電界の漏れが発生しにくい、優れたものとなる。
【0008】
【特許文献1】特開平6−53711 号公報
【特許文献2】特開平10−75108号公報
【特許文献3】特開2000−196301号公報
【0009】
【発明が解決しようとする課題】
しかしながら、誘電体導波管線路を用いて構成された高周波回路について、例えば高周波特性を測定・評価するためにネットワークアナライザ等の測定装置へ接続するためには、誘電体導波管線路を直接接続することが困難であり、方形導波管を介すると容易に接続することができてより正確な測定が可能になる。
また、MMIC(マイクロ波モノリシック集積回路)等の能動回路に誘電体導波管線路を接続する場合にも、方形導波管を介することによって接続が容易となり、回路全体の小型化が可能となる。
【0010】
そのため、良好な伝送特性を有する、方形導波管と誘電体導波管線路との接続構造が求められていた。
これを解決する手法として特開2000−196301号において方形導波管と誘電体導波管線路との接続構造が提案されているが、その構造では導体が表層に露出しており表層導体の腐食や貫通導体の腐食、及び貫通導体を介した内層導体の腐食など信頼性上問題がある。また表層導体部の信頼性向上のために金メッキを行うことがあったが、それは高価でありコスト上昇の大きな要因となっていた。
【0011】
本発明の目的は、接続部での信頼性を向上させ、かつ製造コストが低く、そして高周波信号の反射を低減して、低損失で接続することができる誘電体導波管線路と導波管との接続構造を提供することにある。
【0012】
【課題を解決するための手段】
本発明の誘電体導波管線路と導波管との接続構造は、誘電体基板と、誘電体基板の両面に形成された一対の導体層と、高周波信号の伝送方向に信号波長の2分の1未満の繰り返し間隔で、かつ前記伝送方向と直交する方向に所定の幅で、前記導体層間を電気的に接続して形成された2列の貫通導体群とを具備する誘電体導波管線路を設け、前記一対の導体層のうち、一方の導体層に結合用窓を設け、この結合用窓に、誘電体層を介して、高周波信号の伝送方向が異なるように開口端面を対向させた導波管を接続していること特徴とするものである。
【0013】
この誘電体導波管線路は、前記一対の導体層及び前記貫通導体群で囲まれた伝送領域によって高周波信号を伝送するが、誘電体導波管線路の途中部又は終端部に、本発明の接続構造を形成することにより、誘電体導波管線路の一方の導体層に設けられた結合用窓を介して、導波管に高周波信号を受け渡しことができる。このような簡単な接続構造によって、高周波信号の結合効率に優れた、信頼性の高い、しかも製造コストの低い誘電体導波管線路と導波管との接続を実現することができる。
【0014】
また、前記誘電体導波管線路に、前記貫通導体と前記一対の導体層からなる共振器を作製し、該共振器の一方の導体層に前記結合用窓が形成されている構造を用いることにより、接続部における高周波伝送特性の向上を図ることができる。
またさらに、前記誘電体導波管線路に、高周波信号の伝送時の反射を低減する電磁界整合部を含むこととすれば、接続部における高周波伝送特性のさらなる向上を図ることができる。
【0015】
電磁界整合部の具体的な形状として、誘電体導波管線路の断面の高さが異なる構造、誘電体導波管線路の断面の幅が異なる構造、誘電体導波管線路とは異なる誘電率材料を含む構造、又は誘電体導波管線路内にピン導体を配置した構造があげられる。いずれかの構造又はこれらの2種以上を組み合わせた構造を設けることにより、接続部における反射を抑制し、他の回路や素子への悪影響を低減し、さらに高周波特性を向上できる。
【0016】
なお、前記誘電体基板は、低温焼成セラミックスとすることによって、低抵抗の金属を用いて各種導体層を形成することができるために、高周波信号の伝送に対して低損失にでき、好適である。
前記導波管はどのような構造の導波管であっても、本発明は適用できるが、例えば方形導波管であってもよい。
前記誘電体導波管線路と導波管との高周波信号の伝送方向は、任意の角度で交差させることができるが、この角度は例えばほぼ90°としてもよい。
【0017】
また本発明のアンテナ基板は、アンテナ基板に、前記誘電体導波管線路を設け、誘電体導波管線路の上下に形成された一対の導体層のうち、一方の導体層に結合用窓を設け、この結合用窓に、誘電体層を介して、高周波信号の伝送方向が異なるように開口端面を対向させた給電用導波管を接続しているものである。
また、本発明のフィルター基板は、フィルター基板に、前記誘電体導波管線路を設け、誘電体導波管線路の上下に形成された一対の導体層のうち、一方の導体層に結合用窓を設け、この結合用窓に、誘電体層を介して、高周波信号の伝送方向が異なるように開口端面を対向させた給電用導波管を接続しているものである。
【0018】
【発明の実施の形態】
以下、本発明の誘電体導波管線路と導波管との接続構造について図面を参照しながら説明する。
図1は本発明に用いる誘電体導波管線路の構造例を説明するための概略斜視図である。
図1において、1は高周波信号の伝送方向Aに延びる所定の厚みaを有する誘電体基板である。2及び3は、誘電体基板1の上下面に形成された一対の導体層であり、4は誘電体基板1の中に形成され、高周波信号の伝送方向Aに沿って配列された2列の貫通導体群である。
【0019】
貫通導体群4は、一対の導体層2,3間を電気的に接続するものであり、1本1本の貫通導体は、スルーホール導体やビアホール導体等により形成される。これら多数の貫通導体により2列の貫通導体群4を形成している。貫通導体群4は、図示するように、高周波信号の伝送方向Aすなわち線路形成方向に信号波長の2分の1未満の所定の繰り返し間隔cで、かつ同伝送方向Aと直交する方向に所定の一定の間隔(幅)bをもって形成されている。これにより、この誘電体導波管線路6に対する電気的な側壁を形成している。
【0020】
これら、一対の導体層2,3、及び貫通導体群4によって、誘電体基板1の一部に高さa、幅bを有する誘電体導波管線路6が形成される。
また、5は貫通導体群4の各列を形成する貫通導体同士を電気的に接続するため、誘電体基板1の中に導体層2,3と平行に形成された補助導体層であり、必要に応じて適宜設けられる。なお、補助導体層5を設ける場合は、例えば誘電体基板1をそれぞれ半分の厚さの2枚の誘電体基板で構成し、それらの誘電体基板の間に、かつ誘電体導波管線路6の非形成部分に金属層を形成して両者を貼り合わせることにより、補助導体層5を形成することができる。
【0021】
このように誘電体導波管線路6を、一対の導体層2,3と貫通導体群4と(補助導体層5があればそれも含めて)で囲まれた領域において形成することにより、誘電体導波管線路6の内部から見ると、その上下壁は一対の導体層2,3によって囲まれ、その側壁は貫通導体群4によって囲まれる。この構造により、様々な方向の電磁波が遮蔽される。さらに補助導体層5を形成していれば、その側壁は補助導体層5によってさらに細かな格子状に区切られて、電磁波の遮蔽効果は増大する。
【0022】
なお、前記導体層2,3は、図1に示したように誘電体基板1の上下全面にわたって形成されているが、必ずしも誘電体基板1の上下全面にわたって形成されている必要はなく、少なくとも誘電体導波管線路6の形成部を挟む上下面に形成されていればよい。
なお、図示していないが、誘電体導波管線路6の終端面には、側壁と同様の貫通導体群4が終端面を取り囲むように同じピッチcで配列されている。これによって、誘電体導波管線路6の終端面が電気的に閉じられた構造を作ることができる。
【0023】
誘電体基板1の厚みa、すなわち一対の導体層2,3間の間隔に対する制限は特にないが、厚みaは、誘電体導波管線路6をシングルモードで用いる場合には間隔bに対して2分の1程度または2倍程度とすることがよい。図1の例では間隔bに対して厚みaが2分の1程度となっており、誘電体導波管線路6のH面に当たる部分が導体層2,3で、E面に当たる部分が貫通導体群4及び補助導体層5でそれぞれ形成される。また、間隔bに対して厚みaを2倍程度とすれば、誘電体導波管線路6のE面に当たる部分が導体層2,3で、H面に当たる部分が貫通導体群4及び補助導体層5でそれぞれ形成されることになる。
【0024】
また、貫通導体群4の各列における貫通導体の間隔cは、信号波長の2分の1未満の間隔に設定されることで貫通導体群4により電気的な壁が形成できる。この間隔cは、望ましくは信号波長の4分の1未満であればよい。
間隔cが信号波長λの2分の1(λ/2)よりも大きいと、平行に配置された一対の導体層2,3間にはTEM波が伝搬できるため、この誘電体導波管線路6に電磁波を給電しても電磁波は貫通導体群4の間から漏れて、ここで作られる誘電体導波管線路に沿って伝搬してしまう。貫通導体群4の間隔cがλ/2よりも小さければ、電気的な側壁を形成することができ、電磁波は誘電体導波管線路6に対して垂直方向に漏洩することがなく、反射しながら誘電体導波管線路6の信号伝送方向に伝搬される。
【0025】
その結果、図1のような構成によれば、一対の導体層2,3と2列の貫通導体群4及び補助導体層5とによって囲まれる断面積a×bのサイズの誘電体領域が誘電体導波管線路6を規定する。
なお、図1に示した態様では貫通導体群4は2列に形成したが、この貫通導体群4を4列あるいは6列に配設して、貫通導体群4による導体壁を2重・3重に形成することにより導体壁からの電磁波の漏れをより効果的に防止することもできる。
【0026】
このような誘電体導波管線路6は、誘電体による伝送線路となるので、誘電体基板1の比誘電率をεr とすると、その導波管サイズは通常の導波管の1/√εrの大きさになる。従って、誘電体基板1を構成する材料の比誘電率εr を大きいものとするほど、導波管サイズを小さくすることができて、高周波回路の小型化を図ることができる。したがって、高密度に配線が形成される多層配線基板、半導体素子収納用パッケージ又は車間レーダの伝送線路としても好適に利用できる。
【0027】
なお、貫通導体群4を構成する貫通導体は、前述のように信号波長の2分の1未満の繰り返し間隔cで配設されており、この間隔cは良好な伝送特性を実現するためには一定の繰り返し間隔とすることが望ましいが、信号波長の2分の1未満の間隔であれば、適宜変化させたりいくつかの値を組み合わせたりしてもよい。
このような誘電体導波管線路6を構成する誘電体基板1の材質は、誘電体として機能し高周波信号の伝送を妨げることのない特性を有するものであればとりわけ限定されるものではないが、伝送線路を形成する際の精度及び製造の容易性の点からは、誘電体基板1はセラミックスから成ることが望ましい。
【0028】
このようなセラミックスとしては、これまで様々な比誘電率を持つセラミックスが知られているが、本発明に係る誘電体導波管線路によって高周波信号を伝送するためには、常誘電体であることが望ましい。これは、一般に強誘電体セラミックスは高周波領域では誘電損失が大きく、したがって導波管線路の伝送損失が大きくなるためである。
誘電体基板1を構成する常誘電体の比誘電率εr は4〜100 程度が適当である。
【0029】
一般に多層配線基板や半導体素子収納用パッケージ、あるいは車間レーダに形成される配線層の線幅は最大でも1mm程度である。このことから、誘電体導波管線路6の幅bを1mmとし、比誘電率εrが100 の常誘電体を用い、上部がH面、すなわち磁界が上側の面に平行に巻く電磁界分布になるように用いた場合は、使用することのできる最小の周波数は15GHzと算出される。したがって、マイクロ波帯の領域で十分利用可能となる。
【0030】
一方、誘電体基板として一般的に用いられる樹脂からなる誘電体は、比誘電率εr が2程度であるため、線幅が1mmの場合は約100 GHz以上でないと利用することができないものとなる。
また、全ての常誘電体セラミックスが利用可能であるわけではない。誘電体導波管線路の場合は導体による損失はほとんどなく、信号伝送時の損失のほとんどは誘電体による損失で決まる。その誘電体による損失α(dB/m)は次のように表わされる。
【0031】
α=27.3×tanδ/〔λ/{1−(λ/λc )1/2 〕 (1)
式(1)中、tanδは誘電体の誘電正接、λは誘電体中の波長、λcは遮断波長である。規格化された矩形導波管(WRJシリーズ)形状に準ずると、上式中の{1−(λ/λc )1/2 は0.75程度である。
従って、実用に供し得る伝送損失である−100 dB/m又はそれ以下を実現するには、次の関係が成立するように誘電体を選択することが必要である。
【0032】
f×√εr ×tanδ≦0.8 (2)
式(2)中、fは使用する高周波信号の周波数(GHz)である。
例えば、使用する高周波信号の周波数を10〜100GHzとした場合、前記の不等式を満たす常誘電体材料としては、アルミナセラミックスや窒化アルミニウムセラミックス、ガラスセラミックスなどの低温焼成セラミックス(後述)から選ばれる少なくとも1種であることが望ましい。
【0033】
次に、このような誘電体導波管線路を用いた、本発明の誘電体導波管線路と導波管との接続構造の形態例を図2及び図3に示す。
図2は、誘電体導波管線路6の上下一対の導体層2,3のうち、上側に位置する導体層2の上に、高周波信号の伝送方向が直交するように、内部が中空の金属壁で構成された方形導波管8の開口端面9を、誘電体層16を介して当接させた接続構造を示す分解斜視図である。また図3(a)は、同接続構造を示す側断面図である。
【0034】
表示を簡単にするために誘電体導波管線路6は、上下一対の導体層2,3及び貫通導体群4から構成される輪郭で表示し、この輪郭外部に存在する誘電体基板1の図示は省略している。なお誘電体導波管線路6の終端面も、前述したように貫通導体群4が配置されているが、これも輪郭で表示している。
この例では、誘電体導波管線路6において導体層2,3がH面となり、貫通導体群4による疑似的な導体壁がE面となる。
【0035】
誘電体導波管線路6の終端面の近くの導体層2には、高周波信号の結合用の開口として設けた、導体層2が存在しない結合用窓7がある。方形導波管8は、図3に示すように、誘電体層16を介して導体層2に間接的に当接されている。両者は電気的に導通している必要はない。また図3からわかるように、接続部構造の表層部分は誘電体層16に覆われているために導体層2が露出しておらず、導体層2の腐食が発生しない構造となっている。またメッキの必要性も無いことからコスト低減が可能となっている。
【0036】
方形導波管8より電磁波が入射した時を考える。シングルモードの場合、図3(b)に示すように、方形導波管8内では、電界は断面の短手方向に平行なベクトルV1を有するが、それが結合用窓7を介し誘電体導波管線路6内に入射した後は、誘電体導波管線路6の短手方向に平行なベクトルV2に方向変換される。その際、誘電体層16の厚みtが伝送信号の半波長よりも大きい場合は、誘電体層16内を横方向に伝送可能な平行平板モード(TEMモード)、すなわち、方形導波管8内のベクトルと直交する電界ベクトルが発生することとなり、その結果、誘電体層16の側面から信号が漏洩しやすくなる。これに対して、誘電体層16の厚みtを伝送信号の半波長以下、望ましくは4分の1波長以下とすることにより、前記の平行平板モードの発生を抑制することができ、誘電体層16の側面から電磁波が漏洩するのを防止することができる。
【0037】
本発明の誘電体導波管線路6と方形導波管8との接続構造における結合用窓7の位置・形状及び大きさについては、接続構造に要求される周波数特性、結合量及び反射量が複雑に関与する。このため、要求される周波数特性を満足するように電磁界解析により繰り返し計算することによって、所望の接続特性を有する結合用窓7の位置、形状及び大きさ等が決定されることとなる。
これらの材料により誘電体基板1、誘電体層16を形成するには、例えば前述した常誘電体材料のセラミックス原料粉末に適当な有機溶剤・溶媒を添加混合して泥漿状になすとともに、これを従来周知のドクターブレード法やカレンダーロール法等を採用してシート状となすことによって複数枚のセラミックグリーンシートを得る。しかる後、これらセラミックグリーンシートの各々に適当な打ち抜き加工を施すとともにこれらを積層し、アルミナセラミックスの場合は1300〜1700℃、低温焼成セラミックスの場合は850 〜1050℃、窒化アルミニウムセラミックスの場合は1500〜1900℃の温度で焼成することによって、誘電体基板1や誘電体層16を製作する。
【0038】
また、一対の導体層2,3は、例えば誘電体基板1や誘電体層16がアルミナセラミックスから成る場合には、タングステン等の金属粉末に適当なアルミナ、シリカ、マグネシア等の酸化物や有機溶剤・溶媒等を添加混合してペースト状にしたものを用いて厚膜印刷法により、少なくとも伝送線路部分を完全に覆うようにセラミックグリーンシート上に印刷する。しかる後、グリーンシートとともに約1600℃の高温で焼成して形成する。なお、金属粉末としては、低温焼成セラミックスの場合は銅、金、銀が、窒化アルミニウムセラミックスの場合はタングステン、モリブデンが好適である。また、導体層2,3の厚みは5〜50μm程度とする。
【0039】
また、貫通導体群4を構成する貫通導体は、例えばビアホール導体やスルーホール導体等により形成すればよい。その断面形状は製作が容易な円形の他、矩形や菱形等の多角形であってもよい。これら貫通導体は、例えばセラミックグリーンシートに打ち抜き加工を施して作製した貫通孔に導体層2,3と同様の金属ペーストを埋め込み、しかる後、誘電体基板1と同時に焼成して形成する。なお、貫通導体の直径は50〜300 μmが適当である。
【0040】
また、上で詳述した本発明の誘電体導波管線路と方形導波管の接続構造によれぱ、特に誘電体基板1、誘電体層16は、低温焼成セラミックスを用いて作製されることが望ましい。低温焼成セラミックスは、焼成温度が低いため、導電率の高い銅、あるいは銀を導体に用いることができる。このため導体損を低減できる利点があり、接続部のメッキが不要なためコストを低減できる。また低温焼成セラミックスは、一般的な有機基板に比べて誘電率を高く調整できるため、構造をコンパクトにできるメリットもある。さらに、信頼性の観点から有機基板と異なり耐水蒸気性が高いため高信頼性が得られる。
【0041】
低温焼成セラミックスとしては、SiOを必須成分とし、Al、アルカリ土類酸化物(BaO,CaO,SrO,MgOなど)、アルカリ金属酸化物(LiO,NaO,KOなど)、Fe,B,CuOの群から選ばれる少なくとも一種を組み合わせた酸化物混合系、また、酸化物の混合物を溶融後、急冷して作成されたガラス系、又はこのガラスに、石英(SiO)、Al、アルカリ土類酸化物(BaO,CaO,SrO,MgOなど)、アルカリ金属酸化物(LiO,NaO,KOなど)、Fe,B,CuOなどの単独酸化物、又は2種以上の複合酸化物、AlN、窒化珪素、炭化珪素の群から選ばれる少なくとも1種のセラミックフィラーを添加混合した、いわゆるガラスセラミックスなどがあげられる。なお、前記ガラスとしては、焼成後も非晶質のままである非晶質ガラス、または焼成後に結晶化する結晶化ガラスのいずれでもよい。
【0042】
図4は、本発明の誘電体導波管線路と導波管との接続構造の他の形態例を示す分解斜視図である。この例では、誘電体導波管線路6と方形導波管8とを誘電体層16及び誘電体共振器11を介して接合している。
図4において2,3は一対の導体層、4は貫通導体群、6が誘電体導波管線路、11は誘電体共振器である。この例では、誘電体導波管線路6において導体層2,3がH面となり、貫通導体群4による疑似的な導体壁がE面となる。
【0043】
誘電体共振器11は、誘電体基板1において、導体層2,3のそれぞれ延長となる一対の導体層2,3及びそれら一対の導体層2,3を電気的に導通させる貫通導体群4に囲まれて形成されている。
図5は、誘電体共振器11を示す平面図である。誘電体共振器11は、図5に示すように、誘電体導波管線路6の終端部近くで、一定の長さdにわたって貫通導体群4の幅bをb′(b′>b)に広げて配置し、終端を閉じることによって形成することができる。この誘電体共振器11の共振特性は、幅b′及び幅dを調整することによって制御できる。
【0044】
また誘電体共振器11の上側導体層2には、図3と同様、高周波信号の結合用の開口として結合用窓7を設けている。
また、図4に示される番号8は内部が中空の金属壁で構成された方形導波管であり、その開口端面9が誘電体層16を介して、高周波信号の伝送方向が直交するように誘電体共振器11の導体層2に当接させて配置されている。
この接続構造においては、方形導波管8内の導波管断面の短手方向に平行な電界ベクトルから、結合用窓7を介して誘電体導波管線路6内にて誘電体導波管線路6の断面の短手方向に平行な電界ベクトルに方向変換される際、誘電体共振器11で共振が作用し、電界方向が変わることによって乱れた位相が共振器11内で調整され、そろった位相で誘電体導波管線路6へ伝送することができるため、方向変換時の反射が減り、信号透過特性が向上する。
【0045】
この実施形態においても、本発明の誘電体導波管線路6と方形導波管8との接続構造において結合用窓7を形成しているが、この位置、形状及び大きさについては、接続構造に要求される周波数特性、結合量及び反射量が複雑に関与する。このため、要求される周波数特性を満足するように電磁界解析により繰り返し計算することによって、所望の接続特性を有する結合用窓7の位置、形状及び大きさ等が決定されることとなる。
【0046】
さらに、本発明の誘電体導波管線路と導波管との接続構造の他の形態例をいくつか説明する。
本発明の誘電体導波管線路6と方形導波管8との接続構造においては、接続構造で発生した反射が、誘電体導波管線路6の先に接続される回路部分、あるいは方形導波管8の先に接続される回路部分に悪い影響を与える可能性がある。そこで、本接続構造では、誘電体導波管線路6に電磁界整合部を備えている。
【0047】
図6は、誘電体導波管線路6と方形導波管8との他の接続構造を示す斜視図であり、表示を簡単にするため方形導波管8、誘電体層16は省略し、共振器11、誘電体導波管線路6のみを示した。図4と同様の箇所には同じ符号を付してある。
この実施形態によれば、共振器11の後段側に電磁界整合部20が設けられている。誘電体導波管線路6の高さを誘電体導波管線路6の高さから変更した部分(この例では、高さを低くしている。)が、電磁界整合部20に相当する。この電磁界整合部20は、誘電体共振器11からの電磁界をさらに誘電体導波管線路6で伝送する電磁界モードにあわせ、誘電体導波管線路と方形導波管との接続部における反射を低減するために機能する部分である。
【0048】
誘電体導波管線路6の高さの変更は、例えば図1に示した誘電体基板1として、2枚の誘電体基板を用意し、電磁界整合部20以外の部分は2枚の誘電体基板を重ね合わせて構成し、電磁界整合部20の形成部分のみ1枚の誘電体基板で構成することにより、実現することができる。電磁界整合部20の高さは、用いる誘電体基板の厚さを選定することにより、任意に設定することができる。
電磁界整合部の例として、図6に示すような誘電体導波管線路6の高さを変えた構造の他に、図7に示すような誘電体導波管線路6の幅を変えた電磁界整合部21の構造を採用してもよい。図7の例では、電磁界整合部21の幅を誘電体導波管線路6の幅よりも大きくしている。幅の変更は、貫通導体4のスルーホールやビアホールの形成位置を変更することにより、簡単に実現できる。
【0049】
また、図8のように誘電体導波管線路6の一部分22を、誘電体導波管線路6で用いている誘電体とは異なる誘電率をもつ物質で構成してもよい。この構造は、例えば、誘電体基板の電磁界整合部分を除去し、代わりに異なる誘電率の誘電体を接合したり、誘電体基板を形成するセラミックスグリーンシートの電磁界整合部分に所定の孔を設け、その中に異種誘電体ペーストを埋め込み、積層し、同時焼成することによって製造することができる。
【0050】
また、図9のようにピン導体15を誘電体導波管線路6の中に配置した構造の電磁界整合部23を採用しても、電磁界整合効果が得られる。なお、図9でピン導体15の高さは誘電体導波管線路6と同じ高さであってもよいが、必ずしも同じ高さである必要は無く、たとえば誘電体導波管線路6の高さの半分でもよい。半分の高さのピン導体を形成するには、例えば図1に示した誘電体基板1として、2枚の誘電体基板を用意し、そのうち1枚の誘電体基板のみに対してスルーホールやビアホールを形成し、その中に金属ペーストで埋めて、その上から2枚目の誘電体基板を重ね合わせることにより実現することができる。
【0051】
さらに、異なる構造の複数の電磁界整合部を組み合わせた構造も効果があり、例えば図10に示すように、誘電体導波管線路の高さを変えて構成される電磁界整合部20と、ピン導体15をもって構成される電磁界整合部23とを両方有する構造なども、反射防止と高周波特性向上に効果がみられる。
図9、図10に示した誘電体導波管線路6に設けたピン導体15は、信号が誘電体導波管線路6から伝搬してきた場合、方形導波管8との接続構造で発生した反射波を打ち消す働きを担っている。つまり、方形導波管8との接続構造で反射された波と180度位相の異なる反射波をピン導体15で発生させ、反射波を抑える構造となっている。そのため基本的には、ピン導体15は、結合用窓7の中心から1波長内に設ければ機能する。ただし、その箇所から波長の整数倍離れた箇所に設置しても同様の働きが期待でき、必ずしも設置場所を一波長内に特定する必要はない。
【0052】
以上の電磁界整合部20,21,22,23は、放射を伴わない受動素子として機能するため、上記に示した反射低減効果は、電磁波が誘電体導波管線路6から方形導波管8に伝搬するときのみならず、電磁波が方形導波管8から誘電体導波管線路6に伝搬するときも成立する。
次に、本発明の誘電体導波管線路と導波管との接続構造の応用例を説明する。
図11は、誘電体導波管線路6をアンテナ基板1a内に内蔵し、方形導波管8からアンテナへの給電を行う場合の、誘電体導波管線路6と方形導波管8の接続構造を示す透視斜視図である。この接続構造により信頼性が高く反射損失の少ないアンテナ基板を作成できる。なお、この図11では誘電体導波管線路6の片側の導体層に切り欠き24aを設けたスロットアンテナ24を示したが、スロットあるいはビア導体を介して給電するパッチアンテナを用いても問題は無く、アンテナ形態には依存しない。
【0053】
また、図12は、フィルター基板1bに本発明の誘電体導波管線路6と方形導波管8の接続構造を適用した例を示す透視斜視図である。この構成においても、本発明の誘電体導波管線路6と方形導波管8の接続構造により、高信頼性が得られフィルター反射損失を低減できる。また接続部のメッキが不要なためコストを低減できる。このとき、フィルター基板1bに形成されるフィルター25の形態は、図12に示した誘電体を用いるものには限らず、ストリップラインなどを用いたフィルターでもよい。
【0054】
【実施例】
図2に示した構成の誘電体導波管線路と導波管との接続構造を作製し、以下のようにして信頼性試験を行った。
信頼性試験は、温度150℃、−65℃の条件で行い150℃と−65℃でそれぞれ30分保持し1000サイクル行った。本発明の誘電体導波管線路と導波管との接続構造を有する誘電体基板と、特開平12−196301号に示された表層導体部を伴う接続構造を有する誘電体基板との外観比較を行ったところ、本発明品では信頼性試験後外観に変化は無かったが、後者の基板ではメタライズ表層部にシミや腐食による変色など外観不良になったものが存在した。これにより、本発明の誘電体導波管線路と導波管との接続構造が信頼性に優れるものであるということがわかる。
【0055】
またさらに本発明品の高周波特性を評価するために、Sパラメータのシミュレーションを行った。方形導波管8にはWR−15、つまり高周波信号の伝送方向に垂直な断面の寸法が3.76mm×1.88mmのものを用いた。誘電体導波管線路6を作製するための誘電体基板1には比誘電率εr が4.9 の銅導体同時焼成ガラスセラミックスを用い、貫通導体はφ0.2mmのビアで形成した。2列の貫通導体群4の間隔bはビアの中心間距離で3.0mm、一対の導体層2,3の間隔aは0.6mmとした。また、導体層には結合用窓7として1.12mm×1.62mmの開口を設けた。このような誘電体導波管線路6の結合用窓7を覆うように厚み0.1mmの誘電体層16を介して方形導波管8の開口端面9を導体層2に当接させた。
【0056】
この接続構造について、方形導波管8から誘電体導波管線路6へ高周波信号を伝送したときの高周波信号の伝送特性を図13に示す。
図13はSパラメータの周波数特性を示す線図であり、横軸は周波数(GHz)を、縦軸はSパラメータの値(dB)を表わしている。図中の特性曲線は、Sパラメータのうち反射係数(S11)及び透過係数(S21)の周波数特性を示している。破線が反射係数(S11)、実線が透過係数(S21)である。
【0057】
つぎに、方形導波管8を誘電体層16及び共振器11を介して誘電体導波管線路6に接続した図4の構造を製作し、Sパラメータを測定した結果が図14である。共振器11の大きさはそれを形成するビア4の中心間距離で3.4mm×1.59mmとした。Sパラメータの周波数特性を求めたところ、反射係数(S11)が58.7GHz近傍と60.0GHz近傍で極小になり、透過係数(S21)が極大となり、図13に比べて反射が減少し、透過係数(S21)の信号透過特性が向上していることがわかる。
【0058】
またさらに、電磁界整合部として図6に示したような高さの異なる誘電体導波管線路部を設けた場合のSパラメータの周波数特性を図15に示す。電磁波整合部20の長さは1.11mm、電磁波整合部20における上下の導体層の間隔が0.3mm、電磁波整合部20の中心位置は結合用窓中心部から1.545mmである。この電磁波整合部20により、図15にあるように、反射係数(S11)がさらに減少し、信号透過特性が向上していることがわかる。
【0059】
さらに、図10に示したように誘電体導波管線路の高さを変えて構成した電磁界整合部20に、さらにピン導体15で構成した電磁界整合部23を備えた誘電体導波管線路6を作製した。ここでピン導体15の高さは0.3mmであり、高さの異なる電磁界整合部20の端面から1.665mm、貫通導体4から0.365mmの箇所に2本設置した。この場合のSパラメータの周波数特性を図16に示す。この構造は図15に比べてさらに高周波特性が向上していることがわかる。
【0060】
以上で、本発明の実施の形態を説明したが、本発明の実施は、前記の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更・改良を施すことは何ら差し支えない。
【0061】
【発明の効果】
以上のように本発明によれば、誘電体導波管線路の一方の導体層に設けた結合用窓に、誘電体層を介して高周波信号の伝送方向が異なるように開口端面を対向させた導波管を接続することにより、構造が単純で、信頼性が高く製造コストの低い誘電体導波管線路と導波管との接続構造を提供できる。
さらに前記誘電体導波管線路に、前記貫通導体と前記一対の導体層を用いた共振器を作製し、該共振器の一方の導体層に前記結合用窓を形成して、この結合用窓に対して高周波信号の伝送方向が所定方向になるように誘電体層を介して導波管の開口端面を接続することにより、反射を低減でき、信号透過特性の優れた接続構造を提供できる。
【0062】
また、前記誘電体導波管線路に、高周波信号の伝送時の反射を低減するための電磁界整合部を形成することにより、信号伝送損失が低減可能となり、高周波伝送特性がさらに向上した接続構造を実現することができる。
また、本発明の誘電体導波管線路と導波管との接続構造をアンテナ基板及びフィルター基板に用いることにより、信頼性が高く、かつ製造コストの低いアンテナ基板及びフィルター基板を提供できる。
【図面の簡単な説明】
【図1】本発明に用いる誘電体導波管線路の内部構造を説明するための概略斜視図である。
【図2】本発明の誘電体導波管線路と導波管との接続構造の一例を示す分解斜視図である。
【図3】同接続構造を示すX−X線側断面図(a)及び電界ベクトルを示す図(b)である。
【図4】本発明の、誘電体共振器が形成された誘電体導波管線路と導波管との接続構造の例を示す分解斜視図である。
【図5】誘電体導波管線路に形成される誘電体共振器を示す平面図である。
【図6】本発明の、誘電体導波管線路の断面の高さを変えた電磁界整合部が形成された誘電体導波管線路と、導波管との接続構造を示す斜視図である。
【図7】本発明の、誘電体導波管線路の断面の幅を変えた電磁界整合部が形成された誘電体導波管線路と導波管との接続構造を示す斜視図である。
【図8】本発明の、誘電体導波管線路の誘電体材料を変えた電磁界整合部が形成された誘電体導波管線路と導波管との接続構造を示す斜視図である。
【図9】本発明の、誘電体導波管線路内にピン導体を配置した電磁界整合部が形成された誘電体導波管線路と導波管との接続構造を示す斜視図である。
【図10】本発明の、誘電体導波管線路の断面の高さを変えた電磁界整合部と、誘電体導波管線路内にピン導体を配置した電磁界整合部が形成された誘電体導波管線路と導波管との接続構造を示す斜視図である。
【図11】本発明の誘電体導波管線路と導波管との接続構造を内蔵するアンテナ基板の例を示す斜視図である。
【図12】本発明の誘電体導波管線路と導波管との接続構造を内蔵するフィルター基板の例を示す斜視図である。
【図13】誘電体導波管線路と導波管との接続構造におけるSパラメータの周波数特性を示す線図である。
【図14】誘電体導波管線路に共振器とを設けた場合の誘電体導波管線路と導波管との接続構造におけるSパラメータの周波数特性を示す線図である。
【図15】誘電体導波管線路に共振器と電磁界整合部とを設けた場合の誘電体導波管線路と導波管との接続構造におけるSパラメータの周波数特性を示す線図である。
【図16】誘電体導波管線路に共振器と2種類の電磁界整合部とを設けた場合の誘電体導波管線路と導波管との接続構造におけるSパラメータの周波数特性を示す線図である。
【符号の説明】
1 誘電体基板
1a アンテナ基板
1b フィルター基板
2、3 導体層
4 貫通導体群
5 補助導体層
6 誘電体導波管線路
7 結合用窓
8 方形導波管
9 開口端面
11 誘電体共振器
15 ピン導体
16 誘電体層
20〜23 電磁界整合部
24 スロットアンテナ
25 フィルター
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a connection structure between a dielectric waveguide line and a waveguide for transmitting a high-frequency signal such as a microwave band or a millimeter-wave band. The present invention relates to a connection structure between a dielectric waveguide line and a waveguide, which can be connected with high loss and low loss.
[0002]
[Prior art]
2. Description of the Related Art In recent years, research on mobile communication and inter-vehicle radar using a high-frequency signal in a microwave band, a millimeter wave band, or the like has been actively conducted. In a high-frequency circuit that handles such communication, a transmission line for transmitting a high-frequency signal is required to be small and have small transmission loss. In particular, since the transmission line can be formed on or in the substrate constituting the high-frequency circuit, it is advantageous in terms of miniaturization. Conventionally, such a transmission line is a strip line, a microstrip line, a coplanar line, Dielectric waveguide lines and the like have been used.
[0003]
Among these, the strip line, the microstrip line, and the coplanar line are composed of a dielectric substrate, a line conductor layer, and a ground (ground) conductor layer. Through which the electromagnetic wave of the high-frequency signal propagates. These lines can transmit signals well up to the 30 GHz band, but there is a problem that transmission loss easily occurs at 30 GHz or higher.
On the other hand, a waveguide type transmission line is advantageous in that transmission loss is small even in a millimeter wave band of 30 GHz or more.
[0004]
Among them, the rectangular waveguide has a structure in which electromagnetic waves propagate in air surrounded by a metal wall having a rectangular cross section, and transmission loss is extremely low even in a millimeter wave band of 30 GHz or more because there is no loss due to a dielectric substance. Is small.
However, since the length of the line cross section in the longitudinal direction needs to be half or more of the signal wavelength to be propagated, there is a problem that it is difficult to perform high-density wiring with large dimensions. In addition, there is also a problem that since it is made of a metal wall, it is difficult to perform high-precision processing and the processing cost is high.
[0005]
In contrast, a dielectric waveguide line, which is a transmission line that can be formed in a dielectric multilayer substrate, taking advantage of the excellent transmission characteristics of a waveguide, is a region surrounded by a conductor wall or a pseudo conductor wall. Since the structure is filled with a dielectric material, there is a transmission loss due to the dielectric material. However, if a dielectric material having a small loss is used, the transmission loss can be reduced to a practically acceptable level. If a signal is to be propagated in the same frequency range as that of a rectangular waveguide, there is an advantage that when the relative permittivity of the dielectric is εr, the cross-sectional size of the line can be reduced to 1 / √εr.
[0006]
For example, in JP-A-6-53711, a dielectric waveguide in which a dielectric substrate is sandwiched between a pair of main conductor layers, and a side wall is formed by a plurality of via holes arranged in two rows connecting the main conductor layers. Tracks have been proposed. In this dielectric waveguide line, a region in the conductor wall is used as a signal transmission line by surrounding four sides of the dielectric material with a pseudo conductor wall formed by a pair of main conductor layers and via holes. According to such a configuration, the configuration becomes very simple, and the size of the entire apparatus can be reduced.
[0007]
Furthermore, Japanese Patent Application Laid-Open No. H10-75108 proposes a dielectric waveguide line having a multilayer structure formed in a dielectric substrate. This is called a laminated waveguide, and the above-described dielectric waveguide line is formed of a dielectric layer, a pair of main conductor layers, and a group of through conductors. By forming the sub-conductor layer, the side wall as an electric wall is strengthened. In the above-described dielectric waveguide line, when an electric field that is not parallel to the through conductor exists in the waveguide, electric field leakage from the side wall may occur. Such an electric field leakage is less likely to occur, and the present invention is excellent.
[0008]
[Patent Document 1] JP-A-6-53711
[Patent Document 2] JP-A-10-75108
[Patent Document 3] JP-A-2000-196301
[0009]
[Problems to be solved by the invention]
However, for a high-frequency circuit configured using a dielectric waveguide line, for example, in order to connect to a measuring device such as a network analyzer for measuring and evaluating high-frequency characteristics, the dielectric waveguide line is directly connected. It is difficult to perform the measurement, and the connection can be easily made through the rectangular waveguide, so that more accurate measurement can be performed.
Also, when a dielectric waveguide line is connected to an active circuit such as an MMIC (microwave monolithic integrated circuit), the connection is facilitated through the rectangular waveguide, and the entire circuit can be miniaturized. .
[0010]
Therefore, a connection structure between a rectangular waveguide and a dielectric waveguide line having good transmission characteristics has been required.
As a method for solving this problem, Japanese Patent Application Laid-Open No. 2000-196301 proposes a connection structure between a rectangular waveguide and a dielectric waveguide line. And the corrosion of the through conductor, and the corrosion of the inner layer conductor via the through conductor. In some cases, gold plating is performed to improve the reliability of the surface conductor, but this is expensive and has been a major factor in cost increase.
[0011]
SUMMARY OF THE INVENTION An object of the present invention is to provide a dielectric waveguide line and a waveguide that can be connected with low loss by improving the reliability at the connection part, reducing the manufacturing cost, and reducing the reflection of high-frequency signals. And to provide a connection structure.
[0012]
[Means for Solving the Problems]
The connection structure between the dielectric waveguide line and the waveguide according to the present invention includes a dielectric substrate, a pair of conductor layers formed on both surfaces of the dielectric substrate, and a half of the signal wavelength in the transmission direction of the high-frequency signal. A dielectric waveguide comprising two rows of through conductor groups formed by electrically connecting the conductor layers at a repetition interval of less than 1 and at a predetermined width in a direction orthogonal to the transmission direction. A line is provided, a coupling window is provided in one of the pair of conductor layers, and the coupling window is opposed to the coupling window via a dielectric layer such that the transmission end of the high-frequency signal is different. Characterized in that the waveguides are connected.
[0013]
This dielectric waveguide line transmits a high-frequency signal through a transmission region surrounded by the pair of conductor layers and the through conductor group. By forming the connection structure, a high-frequency signal can be transferred to the waveguide through the coupling window provided in one of the conductor layers of the dielectric waveguide. With such a simple connection structure, it is possible to realize a connection between the dielectric waveguide line and the waveguide, which is excellent in the coupling efficiency of the high-frequency signal, high in reliability, and low in manufacturing cost.
[0014]
Further, a resonator including the through conductor and the pair of conductor layers is formed in the dielectric waveguide, and a structure in which the coupling window is formed in one conductor layer of the resonator is used. Thereby, the high-frequency transmission characteristics at the connection portion can be improved.
Further, if the dielectric waveguide line includes an electromagnetic field matching unit for reducing reflection during transmission of a high-frequency signal, it is possible to further improve high-frequency transmission characteristics at the connection unit.
[0015]
Specific shapes of the electromagnetic field matching section include a structure in which the cross-section height of the dielectric waveguide line is different, a structure in which the cross-section width of the dielectric waveguide line is different, and a dielectric structure different from the dielectric waveguide line. And a structure in which a pin conductor is arranged in a dielectric waveguide line. By providing one of the structures or a structure combining two or more of these, reflection at the connection portion can be suppressed, adverse effects on other circuits and elements can be reduced, and high-frequency characteristics can be further improved.
[0016]
In addition, since the dielectric substrate is made of low-temperature fired ceramics, it is possible to form various conductor layers using a low-resistance metal. .
The present invention is applicable to any waveguide having any structure, but may be, for example, a rectangular waveguide.
The transmission direction of the high-frequency signal between the dielectric waveguide line and the waveguide can intersect at an arbitrary angle, and this angle may be, for example, approximately 90 °.
[0017]
Further, in the antenna substrate of the present invention, the dielectric waveguide line is provided on the antenna substrate, and a coupling window is formed on one of the pair of conductor layers formed above and below the dielectric waveguide line. The power supply waveguide is connected to the coupling window via a dielectric layer so that the opening end faces face each other so that the transmission direction of the high-frequency signal is different.
Also, the filter substrate of the present invention is provided with the dielectric waveguide line on the filter substrate, and a coupling window is formed on one of the pair of conductor layers formed above and below the dielectric waveguide line. And a power feeding waveguide whose opening end faces are opposed to each other through the dielectric layer so that the transmission direction of the high-frequency signal is different, to the coupling window.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a connection structure between a dielectric waveguide line and a waveguide according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic perspective view for explaining a structural example of a dielectric waveguide line used in the present invention.
In FIG. 1, reference numeral 1 denotes a dielectric substrate having a predetermined thickness a extending in a transmission direction A of a high-frequency signal. Reference numerals 2 and 3 denote a pair of conductor layers formed on the upper and lower surfaces of the dielectric substrate 1. Reference numeral 4 denotes two rows formed in the dielectric substrate 1 and arranged along the transmission direction A of the high-frequency signal. This is a through conductor group.
[0019]
The through conductor group 4 electrically connects the pair of conductor layers 2 and 3, and each through conductor is formed of a through-hole conductor, a via-hole conductor, or the like. Two rows of through conductor groups 4 are formed by these many through conductors. As shown in the figure, the through conductor group 4 has a predetermined repetition interval c of less than half the signal wavelength in the transmission direction A of the high-frequency signal, that is, the line forming direction, and a predetermined repetition interval in a direction orthogonal to the transmission direction A. It is formed with a constant interval (width) b. Thus, an electric side wall for the dielectric waveguide line 6 is formed.
[0020]
The pair of conductor layers 2 and 3 and the through conductor group 4 form a dielectric waveguide line 6 having a height a and a width b on a part of the dielectric substrate 1.
Reference numeral 5 denotes an auxiliary conductor layer formed in the dielectric substrate 1 in parallel with the conductor layers 2 and 3 for electrically connecting the through conductors forming each column of the through conductor group 4. Is appropriately provided according to the conditions. In the case where the auxiliary conductor layer 5 is provided, for example, the dielectric substrate 1 is composed of two dielectric substrates each having a half thickness, and a dielectric waveguide line 6 is provided between the dielectric substrates. The auxiliary conductor layer 5 can be formed by forming a metal layer on the non-formed portion and bonding them together.
[0021]
By forming the dielectric waveguide line 6 in a region surrounded by the pair of conductor layers 2 and 3 and the through conductor group 4 (including the auxiliary conductor layer 5 if any), the dielectric waveguide line 6 is formed. When viewed from the inside of the body waveguide line 6, its upper and lower walls are surrounded by a pair of conductor layers 2 and 3, and its side walls are surrounded by a through conductor group 4. With this structure, electromagnetic waves in various directions are shielded. Further, if the auxiliary conductor layer 5 is formed, the side wall thereof is divided into a finer lattice by the auxiliary conductor layer 5, and the effect of shielding electromagnetic waves is increased.
[0022]
Although the conductor layers 2 and 3 are formed over the entire upper and lower surfaces of the dielectric substrate 1 as shown in FIG. 1, they need not necessarily be formed over the entire upper and lower surfaces of the dielectric substrate 1, What is necessary is just to form on the upper and lower surfaces which sandwich the formation part of the body waveguide line 6.
Although not shown, through-conductor groups 4 similar to the side walls are arranged at the same pitch c on the terminal surface of the dielectric waveguide line 6 so as to surround the terminal surface. Thus, a structure in which the end surface of the dielectric waveguide line 6 is electrically closed can be formed.
[0023]
There is no particular limitation on the thickness a of the dielectric substrate 1, that is, the distance between the pair of conductor layers 2 and 3, but the thickness a is greater than the distance b when the dielectric waveguide line 6 is used in a single mode. It is preferable to set it to about 1/2 or about 2 times. In the example of FIG. 1, the thickness a is about one half of the distance b, the portions corresponding to the H-plane of the dielectric waveguide line 6 are the conductor layers 2 and 3, and the portions corresponding to the E-plane are the through conductors. The group 4 and the auxiliary conductor layer 5 are respectively formed. If the thickness a is about twice as large as the distance b, the portions corresponding to the E-plane of the dielectric waveguide line 6 are the conductor layers 2 and 3, and the portions corresponding to the H-plane are the through conductor group 4 and the auxiliary conductor layer. 5 respectively.
[0024]
Further, by setting the distance c between the through conductors in each row of the through conductor group 4 to be less than half the signal wavelength, an electric wall can be formed by the through conductor group 4. This interval c is desirably less than a quarter of the signal wavelength.
If the distance c is larger than one half (λ / 2) of the signal wavelength λ, a TEM wave can propagate between the pair of conductor layers 2 and 3 arranged in parallel. Even if the electromagnetic wave is supplied to the electromagnetic wave 6, the electromagnetic wave leaks from between the through conductor groups 4 and propagates along the dielectric waveguide line formed here. If the distance c between the through conductor groups 4 is smaller than λ / 2, an electric side wall can be formed, and the electromagnetic wave is reflected without leaking to the dielectric waveguide line 6 in the vertical direction. The light propagates in the signal transmission direction of the dielectric waveguide line 6.
[0025]
As a result, according to the configuration as shown in FIG. 1, a dielectric region having a cross-sectional area a × b surrounded by the pair of conductor layers 2 and 3 and the two rows of through conductor groups 4 and the auxiliary conductor layer 5 forms a dielectric region. The body waveguide line 6 is defined.
In the embodiment shown in FIG. 1, the through conductor groups 4 are formed in two rows. However, the through conductor groups 4 are arranged in four or six rows so that the conductor walls formed by the through conductor groups 4 are double and three rows. The double-layered structure can more effectively prevent leakage of electromagnetic waves from the conductor wall.
[0026]
Since such a dielectric waveguide line 6 is a transmission line made of a dielectric material, assuming that the relative permittivity of the dielectric substrate 1 is εr, the waveguide size is 1 / √εr of a normal waveguide. Of the size. Therefore, as the relative dielectric constant εr of the material forming the dielectric substrate 1 is increased, the size of the waveguide can be reduced, and the size of the high-frequency circuit can be reduced. Therefore, it can be suitably used as a multilayer wiring board on which wiring is formed at a high density, a package for housing semiconductor elements, or a transmission line of an inter-vehicle radar.
[0027]
The through conductors forming the through conductor group 4 are arranged at a repetition interval c of less than half the signal wavelength as described above, and this interval c is necessary to realize good transmission characteristics. Although it is desirable that the interval is a constant repetition interval, the interval may be appropriately changed or some value may be combined as long as the interval is less than half the signal wavelength.
The material of the dielectric substrate 1 constituting the dielectric waveguide line 6 is not particularly limited as long as it has a characteristic that functions as a dielectric and does not hinder transmission of a high-frequency signal. The dielectric substrate 1 is desirably made of ceramics from the viewpoint of the accuracy in forming the transmission line and the ease of manufacture.
[0028]
As such ceramics, ceramics having various relative dielectric constants have been known so far. However, in order to transmit a high-frequency signal by the dielectric waveguide line according to the present invention, the ceramic must be paraelectric. Is desirable. This is because ferroelectric ceramics generally have a large dielectric loss in a high-frequency region, and therefore a large transmission loss of a waveguide line.
The relative dielectric constant εr of the paraelectric material constituting the dielectric substrate 1 is suitably about 4 to 100.
[0029]
Generally, the line width of a wiring layer formed on a multilayer wiring board, a package for housing semiconductor elements, or an inter-vehicle radar is at most about 1 mm. From this, it is assumed that the width b of the dielectric waveguide line 6 is 1 mm, a paraelectric substance having a relative dielectric constant εr of 100 is used, and the upper surface is an H plane, that is, the electromagnetic field distribution is such that the magnetic field is wound parallel to the upper surface. When used, the minimum usable frequency is calculated as 15 GHz. Therefore, it can be sufficiently used in the microwave band.
[0030]
On the other hand, a dielectric made of a resin generally used as a dielectric substrate has a relative dielectric constant εr of about 2, and therefore cannot be used unless the line width is about 100 GHz or more when the line width is 1 mm. .
Also, not all paraelectric ceramics are available. In the case of a dielectric waveguide line, there is almost no loss due to the conductor, and most of the loss during signal transmission is determined by the loss due to the dielectric. The loss α (dB / m) due to the dielectric is expressed as follows.
[0031]
α = 27.3 × tan δ / [λ / {1- (λ / λc) 21/2 ] (1)
In equation (1), tan δ is the dielectric loss tangent of the dielectric, λ is the wavelength in the dielectric, and λc is the cutoff wavelength. According to the standardized rectangular waveguide (WRJ series) shape, {1- (λ / λc) in the above equation 21/2 Is about 0.75.
Therefore, in order to realize a practically available transmission loss of -100 dB / m or less, it is necessary to select a dielectric so that the following relationship is established.
[0032]
f × √εr × tanδ ≦ 0.8 (2)
In the equation (2), f is the frequency (GHz) of the high-frequency signal to be used.
For example, when the frequency of the high-frequency signal to be used is 10 to 100 GHz, the paraelectric material satisfying the above inequality is at least one selected from low-temperature fired ceramics (described later) such as alumina ceramics, aluminum nitride ceramics, and glass ceramics. Desirably a seed.
[0033]
Next, FIGS. 2 and 3 show an embodiment of a connection structure between a dielectric waveguide line and a waveguide of the present invention using such a dielectric waveguide line.
FIG. 2 is a diagram showing a state in which the inside of a pair of conductor layers 2 and 3 of the dielectric waveguide line 6 is hollow on the upper one of the conductor layers 2 so that the transmission direction of the high-frequency signal is orthogonal. FIG. 3 is an exploded perspective view showing a connection structure in which an opening end face 9 of a rectangular waveguide 8 formed of a wall is brought into contact with a dielectric layer 16 interposed therebetween. FIG. 3A is a side sectional view showing the connection structure.
[0034]
In order to simplify the display, the dielectric waveguide line 6 is represented by an outline composed of a pair of upper and lower conductor layers 2 and 3 and a through conductor group 4, and the dielectric substrate 1 existing outside the outline is shown. Is omitted. The through conductor group 4 is also arranged on the terminal end surface of the dielectric waveguide line 6 as described above, but this is also indicated by the outline.
In this example, in the dielectric waveguide line 6, the conductor layers 2 and 3 are H-planes, and the pseudo conductor wall formed by the through conductor group 4 is an E-plane.
[0035]
In the conductor layer 2 near the termination surface of the dielectric waveguide line 6, there is a coupling window 7 provided as an opening for coupling a high-frequency signal, in which the conductor layer 2 does not exist. The rectangular waveguide 8 is indirectly in contact with the conductor layer 2 via the dielectric layer 16 as shown in FIG. Both need not be electrically conductive. Further, as can be seen from FIG. 3, since the surface portion of the connection portion structure is covered with the dielectric layer 16, the conductor layer 2 is not exposed and the conductor layer 2 does not corrode. Also, since there is no need for plating, cost reduction is possible.
[0036]
Consider a case where an electromagnetic wave is incident from the rectangular waveguide 8. In the case of the single mode, as shown in FIG. 3 (b), in the rectangular waveguide 8, the electric field has a vector V1 parallel to the short side direction of the cross section. After being incident on the waveguide 6, the direction is changed to a vector V <b> 2 parallel to the short direction of the dielectric waveguide 6. At this time, when the thickness t of the dielectric layer 16 is larger than the half wavelength of the transmission signal, a parallel plate mode (TEM mode) capable of transmitting the dielectric layer 16 in the lateral direction, that is, the rectangular waveguide 8 is used. An electric field vector orthogonal to this vector is generated, and as a result, signals are likely to leak from the side surface of the dielectric layer 16. On the other hand, by setting the thickness t of the dielectric layer 16 to be equal to or less than a half wavelength of the transmission signal, preferably equal to or less than a quarter wavelength, the occurrence of the parallel plate mode can be suppressed. It is possible to prevent the electromagnetic wave from leaking from the side surface of the sixteen.
[0037]
Regarding the position, shape and size of the coupling window 7 in the connection structure between the dielectric waveguide line 6 and the rectangular waveguide 8 according to the present invention, the frequency characteristics, coupling amount and reflection amount required for the connection structure are different. Involve complexly. Therefore, the position, shape, size, and the like of the coupling window 7 having the desired connection characteristics are determined by repeatedly performing calculations by electromagnetic field analysis so as to satisfy the required frequency characteristics.
In order to form the dielectric substrate 1 and the dielectric layer 16 with these materials, for example, a ceramic material powder of the above-described paraelectric material is mixed with an appropriate organic solvent and solvent to form a slurry. A plurality of ceramic green sheets are obtained by forming a sheet using a conventionally known doctor blade method, calendar roll method, or the like. Thereafter, each of these ceramic green sheets is subjected to appropriate punching and laminated, and is laminated at 1300 to 1700 ° C. for alumina ceramics, 850 to 1050 ° C. for low-temperature fired ceramics, and 1500 for aluminum nitride ceramics. By firing at a temperature of about 1900 ° C., the dielectric substrate 1 and the dielectric layer 16 are manufactured.
[0038]
For example, when the dielectric substrate 1 and the dielectric layer 16 are made of alumina ceramic, the pair of conductor layers 2 and 3 may be made of an oxide or an organic solvent such as alumina, silica, or magnesia suitable for metal powder such as tungsten. Using a paste formed by adding and mixing a solvent or the like, printing is performed on a ceramic green sheet by a thick film printing method so as to completely cover at least the transmission line portion. Thereafter, it is formed by firing at a high temperature of about 1600 ° C. together with the green sheet. As the metal powder, copper, gold, and silver are suitable for low-temperature fired ceramics, and tungsten and molybdenum are preferable for aluminum nitride ceramics. The thickness of the conductor layers 2 and 3 is about 5 to 50 μm.
[0039]
Further, the through conductor constituting the through conductor group 4 may be formed by, for example, a via hole conductor, a through hole conductor, or the like. The cross-sectional shape may be a polygon, such as a rectangle or a rhombus, in addition to a circle which is easy to manufacture. These through conductors are formed, for example, by embedding the same metal paste as the conductor layers 2 and 3 in through holes formed by punching a ceramic green sheet and then firing the same at the same time as the dielectric substrate 1. The diameter of the through conductor is preferably 50 to 300 μm.
[0040]
Also, according to the connection structure between the dielectric waveguide line and the rectangular waveguide of the present invention described in detail above, the dielectric substrate 1 and the dielectric layer 16 are particularly manufactured using low-temperature fired ceramics. Is desirable. Since low-temperature firing ceramics have a low firing temperature, copper or silver having high conductivity can be used for the conductor. Therefore, there is an advantage that the conductor loss can be reduced, and the cost can be reduced because plating of the connection portion is unnecessary. In addition, low-temperature fired ceramics have an advantage that the structure can be made compact because the dielectric constant can be adjusted higher than that of a general organic substrate. Furthermore, unlike the organic substrate from the viewpoint of reliability, high reliability is obtained because of high water vapor resistance.
[0041]
Low-temperature fired ceramics include SiO 2 As an essential component, and Al 2 O 3 , Alkaline earth oxides (BaO, CaO, SrO, MgO, etc.), alkali metal oxides (Li 2 O, Na 2 O, K 2 O etc.), Fe 2 O 3 , B 2 O 3 , CuO, an oxide mixed system combining at least one selected from the group consisting of: a glass system formed by melting and quenching a mixture of oxides; or quartz (SiO 2) 2 ), Al 2 O 3 , Alkaline earth oxides (BaO, CaO, SrO, MgO, etc.), alkali metal oxides (Li 2 O, Na 2 O, K 2 O etc.), Fe 2 O 3 , B 2 O 3 Or a single oxide such as CuO and CuO, or a mixture of at least one ceramic filler selected from the group consisting of two or more composite oxides, AlN, silicon nitride, and silicon carbide. The glass may be either amorphous glass that remains amorphous after firing or crystallized glass that crystallizes after firing.
[0042]
FIG. 4 is an exploded perspective view showing another embodiment of the connection structure between the dielectric waveguide line and the waveguide according to the present invention. In this example, the dielectric waveguide line 6 and the rectangular waveguide 8 are joined via the dielectric layer 16 and the dielectric resonator 11.
In FIG. 4, reference numerals 2 and 3 denote a pair of conductor layers, 4 denotes a through conductor group, 6 denotes a dielectric waveguide line, and 11 denotes a dielectric resonator. In this example, in the dielectric waveguide line 6, the conductor layers 2 and 3 are H-planes, and the pseudo conductor wall formed by the through conductor group 4 is an E-plane.
[0043]
The dielectric resonator 11 includes a pair of conductor layers 2 and 3 extending from the conductor layers 2 and 3 and a through conductor group 4 for electrically connecting the pair of conductor layers 2 and 3 on the dielectric substrate 1. It is surrounded and formed.
FIG. 5 is a plan view showing the dielectric resonator 11. As shown in FIG. 5, the dielectric resonator 11 changes the width b of the through conductor group 4 to b ′ (b ′> b) over a certain length d near the end of the dielectric waveguide line 6. It can be formed by laying out and closing the ends. The resonance characteristics of the dielectric resonator 11 can be controlled by adjusting the width b 'and the width d.
[0044]
Further, a coupling window 7 is provided in the upper conductor layer 2 of the dielectric resonator 11 as an opening for coupling a high-frequency signal, as in FIG.
Numeral 8 shown in FIG. 4 is a rectangular waveguide whose inside is formed of a hollow metal wall, and the opening end face 9 of the waveguide is interposed via the dielectric layer 16 so that the transmission direction of the high-frequency signal is orthogonal. It is arranged in contact with the conductor layer 2 of the dielectric resonator 11.
In this connection structure, a dielectric waveguide is formed in a dielectric waveguide line 6 through a coupling window 7 from an electric field vector parallel to the short side direction of the waveguide section in the rectangular waveguide 8. When the direction is changed to an electric field vector parallel to the transverse direction of the cross section of the line 6, resonance occurs in the dielectric resonator 11, and the phase disturbed by the change in the direction of the electric field is adjusted in the resonator 11 and aligned. Since the signal can be transmitted to the dielectric waveguide line 6 with a different phase, the reflection at the time of the direction change is reduced, and the signal transmission characteristics are improved.
[0045]
Also in this embodiment, the coupling window 7 is formed in the connection structure between the dielectric waveguide line 6 and the rectangular waveguide 8 according to the present invention. , The frequency characteristics, the amount of coupling, and the amount of reflection required are complicated. Therefore, the position, shape, size, and the like of the coupling window 7 having the desired connection characteristics are determined by repeatedly performing calculations by electromagnetic field analysis so as to satisfy the required frequency characteristics.
[0046]
Further, some other embodiments of the connection structure between the dielectric waveguide line and the waveguide according to the present invention will be described.
In the connection structure between the dielectric waveguide line 6 and the rectangular waveguide 8 according to the present invention, the reflection generated in the connection structure causes the circuit portion connected to the end of the dielectric waveguide line 6 or the rectangular waveguide. There is a possibility that the circuit portion connected ahead of the waveguide 8 may be adversely affected. Therefore, in the present connection structure, the dielectric waveguide line 6 is provided with an electromagnetic field matching unit.
[0047]
FIG. 6 is a perspective view showing another connection structure between the dielectric waveguide line 6 and the rectangular waveguide 8, and the rectangular waveguide 8 and the dielectric layer 16 are omitted to simplify the display. Only the resonator 11 and the dielectric waveguide line 6 are shown. Parts similar to those in FIG. 4 are denoted by the same reference numerals.
According to this embodiment, the electromagnetic field matching unit 20 is provided on the subsequent stage side of the resonator 11. A portion where the height of the dielectric waveguide line 6 is changed from the height of the dielectric waveguide line 6 (in this example, the height is reduced) corresponds to the electromagnetic field matching unit 20. The electromagnetic field matching unit 20 is adapted to adjust the electromagnetic field from the dielectric resonator 11 to the electromagnetic field mode transmitted by the dielectric waveguide line 6 and to connect the dielectric waveguide line to the rectangular waveguide. This is a part that functions to reduce reflection at the.
[0048]
The height of the dielectric waveguide line 6 can be changed, for example, by preparing two dielectric substrates as the dielectric substrate 1 shown in FIG. 1 and excluding the electromagnetic field matching unit 20 with two dielectric substrates. This can be realized by superposing the substrates and forming only the portion where the electromagnetic field matching section 20 is formed by one dielectric substrate. The height of the electromagnetic field matching section 20 can be arbitrarily set by selecting the thickness of the dielectric substrate to be used.
As an example of the electromagnetic field matching section, in addition to the structure in which the height of the dielectric waveguide line 6 is changed as shown in FIG. 6, the width of the dielectric waveguide line 6 is changed as shown in FIG. The structure of the electromagnetic field matching unit 21 may be adopted. In the example of FIG. 7, the width of the electromagnetic field matching unit 21 is larger than the width of the dielectric waveguide line 6. The width can be easily changed by changing the positions of the through-holes and via holes of the through conductor 4.
[0049]
Also, as shown in FIG. 8, the portion 22 of the dielectric waveguide 6 may be made of a material having a different dielectric constant from the dielectric used in the dielectric waveguide 6. In this structure, for example, the electromagnetic field matching portion of the dielectric substrate is removed, and a dielectric having a different dielectric constant is joined instead, or a predetermined hole is formed in the electromagnetic field matching portion of the ceramic green sheet forming the dielectric substrate. It can be manufactured by embedding, embedding a different kind of dielectric paste therein, laminating and simultaneous firing.
[0050]
Further, even if the electromagnetic field matching section 23 having the structure in which the pin conductor 15 is disposed in the dielectric waveguide line 6 as shown in FIG. 9, the electromagnetic field matching effect can be obtained. In FIG. 9, the height of the pin conductor 15 may be the same as the height of the dielectric waveguide line 6, but is not necessarily required to be the same height. It may be half of that. In order to form a pin conductor having a half height, for example, two dielectric substrates are prepared as the dielectric substrate 1 shown in FIG. 1, and through holes and via holes are formed in only one of the dielectric substrates. Can be realized by filling the inside with a metal paste and overlaying a second dielectric substrate from above.
[0051]
Further, a structure in which a plurality of electromagnetic field matching sections having different structures are combined is also effective. For example, as shown in FIG. 10, an electromagnetic field matching section 20 configured by changing the height of a dielectric waveguide line; A structure having both the electromagnetic field matching portion 23 constituted by the pin conductor 15 and the like has an effect of preventing reflection and improving high-frequency characteristics.
The pin conductor 15 provided on the dielectric waveguide line 6 shown in FIGS. 9 and 10 is generated in a connection structure with the rectangular waveguide 8 when a signal propagates from the dielectric waveguide line 6. It plays a role in canceling reflected waves. That is, the pin conductor 15 generates a reflected wave having a phase 180 degrees different from the wave reflected by the connection structure with the rectangular waveguide 8 to suppress the reflected wave. Therefore, basically, the pin conductor 15 functions if provided within one wavelength from the center of the coupling window 7. However, the same function can be expected even if the device is installed at a location that is an integral multiple of the wavelength from that location, and it is not always necessary to specify the location within one wavelength.
[0052]
Since the electromagnetic field matching sections 20, 21, 22, and 23 function as passive elements that do not involve radiation, the above-described reflection reduction effect is that electromagnetic waves are transmitted from the dielectric waveguide line 6 to the rectangular waveguide 8 Not only when the electromagnetic wave propagates from the rectangular waveguide 8 but also when the electromagnetic wave propagates to the dielectric waveguide line 6.
Next, an application example of the connection structure between the dielectric waveguide line and the waveguide according to the present invention will be described.
FIG. 11 shows a connection between the dielectric waveguide line 6 and the rectangular waveguide 8 when the dielectric waveguide line 6 is built in the antenna substrate 1a and power is supplied from the rectangular waveguide 8 to the antenna. It is a see-through perspective view which shows a structure. With this connection structure, an antenna substrate with high reliability and low reflection loss can be manufactured. Although FIG. 11 shows the slot antenna 24 in which the notch 24a is provided in the conductor layer on one side of the dielectric waveguide line 6, even if a patch antenna feeding power through a slot or via conductor is used, there is no problem. And does not depend on the antenna configuration.
[0053]
FIG. 12 is a perspective view showing an example in which the connection structure of the dielectric waveguide line 6 and the rectangular waveguide 8 of the present invention is applied to the filter substrate 1b. Also in this configuration, the connection structure between the dielectric waveguide line 6 and the rectangular waveguide 8 of the present invention can provide high reliability and reduce filter reflection loss. Further, the cost can be reduced because plating of the connection portion is unnecessary. At this time, the form of the filter 25 formed on the filter substrate 1b is not limited to the one using the dielectric shown in FIG. 12, but may be a filter using a strip line or the like.
[0054]
【Example】
A connection structure between the dielectric waveguide line and the waveguide having the configuration shown in FIG. 2 was manufactured, and a reliability test was performed as follows.
The reliability test was performed under the conditions of a temperature of 150 ° C. and −65 ° C., and held at 150 ° C. and −65 ° C. for 30 minutes, respectively, for 1000 cycles. Appearance comparison between a dielectric substrate having a connection structure between a dielectric waveguide line and a waveguide according to the present invention and a dielectric substrate having a connection structure with a surface conductor portion disclosed in JP-A-12-196301. As a result, there was no change in the appearance of the product of the present invention after the reliability test, but in the case of the latter substrate, some of the metallized surface layer had a poor appearance such as spots or discoloration due to corrosion. This indicates that the connection structure between the dielectric waveguide line and the waveguide according to the present invention has excellent reliability.
[0055]
Further, in order to evaluate the high frequency characteristics of the product of the present invention, a simulation of the S parameter was performed. As the rectangular waveguide 8, WR-15, that is, a waveguide whose cross section perpendicular to the transmission direction of the high-frequency signal is 3.76 mm × 1.88 mm is used. The dielectric substrate 1 for manufacturing the dielectric waveguide line 6 was made of a co-fired copper conductor glass ceramic having a relative dielectric constant εr of 4.9, and the through conductor was formed with a via having a diameter of 0.2 mm. The distance b between the two rows of through conductor groups 4 was 3.0 mm as the distance between the centers of the vias, and the distance a between the pair of conductor layers 2 and 3 was 0.6 mm. An opening of 1.12 mm × 1.62 mm was provided as a coupling window 7 in the conductor layer. The opening end face 9 of the rectangular waveguide 8 was brought into contact with the conductor layer 2 via a dielectric layer 16 having a thickness of 0.1 mm so as to cover the coupling window 7 of the dielectric waveguide line 6.
[0056]
FIG. 13 shows the transmission characteristics of the high-frequency signal when the high-frequency signal is transmitted from the rectangular waveguide 8 to the dielectric waveguide line 6 in this connection structure.
FIG. 13 is a diagram showing the frequency characteristics of the S parameter. The horizontal axis represents the frequency (GHz), and the vertical axis represents the value of the S parameter (dB). The characteristic curve in the figure shows the frequency characteristics of the reflection coefficient (S11) and the transmission coefficient (S21) among the S parameters. The broken line indicates the reflection coefficient (S11), and the solid line indicates the transmission coefficient (S21).
[0057]
Next, the structure of FIG. 4 in which the rectangular waveguide 8 is connected to the dielectric waveguide line 6 via the dielectric layer 16 and the resonator 11 is manufactured, and the result of measuring the S parameter is shown in FIG. The size of the resonator 11 was 3.4 mm × 1.59 mm as the distance between the centers of the vias 4 forming the resonator 11. When the frequency characteristic of the S parameter was obtained, the reflection coefficient (S11) became minimum near 58.7 GHz and 60.0 GHz, the transmission coefficient (S21) became maximum, and the reflection decreased compared to FIG. It can be seen that the signal transmission characteristics of the coefficient (S21) are improved.
[0058]
Further, FIG. 15 shows frequency characteristics of S parameters when dielectric waveguide line sections having different heights as shown in FIG. 6 are provided as electromagnetic field matching sections. The length of the electromagnetic wave matching section 20 is 1.11 mm, the interval between the upper and lower conductor layers in the electromagnetic wave matching section 20 is 0.3 mm, and the center position of the electromagnetic wave matching section 20 is 1.545 mm from the center of the coupling window. As shown in FIG. 15, the electromagnetic wave matching unit 20 further reduces the reflection coefficient (S11) and improves the signal transmission characteristics.
[0059]
Further, as shown in FIG. 10, a dielectric waveguide having an electromagnetic field matching section 20 formed by changing the height of a dielectric waveguide line and an electromagnetic field matching section 23 further formed by a pin conductor 15. The line 6 was produced. Here, the height of the pin conductors 15 was 0.3 mm, and two pin conductors were placed at 1.665 mm from the end face of the electromagnetic field matching section 20 having different heights and 0.365 mm from the through conductor 4. FIG. 16 shows the frequency characteristic of the S parameter in this case. It can be seen that this structure has further improved high frequency characteristics as compared to FIG.
[0060]
The embodiments of the present invention have been described above. However, the embodiments of the present invention are not limited to the above-described embodiments, and various modifications and improvements may be made without departing from the spirit of the present invention. No problem.
[0061]
【The invention's effect】
As described above, according to the present invention, the opening end face is opposed to the coupling window provided in one conductor layer of the dielectric waveguide line so that the transmission direction of the high-frequency signal is different via the dielectric layer. By connecting the waveguides, it is possible to provide a connection structure between a dielectric waveguide line and a waveguide which has a simple structure, high reliability and low manufacturing cost.
Further, a resonator using the through conductor and the pair of conductor layers is formed on the dielectric waveguide, and the coupling window is formed on one of the conductor layers of the resonator. By connecting the open end face of the waveguide via the dielectric layer so that the transmission direction of the high-frequency signal is in a predetermined direction, reflection can be reduced and a connection structure having excellent signal transmission characteristics can be provided.
[0062]
Further, by forming an electromagnetic field matching section for reducing reflection during transmission of a high-frequency signal on the dielectric waveguide line, a signal transmission loss can be reduced, and a high-frequency transmission characteristic is further improved. Can be realized.
Further, by using the connection structure between the dielectric waveguide line and the waveguide of the present invention for the antenna substrate and the filter substrate, it is possible to provide an antenna substrate and a filter substrate having high reliability and low manufacturing cost.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view for explaining the internal structure of a dielectric waveguide used in the present invention.
FIG. 2 is an exploded perspective view showing an example of a connection structure between a dielectric waveguide line and a waveguide according to the present invention.
FIGS. 3A and 3B are a sectional view taken along the line XX showing the connection structure, and a view showing an electric field vector.
FIG. 4 is an exploded perspective view showing an example of a connection structure between a dielectric waveguide line on which a dielectric resonator is formed and a waveguide according to the present invention.
FIG. 5 is a plan view showing a dielectric resonator formed in a dielectric waveguide line.
FIG. 6 is a perspective view illustrating a connection structure between a waveguide and a dielectric waveguide in which an electromagnetic field matching unit in which the height of the cross section of the dielectric waveguide is changed according to the present invention is formed. is there.
FIG. 7 is a perspective view showing a connection structure between a waveguide and a dielectric waveguide in which an electromagnetic field matching portion in which the width of the cross section of the dielectric waveguide is changed is formed according to the present invention.
FIG. 8 is a perspective view showing a connection structure between a waveguide and a dielectric waveguide in which an electromagnetic field matching portion in which a dielectric material of a dielectric waveguide is changed according to the present invention is formed.
FIG. 9 is a perspective view showing a connection structure between a dielectric waveguide and a waveguide in which an electromagnetic field matching section in which a pin conductor is arranged in the dielectric waveguide is formed according to the present invention;
FIG. 10 is a cross-sectional view of a dielectric waveguide line according to the present invention, in which the height of the cross section of the dielectric waveguide line is changed, and a dielectric line in which a pin conductor is arranged in the dielectric waveguide line. It is a perspective view which shows the connection structure of a body waveguide line and a waveguide.
FIG. 11 is a perspective view showing an example of an antenna substrate having a connection structure between a dielectric waveguide line and a waveguide according to the present invention.
FIG. 12 is a perspective view showing an example of a filter substrate having a connection structure between a dielectric waveguide line and a waveguide according to the present invention.
FIG. 13 is a diagram showing frequency characteristics of S parameters in a connection structure between a dielectric waveguide line and a waveguide.
FIG. 14 is a diagram showing frequency characteristics of S parameters in a connection structure between a dielectric waveguide line and a waveguide when a resonator is provided in the dielectric waveguide line.
FIG. 15 is a diagram illustrating frequency characteristics of S parameters in a connection structure between a dielectric waveguide line and a waveguide when a resonator and an electromagnetic field matching unit are provided in the dielectric waveguide line. .
FIG. 16 is a graph showing frequency characteristics of S-parameters in a connection structure between a dielectric waveguide and a waveguide when a resonator and two types of electromagnetic field matching units are provided in the dielectric waveguide. FIG.
[Explanation of symbols]
1 dielectric substrate
1a Antenna board
1b Filter substrate
2, 3 conductor layer
4 Through conductor group
5 Auxiliary conductor layer
6. Dielectric waveguide line
7 Coupling window
8 Rectangular waveguide
9 Open end face
11 Dielectric resonator
15 pin conductor
16 Dielectric layer
20-23 Electromagnetic field matching unit
24 slot antenna
25 Filter

Claims (9)

誘電体導波管線路と導波管とを接続する構造において、
前記誘電体導波管線路は、誘電体基板と、誘電体基板の両面に形成された一対の導体層と、高周波信号の伝送方向に信号波長の2分の1未満の繰り返し間隔で、かつ前記伝送方向と直交する方向に所定の幅で、前記導体層間を電気的に接続して形成された2列の貫通導体群とを具備してなリ、
前記一対の導体層のうち、一方の導体層に結合用窓を設け、
この結合用窓に、誘電体層を介して、高周波信号の伝送方向が異なるように開口端面を対向させた導波管を接続していること特徴とする誘電体導波管線路と導波管との接続構造。
In the structure for connecting the dielectric waveguide line and the waveguide,
The dielectric waveguide line includes a dielectric substrate, a pair of conductor layers formed on both surfaces of the dielectric substrate, and a repetition interval of less than half a signal wavelength in a transmission direction of a high-frequency signal, and A predetermined width in a direction perpendicular to the transmission direction, and two rows of through conductor groups formed by electrically connecting the conductor layers.
A coupling window is provided on one of the pair of conductor layers,
A dielectric waveguide line and a waveguide are connected to the coupling window via a dielectric layer so that the waveguides whose opening end faces face each other so that the transmission direction of the high-frequency signal is different. And connection structure.
前記誘電体導波管線路に、前記貫通導体と前記一対の導体層を用いた共振器が作製され、該共振器の一方の導体層に前記結合用窓が形成されていることを特徴とする請求項1記載の誘電体導波管線路と導波管との接続構造。A resonator is formed on the dielectric waveguide line using the through conductor and the pair of conductor layers, and the coupling window is formed in one conductor layer of the resonator. A connection structure between the dielectric waveguide line according to claim 1 and a waveguide. 前記誘電体導波管線路に、高周波信号の伝送時の反射を低減する電磁界整合部を形成していることを特徴とする請求項1又は請求項2記載の誘電体導波管線路と導波管との接続構造。3. The dielectric waveguide line according to claim 1, wherein an electromagnetic field matching portion for reducing reflection during transmission of a high-frequency signal is formed in the dielectric waveguide line. Connection structure with wave tube. 前記電磁界整合部が、次の(a)から(d)までのいずれかの構造、又はこれらの構造の2種以上の組合せで形成されていることを特徴とする請求項3記載の誘電体導波管線路と導波管との接続構造。
(a)誘電体導波管線路の断面の高さが異なる構造、
(b)誘電体導波管線路の断面の幅が異なる構造、
(c)誘電体導波管線路とは異なる誘電率材料を含む構造、
(d)誘電体導波管線路内にピン導体を配置した構造。
4. The dielectric according to claim 3, wherein the electromagnetic field matching section is formed of any one of the following structures (a) to (d) or a combination of two or more of these structures. Connection structure between waveguide line and waveguide.
(A) a structure in which the cross-section height of the dielectric waveguide is different;
(B) a structure in which the cross-sectional width of the dielectric waveguide is different;
(C) a structure including a dielectric constant material different from the dielectric waveguide line,
(D) A structure in which a pin conductor is arranged in a dielectric waveguide line.
前記誘電体基板が、低温焼成セラミックスからなることを特徴とする、請求項1〜請求項4のいずれかに記載の誘電体導波管線路と導波管との接続構造。The connection structure between a dielectric waveguide line and a waveguide according to any one of claims 1 to 4, wherein the dielectric substrate is made of low-temperature fired ceramics. 前記導波管が方形導波管であることを特徴とする、請求項1〜請求項5のいずれかに記載の誘電体導波管線路と導波管との接続構造。The connection structure between a dielectric waveguide line and a waveguide according to any one of claims 1 to 5, wherein the waveguide is a rectangular waveguide. 前記誘電体導波管線路と前記導波管との高周波信号の伝送方向が、ほぼ直交していることを特徴とする、請求項1〜請求項6のいずれかに記載の誘電体導波管線路と導波管との接続構造。7. The dielectric waveguide according to claim 1, wherein transmission directions of the high-frequency signal between the dielectric waveguide line and the waveguide are substantially orthogonal. Connection structure between line and waveguide. 請求項1〜請求項7のいずれかに記載の誘電体導波管線路と導波管との接続構造を有するアンテナ基板。An antenna substrate having a connection structure between a dielectric waveguide line according to any one of claims 1 to 7 and a waveguide. 請求項1〜請求項7のいずれかに記載の誘電体導波管線路と導波管との接続構造を有するフィルター基板。A filter substrate having a connection structure between a dielectric waveguide according to any one of claims 1 to 7 and a waveguide.
JP2003153190A 2003-05-29 2003-05-29 Connection structure between dielectric waveguide line and waveguide, and antenna substrate and filter substrate using the structure Expired - Fee Related JP4058381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153190A JP4058381B2 (en) 2003-05-29 2003-05-29 Connection structure between dielectric waveguide line and waveguide, and antenna substrate and filter substrate using the structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153190A JP4058381B2 (en) 2003-05-29 2003-05-29 Connection structure between dielectric waveguide line and waveguide, and antenna substrate and filter substrate using the structure

Publications (2)

Publication Number Publication Date
JP2004357042A true JP2004357042A (en) 2004-12-16
JP4058381B2 JP4058381B2 (en) 2008-03-05

Family

ID=34048216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153190A Expired - Fee Related JP4058381B2 (en) 2003-05-29 2003-05-29 Connection structure between dielectric waveguide line and waveguide, and antenna substrate and filter substrate using the structure

Country Status (1)

Country Link
JP (1) JP4058381B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066876A1 (en) * 2005-12-08 2007-06-14 Electronics And Telecommunications Research Institute Transit structure of standard waveguide and dielectric waveguide
JP2010206326A (en) * 2009-02-27 2010-09-16 Kyocera Corp High-frequency circuit board, and transmitter, receiver, transmitter/receiver, and radar system equipped with the high-frequency circuit board
US7907031B2 (en) 2005-12-08 2011-03-15 Electronics And Telecommunications Research Institute Transit structure between a waveguide and a dielectric waveguide having a matching cavity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101621480B1 (en) * 2014-10-16 2016-05-16 현대모비스 주식회사 Transit structure of waveguide and dielectric waveguide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066876A1 (en) * 2005-12-08 2007-06-14 Electronics And Telecommunications Research Institute Transit structure of standard waveguide and dielectric waveguide
US7907031B2 (en) 2005-12-08 2011-03-15 Electronics And Telecommunications Research Institute Transit structure between a waveguide and a dielectric waveguide having a matching cavity
JP2010206326A (en) * 2009-02-27 2010-09-16 Kyocera Corp High-frequency circuit board, and transmitter, receiver, transmitter/receiver, and radar system equipped with the high-frequency circuit board

Also Published As

Publication number Publication date
JP4058381B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
JP3366552B2 (en) Dielectric waveguide line and multilayer wiring board including the same
US6515562B1 (en) Connection structure for overlapping dielectric waveguide lines
JP3996879B2 (en) Coupling structure of dielectric waveguide and microstrip line, and filter substrate having this coupling structure
JP3981346B2 (en) Connection structure between dielectric waveguide line and waveguide, and antenna device and filter device using the structure
JP3517143B2 (en) Connection structure between dielectric waveguide line and high-frequency line conductor
JP4199395B2 (en) Multilayer Magic T
JP3493265B2 (en) Dielectric waveguide line and wiring board
JP3686736B2 (en) Dielectric waveguide line and wiring board
JP4535640B2 (en) Aperture antenna and substrate with aperture antenna
JPH10303611A (en) Coupling structure for high frequency transmission line and multi-layer wiring board having the same
JPH11308001A (en) Connection structure for dielectric waveguide line
JP3522138B2 (en) Connection structure between dielectric waveguide line and rectangular waveguide
JP2005012699A (en) Connection structure between waveguide and dielectric waveguide line having dielectric resonator, and antenna equipment and filter equipment using the same structure
JP3517148B2 (en) Connection structure between dielectric waveguide line and high-frequency line conductor
JP4058381B2 (en) Connection structure between dielectric waveguide line and waveguide, and antenna substrate and filter substrate using the structure
JPH1174701A (en) Connection structure for dielectric waveguide line
JPH1197854A (en) Multilayered wiring board for high-frequency and its manufacturing method
Simon et al. Design of passive components for K-band communication modules in LTCC environment
Moscato et al. Substrate integrated waveguide components on alumina for E-band applications
JPH11308025A (en) Directional coupler
JP3522120B2 (en) Connection structure of dielectric waveguide line
JP3439985B2 (en) Waveguide type bandpass filter
JP3439973B2 (en) Branch structure of dielectric waveguide
JP4803869B2 (en) Connection structure of dielectric waveguide line
JP3517097B2 (en) Branch structure of dielectric waveguide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees