JP2000073140A - Axle for railway car - Google Patents

Axle for railway car

Info

Publication number
JP2000073140A
JP2000073140A JP10241731A JP24173198A JP2000073140A JP 2000073140 A JP2000073140 A JP 2000073140A JP 10241731 A JP10241731 A JP 10241731A JP 24173198 A JP24173198 A JP 24173198A JP 2000073140 A JP2000073140 A JP 2000073140A
Authority
JP
Japan
Prior art keywords
axle
hardened layer
thickness
layer
fatigue strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10241731A
Other languages
Japanese (ja)
Other versions
JP3951467B2 (en
Inventor
Taizo Makino
泰三 牧野
Mitsusachi Yamamoto
三幸 山本
Yoshinari Yamamura
佳成 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24173198A priority Critical patent/JP3951467B2/en
Publication of JP2000073140A publication Critical patent/JP2000073140A/en
Application granted granted Critical
Publication of JP3951467B2 publication Critical patent/JP3951467B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an axle for a railway car high in fretting fatigue strength. SOLUTION: This axle for a railway car is composed of steel contg. 0.3 to 0.48% C, 0.05 to 1% Si, 0.5 to 2% Mn, 0 to 1.5% Cr, 0 to 0.3% Mo and 0 to 2.4% Ni, from the surface to the inside, the region of tempered martensite or bainite is formed, at least in the fitted edge parts 3 or the peripheral regions thereof, a hardened layer 4 having >=400 Vicker's hardness, the ratio (K/D) of the thickness (K) of the hardened layer to the diameter (D) of the fitted parts 2 is 0.005 to 0.05 is formed, on the upper side of the hardened layer, a plating layer 5 contg. by weight, 0.02 to 2% B and the balance Ni with inevitable impurities is formed and on the lower side of the hardened layer, the region of tempered martensite or bainite is formed. Preferably, the ratio (M/K) of the thickness (M) of the plating layer to the thickness (K) of the hardened layer is controlled to 0.005 to 0.2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄道車両用車軸に
関し、特に、車輪やブレーキディスクなどが嵌合される
はめ合い部において高疲労強度を示す鉄道車両用車軸に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an axle for a railway vehicle, and more particularly to an axle for a railway vehicle which exhibits high fatigue strength at a fitting portion where wheels, brake discs, etc. are fitted.

【0002】[0002]

【従来の技術】鉄道車両に使用される車軸は、その折損
が極めて重大な事故につながるため、高い信頼性が要求
される。特に、車輪やブレーキディスクあるいは歯車等
が嵌合されるはめ合い部では、高い負荷応力の繰返しと
車輪など相手部材との微小な相対滑りが原因で、フレッ
ティング疲労が生じ、疲労強度が大幅に低下することが
知られている。
2. Description of the Related Art Axles used in railway vehicles are required to have high reliability because breakage thereof leads to extremely serious accidents. In particular, in the fitting area where wheels, brake discs, gears, etc. are fitted, fretting fatigue occurs due to repeated high load stress and slight relative sliding with mating members such as wheels, resulting in significant fatigue strength. It is known to decrease.

【0003】一般の鉄道車両用車軸は、炭素鋼を素材と
して表面焼入れをしないで用いられている。しかし、1
960年代の新幹線車両の導入にあたっては、高速化に
よる負荷荷重の増大と乗り心地維持のための軽量化とい
った厳しい条件のもとで、高い信頼性の車軸が要求さ
れ、炭素鋼に高周波焼入れを施したフレッティング疲労
強度の高い車軸が開発され、優れた疲労信頼性を有する
車軸として使用されてきた。
[0003] A typical axle for a railway vehicle is used without surface hardening using carbon steel as a raw material. However, 1
With the introduction of Shinkansen rolling stock in the 960s, highly reliable axles were required under severe conditions such as increased load capacity due to higher speeds and lighter weight to maintain ride comfort, and carbon steel was subjected to induction hardening. An axle with high fretting fatigue strength has been developed and used as an axle having excellent fatigue reliability.

【0004】近年、新幹線の更なる高速化が計画され、
その技術開発が進んでおり、高速化に対応したフレッテ
ィング疲労強度の一段と高い車軸が求められている。
In recent years, further speeding up of the Shinkansen has been planned,
The technological development is progressing, and a higher axle with higher fretting fatigue strength corresponding to high speed is required.

【0005】本出願人は、特開平10−8202号公報
で、Si、Cr、Mo等を含んだ低合金鋼に高周波焼入
れを施した車軸を開示した。この車軸は、はめ合い部に
硬化層を形成することに特徴がある。
The present applicant has disclosed in Japanese Patent Application Laid-Open No. Hei 10-8202 an axle obtained by induction hardening a low alloy steel containing Si, Cr, Mo and the like. This axle is characterized in that a hardened layer is formed at the fitting portion.

【0006】[0006]

【発明が解決しようとする課題】本出願人は、上記公報
に開示した手段で、疲労強度の高い車軸を得た。しかし
ながら、車両の更なる高速化および安全性の追求に対応
して、一段と優れた疲労強度特性を備えた車軸が望まれ
ている。
The present applicant has obtained an axle with high fatigue strength by the means disclosed in the above publication. However, in order to further increase the speed of the vehicle and pursue safety, there is a demand for an axle having more excellent fatigue strength characteristics.

【0007】本発明の目的は、はめ合い端部とその周辺
領域の表面処理方法を改善し、フレッティング疲労強度
の高い鉄道車両用車軸を提供することにある。
An object of the present invention is to provide an improved axle for a railway vehicle having a high fretting fatigue strength by improving a surface treatment method of a fitting end portion and a peripheral region thereof.

【0008】[0008]

【課題を解決するための手段】はめ合い部の疲労強度
は、表面の硬さおよび残留応力に依存し、高周波焼入れ
により硬化層に圧縮残留応力が形成され、疲労強度が向
上することは知られている。また、フレッティング疲労
による損傷は、微小滑りに起因してはめ合い部に生じる
摩擦力が大きいほど発生しやすい。そこで、本発明者ら
は、高周波焼入れにより硬化層を形成したはめ合い端部
とその周辺領域に、更に、めっき処理を施し、めっき層
内に圧縮残留応力を形成するとともに、はめ合い部にお
ける摩擦力を軽減して疲労強度をより向上させることを
想到し、車軸の試作、評価の試験を繰返し、下記のaお
よびbが疲労強度の向上に有効であることを確認した。
It is known that the fatigue strength of the fitting part depends on the hardness and residual stress of the surface, and that the induction hardening forms a compressive residual stress in the hardened layer, thereby improving the fatigue strength. ing. Damage due to fretting fatigue is more likely to occur as the frictional force generated at the fitting portion due to the minute slip increases. Therefore, the present inventors further apply a plating process to the fitting end portion where the hardened layer is formed by induction hardening and the surrounding area, to form a compressive residual stress in the plating layer, and to reduce friction in the fitting portion. With the aim of improving the fatigue strength by reducing the force, trial production and evaluation tests of the axle were repeated, and it was confirmed that the following a and b were effective in improving the fatigue strength.

【0009】a.はめ合い端部とその周辺領域に、ビッ
カース硬さが400以上である硬化層を形成し、その厚
さ(K)をはめ合い部直径(D)に対する比(K/D)
で0.005〜0.05とする。
A. A hardened layer having a Vickers hardness of 400 or more is formed at the fitting end and its peripheral region, and the ratio (K / D) of the thickness (K) to the fitting diameter (D) is formed.
To 0.005 to 0.05.

【0010】b.硬化層の上側(表面側)に、重量%
で、B:0.02〜2%を含有し、残部がNiと不可避
的不純物とからなるめっき層を形成し、その厚さ(M)
を硬化層の厚さ(K)との比(M/K)で0.005〜
0.2とする。
B. On the upper side (surface side) of the cured layer, weight%
To form a plating layer containing B: 0.02 to 2%, the balance being Ni and unavoidable impurities, and the thickness (M)
In the ratio (M / K) to the thickness (K) of the cured layer is 0.005 to
0.2.

【0011】図1は、車軸の摩擦係数の測定要領を示す
模式図であり、摩擦係数は、パット押圧力Pと軸方向の
引張り・圧縮の加圧力σの作用下で、歪みゲージで測定
される軸方向の接線力Fとから、F/Pで計算される。
表1は、図1に示す測定要領で求めた摩擦係数である。
同表に示すように、めっき層を車軸に形成することによ
り、摩擦係数は大幅に低下する。
FIG. 1 is a schematic view showing the procedure for measuring the friction coefficient of an axle. The friction coefficient is measured by a strain gauge under the action of a pad pressing force P and an axial tension / compression force σ. And F / P from the tangential force F in the axial direction.
Table 1 shows the friction coefficient obtained by the measurement procedure shown in FIG.
As shown in the table, forming the plating layer on the axle significantly reduces the coefficient of friction.

【0012】[0012]

【表1】 [Table 1]

【0013】本発明は、上記知見に基づくもので、その
要旨は、下記(1) および(2) の通りである。
The present invention is based on the above findings, and the gist is as follows (1) and (2).

【0014】(1) 重量%で、C:0.3〜0.48%、
Si:0.05〜1%、Mn:0.5〜2%、Cr:0
〜1.5%、Mo:0〜0.3%、Ni:0〜2.4%
を含む鋼からなり、表面から内部にかけて焼戻しマルテ
ンサイトまたはベイナイトの領域を有し、少なくともは
め合い端部とその周辺領域においては、ビッカース硬さ
が400以上である硬化層を有し、該硬化層の厚さ
(K)がはめ合い部直径(D)に対する比(K/D)で
0.005〜0.05で、前記硬化層の上側にBを重量
%で0.02〜2%含有し、残部がNiと不可避的不純
物とからなるめっき層を有し、前記硬化層の下側に焼戻
しマルテンサイトまたはベイナイトの領域を有すること
を特徴とする鉄道車両用車軸。
(1) C: 0.3 to 0.48% by weight,
Si: 0.05-1%, Mn: 0.5-2%, Cr: 0
-1.5%, Mo: 0-0.3%, Ni: 0-2.4%
Having a region of tempered martensite or bainite from the surface to the inside, and having a hardened layer having a Vickers hardness of 400 or more at least at the fitting end and its peripheral region, Has a thickness (K) of 0.005 to 0.05 in terms of a ratio (K / D) to the diameter of the fitting portion (D), and contains 0.02 to 2% by weight of B on the upper side of the cured layer. An axle for a railway vehicle, comprising a plating layer having a balance of Ni and unavoidable impurities, and a tempered martensite or bainite region below the hardened layer.

【0015】(2) めっき層の厚さ(M)が硬化層の厚さ
(K)との比(M/K)で0.005〜0.2であるこ
とを特徴とする上記(1) 項に記載の鉄道車両用車軸。
(2) The thickness (M) of the plating layer is 0.005 to 0.2 as a ratio (M / K) to the thickness (K) of the hardened layer. An axle for a railway vehicle according to the paragraph.

【0016】上記(1) 項において、鋼は、上記以外の成
分元素として、AI、Ca、Ti、Nbなどの元素を含
んでもよく、残部はFeおよび不可避的不純物である。
In the above item (1), the steel may contain other elements such as AI, Ca, Ti, Nb, etc., and the balance is Fe and inevitable impurities.

【0017】上記(1) 項において、「その周辺領域」と
は、はめ合い部とそのはめ合い部に嵌合される車輪やブ
レーキディスクあるいは歯車のボス内面との接触端であ
るはめ合い端部から、軸方向両側にはめ合い部の幅の1
5%程度以内の表層部を含む範囲を指す。なお、ビッカ
ース硬さ測定は、試験荷重1kgfでの硬さとする。ビ
ッカース硬さが400以上の硬化層を、以後の説明に於
いては単に硬化層という場合もある。
In the above item (1), the "peripheral region" means a fitting end portion which is a contact end between a fitting portion and a boss inner surface of a wheel, a brake disc or a gear fitted to the fitting portion. From the width of the fitting part on both sides in the axial direction
It indicates the range including the surface layer portion within about 5%. The Vickers hardness measurement is a hardness at a test load of 1 kgf. A cured layer having a Vickers hardness of 400 or more may be simply referred to as a cured layer in the following description.

【0018】[0018]

【発明の実施の形態】鋼の化学組成の限定理由を説明す
る。以下、%はいずれも重量%を示すものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the chemical composition of steel will be described. Hereinafter, all percentages indicate weight%.

【0019】a.C:0.3〜0.48% Cは母材の強度を高めるとともに、高周波焼入れによる
表面の硬さを向上させる元素であり、Cの増加とともに
疲労強度は単調に増加する。Cが0.3%未満では、疲
労強度が不充分であり、0.48%を超えると焼き割れ
が発生するため0.3%を下限に、0.48%を上限と
する。
A. C: 0.3 to 0.48% C is an element that increases the strength of the base material and improves the hardness of the surface by induction hardening, and the fatigue strength monotonously increases with the increase of C. If C is less than 0.3%, the fatigue strength is insufficient, and if it exceeds 0.48%, sintering cracks occur. Therefore, the lower limit is set to 0.3% and the upper limit is set to 0.48%.

【0020】b.Si:0.05〜1% Siは脱酸元素としても、また疲労強度を向上させるう
えでも有効である。充分に脱酸をおこなうためには、脱
酸後凝固した鋼中にSiが0.05%以上は残存してい
なければならない。しかし、1%を超えても、疲労強度
は向上せず、むしろ靭性が著しく低下するため1%を上
限とする。
B. Si: 0.05 to 1% Si is effective as a deoxidizing element and also in improving fatigue strength. For sufficient deoxidation, 0.05% or more of Si must remain in the steel solidified after deoxidation. However, if it exceeds 1%, the fatigue strength is not improved, but rather the toughness is remarkably reduced, so the upper limit is 1%.

【0021】c.Mn:0.5〜2% Mnは焼入れ性を高めるために必要な元素であり、少な
くとも0.5%を含有する必要がある。しかし、過剰に
含有しても、その効果が飽和するとともに靭性が劣化す
るので2%を上限とする。
C. Mn: 0.5 to 2% Mn is an element necessary for enhancing hardenability, and must contain at least 0.5%. However, even if it is contained excessively, its effect is saturated and toughness is deteriorated, so the upper limit is 2%.

【0022】d.Cr:0〜1.5% Crは焼入れ性を高めるのに効果的な元素であるが、疲
労強度が確保できる場合は含有させなくてもよい。1.
5%を超えると高周波焼入れの際、硬化層の厚さが過大
となり圧縮残留応力が低下し疲労強度が低下するので、
1.5%を上限とする。
D. Cr: 0 to 1.5% Cr is an element effective for improving the hardenability, but may not be contained if fatigue strength can be ensured. 1.
If it exceeds 5%, during induction hardening, the thickness of the hardened layer becomes excessive, the compressive residual stress decreases, and the fatigue strength decreases.
The upper limit is 1.5%.

【0023】e.Mo:0〜0.3% Moは焼入れ性を高めるとともに、母材の強度を高める
のに効果的な元素であるが、疲労強度が確保できる場合
は含有させなくてもよい。0.3%を超えると疲労強度
が低下するので、0.3%を上限とする。
E. Mo: 0 to 0.3% Mo is an element that is effective for improving the hardenability and the strength of the base material, but may not be contained when the fatigue strength can be ensured. If it exceeds 0.3%, the fatigue strength decreases, so 0.3% is made the upper limit.

【0024】f.Ni:0〜2.4% Niは母材の強度を高めるのに効果的な元素であるが、
疲労強度が確保できる場合は含有させなくてもよい。
2.4%を超えて含有させても、疲労強度はほば飽和す
るとともに焼戻し脆化するので上限を2.4%とする。
F. Ni: 0 to 2.4% Ni is an element effective for increasing the strength of the base material,
If the fatigue strength can be ensured, it may not be contained.
Even if the content exceeds 2.4%, the fatigue strength is almost saturated and the temper becomes brittle, so the upper limit is made 2.4%.

【0025】その他の成分として、AI、Ca、Ti、
Nbなどの元素を合計で0.2%以下含んでもよい。残
部はFeおよび不可避的不純物である。
As other components, AI, Ca, Ti,
Elements such as Nb may be contained in a total of 0.2% or less. The balance is Fe and inevitable impurities.

【0026】組織、硬化層およびめっき層を説明する。
図2は、本発明に係る車軸の形状の一例を示す模式図
で、同図(a)は車軸全体図、同図(b)は同図(a)
のY部の部分断面模式図である。符号1は車軸、2はは
め合い部、3ははめ合い端部、4は硬化層、5はめっき
層である。
The structure, hardened layer and plated layer will be described.
2A and 2B are schematic views showing an example of the shape of the axle according to the present invention. FIG. 2A is an overall view of the axle, and FIG.
5 is a schematic partial cross-sectional view of a Y portion of FIG. Reference numeral 1 denotes an axle, 2 denotes a fitting portion, 3 denotes a fitting end, 4 denotes a hardened layer, and 5 denotes a plating layer.

【0027】図2(a)、(b)において、はめ合い端
部3とその周辺領域における硬化層4以外の車軸1の表
面から内部にかけては、焼戻しマルテンサイトまたはベ
イナイトの組織を有する。これは十分な引張り強度と十
分な靱性を確保するためである。この組織は、車軸の中
心まで存在する必要はなく、内部はフェライトとパーラ
イトの組織であってもよい。
2 (a) and 2 (b), the surface of the axle 1 other than the hardened layer 4 in the peripheral area around the fitting end 3 and the inside thereof has a structure of tempered martensite or bainite. This is to ensure sufficient tensile strength and sufficient toughness. This structure does not need to exist up to the center of the axle, and the inside may be a structure of ferrite and pearlite.

【0028】図2(b)において、少なくともはめ合い
端部3とその周辺領域においては、ビッカース硬さ40
0以上のマルテンサイト変態した硬化層4を有し、その
厚さ(K)ははめ合い部直径(D)に対する比(K/
D)で0.005〜0.05とする。はめ合い端部とそ
の周辺領域においては、マルテンサイト変態による体積
膨張に起因した圧縮残留応力が生じ、き裂の発生とその
進展が抑制され疲労強度が向上する。K/Dが0.00
5未満では、圧縮残留応力の発生領域が浅くなり、0.
05より大きいと、圧縮残留応力の最大値が小さくな
り、いずれも疲労強度が低下する。なお、硬化層の形成
は、「はめ合い端部とその周辺領域」であればよいが、
車軸全体としてもよい。
In FIG. 2B, at least the fitting end 3 and its surrounding area have a Vickers hardness of 40.
It has a hardened layer 4 transformed into martensite of 0 or more, and its thickness (K) is a ratio (K /
D) is set to 0.005 to 0.05. At the fitting end and the surrounding area, compressive residual stress is generated due to volume expansion due to martensitic transformation, which suppresses crack generation and propagation and improves fatigue strength. K / D is 0.00
If it is less than 5, the region where the compressive residual stress occurs becomes shallow,
When it is larger than 05, the maximum value of the compressive residual stress becomes small, and in any case, the fatigue strength decreases. The hardened layer may be formed as long as it is "the fitting end and the surrounding area",
The whole axle may be used.

【0029】前記硬化層の下側において、焼戻しマルテ
ンサイトまたはベイナイトの組織からなる領域を有す
る。これは、十分な引張り強度および靭性を確保するた
めである。この組織は、後述する高周波焼入れをおこな
う前は、硬化層が形成される表層部においても存在して
いたものであり、高周波焼入れの際、これら組織中に分
散していた微細な炭化物は短時間の内に固溶し、硬化層
の硬さをビッカース硬さで400以上とすることを補助
する。なお、上記組織の領域は、硬化層と接していなく
てもよい。硬化層より下側の、やや硬さの低い高周波焼
入れ部分に接している方が普通である。
Under the hardened layer, there is a region having a structure of tempered martensite or bainite. This is to ensure sufficient tensile strength and toughness. Before the induction hardening described later, this structure was also present in the surface layer where the hardened layer was formed, and during the induction hardening, the fine carbides dispersed in these structures were removed for a short time. And assists in setting the hardness of the cured layer to Vickers hardness of 400 or more. Note that the region of the structure does not have to be in contact with the hardened layer. It is common to be in contact with the induction hardened portion, which is slightly lower in hardness than the hardened layer.

【0030】図2(b)に示すように、硬化層4の上側
にBを重量%で0.02〜2%含有し、残部がNiと不
可避的不純物からなるめっき層5を有する。めっき層の
形成により、はめ合い部とボス内面との間の摩擦力が低
下すると共に、めっき層内にめっき時の体積膨張に起因
した圧縮残留応力が生じる。この圧縮残留応力の形成
は、めっき層直下の圧縮残留応力を低下させるため、こ
の観点からはめっき層の形成は疲労強度を若干低下させ
る作用をなすが、はめ合い部とボス内周面との接触面に
おける摩擦力の低下による疲労強度の改善が著しく、し
たがって、めっき層の形成により疲労強度は向上する。
Bの含有量が、0.02%未満では、めっき層に形成さ
れる圧縮残留応力が小さくなり、疲労強度が不充分であ
り、2%を超えると、疲労強度はほぼ飽和しコストがア
ップするので0.02%を下限に、2%を上限とする。
好ましくは、0.05%以上、1.5%以下である。
As shown in FIG. 2B, a plating layer 5 containing 0.02 to 2% by weight of B on the upper side of the hardened layer 4 and a balance of Ni and inevitable impurities is provided. The formation of the plating layer reduces the frictional force between the fitting portion and the inner surface of the boss, and generates a compressive residual stress in the plating layer due to volume expansion during plating. Since the formation of this compressive residual stress lowers the compressive residual stress just below the plating layer, from this viewpoint, the formation of the plating layer has an effect of slightly reducing the fatigue strength. The fatigue strength is remarkably improved due to the reduction in the frictional force at the contact surface, and therefore, the fatigue strength is improved by forming the plating layer.
When the content of B is less than 0.02%, the compressive residual stress formed in the plating layer becomes small and the fatigue strength is insufficient, and when it exceeds 2%, the fatigue strength is almost saturated and the cost increases. Therefore, the lower limit is set to 0.02% and the upper limit is set to 2%.
Preferably, it is 0.05% or more and 1.5% or less.

【0031】本発明の好適態様では、めっき層の厚さ
(M)が硬化層の厚さ(K)との比(M/K)で0.0
05〜0.2であることを特徴とする。M/Kが0.0
05未満ではめっき層に形成される圧縮残留応力が不充
分であり、0.2より大きいと、めっき層の体積膨張に
よって硬化層内の圧縮残留応力が低下して硬化層の疲労
強度が低下する。
In a preferred embodiment of the present invention, the ratio (M / K) of the thickness (M) of the plating layer to the thickness (K) of the hardened layer is 0.0
05 to 0.2. M / K is 0.0
If it is less than 05, the compressive residual stress formed in the plating layer is insufficient, and if it is more than 0.2, the compressive residual stress in the hardened layer is reduced due to volume expansion of the plated layer, and the fatigue strength of the hardened layer is reduced. .

【0032】次に、本発明の車軸の製造方法の例を説明
する。上記した成分範囲の鋼を溶製し、熱間鍛造にて車
軸形状に粗成形した後、焼入焼戻処理を行う。焼入れ前
の加熱温度は、Ac3 点〜950℃とし、焼戻し温度
は、450〜675℃の範囲とするのが望ましい。上記
の成分系の鋼のAc3 変態点は800℃程度である。焼
戻し温度が450℃未満では、十分な靭性が得られず、
675℃を超えると十分な引張強さが得られない。焼入
焼戻処理により、焼戻しマルテンサイトまたはベイナイ
トの組織が得られる。
Next, an example of the method for manufacturing an axle according to the present invention will be described. After smelting the steel in the above-described component range and roughly forming it into an axle shape by hot forging, a quenching and tempering process is performed. It is desirable that the heating temperature before quenching is in the range of Ac 3 to 950 ° C. and the tempering temperature is in the range of 450 to 675 ° C. The Ac 3 transformation point of the steel having the above composition is about 800 ° C. If the tempering temperature is lower than 450 ° C, sufficient toughness cannot be obtained,
If it exceeds 675 ° C., sufficient tensile strength cannot be obtained. By quenching and tempering, a structure of tempered martensite or bainite is obtained.

【0033】この後、半仕上げ機械加工をおこない、は
め合い端部とその周辺領域に高周波焼入れを施す。高周
波焼入れは、誘導加熱(周波数1〜30kHz)コイル
により急速加熱後、水噴射により急冷する。このときの
高周波加熱条件は、電流200〜250A、電圧800
〜900V、加熱時間10〜20秒、冷却遅延時間0〜
5秒、冷却時間10〜20secの範囲でおこなうこと
ができる。高周波焼入れの後、低温焼戻しを、加熱温度
150℃から300℃の範囲で行う。150℃以下だ
と、必要な靭性が確保できず、300℃以上だと、高周
波焼入れによって発生した圧縮残留応力が消失し、期待
される疲労強度が得られないおそれがある。上記高周波
焼入れによりマルテンサイト変態した硬化層が得られ
る。
Thereafter, semi-finished machining is performed, and induction fitting quenching is performed on the fitting end and its peripheral region. In induction hardening, after rapid heating by an induction heating (frequency 1 to 30 kHz) coil, rapid cooling is performed by water injection. The high-frequency heating conditions at this time are as follows: current 200 to 250 A, voltage 800
~ 900V, heating time 10 ~ 20 seconds, cooling delay time 0 ~
The cooling can be performed within a range of 5 seconds and a cooling time of 10 to 20 seconds. After induction hardening, low-temperature tempering is performed at a heating temperature of 150 ° C to 300 ° C. If the temperature is lower than 150 ° C., the required toughness cannot be secured. If the temperature is higher than 300 ° C., the compressive residual stress generated by induction hardening disappears, and the expected fatigue strength may not be obtained. A hardened layer transformed into martensite is obtained by the induction hardening.

【0034】次いで、表面の黒皮を除去するため、仕上
げ機械加工を行い、その後、車軸をB源とNi源を含有
しためっき浴に浸漬して電気めっきをおこなう。電気め
っき条件は、めっき浴温度を40〜80℃、電流密度を
0.5〜5A/dm2 とすることができる。電気めっき
後、ベーキング処理を施しても良いが、その温度は、高
周波焼入れ後の焼戻温度以下にする。
Next, in order to remove black scale on the surface, finish machining is performed, and then the axle is immersed in a plating bath containing a B source and a Ni source to perform electroplating. As for the electroplating conditions, the plating bath temperature can be 40 to 80 ° C., and the current density can be 0.5 to 5 A / dm 2 . After the electroplating, a baking treatment may be performed, but the temperature is set to be equal to or lower than the tempering temperature after induction hardening.

【0035】[0035]

【実施例】(実施例1) 表2に示す化学成分の低合金
鋼を用い、直径40mm、長さ835mmで、軸中央部
に幅90mmのはめ合い部を有する小型車軸を製作し、
疲労強度を評価した。
EXAMPLES (Example 1) A small axle having a diameter of 40 mm, a length of 835 mm, and a fitting portion with a width of 90 mm at the center of the shaft was manufactured using low-alloy steel having a chemical composition shown in Table 2, and
The fatigue strength was evaluated.

【0036】[0036]

【表2】 [Table 2]

【0037】真空電気溶解炉にて上記低合金鋼を溶解
し、鋼塊に鋳込み、熱間鍛造にて丸棒状に粗成形した
後、850℃にて油焼入れ、550℃にて焼戻しを順次
実施した。次に、半仕上げ機械加工をおこない、はめ合
い部直径を40.8mmとした後、高周波焼入れをおこ
なった。高周波焼入れでは、誘導加熱コイルによりはめ
合い端部とその周辺領域を急速加熱した後、水噴射によ
り急冷し、その後200℃で焼戻しをおこなった。誘導
加熱条件は、硬化層の深さが0.5mmで、硬化層の軸
方向における形成範囲が、はめ合い部(幅90mm)と
その両側105mmの範囲(合計300mm)となるよ
うに調整した。高周波焼入れ後、仕上げ機械加工をおこ
ない、はめ合い部直径を40mmとした。仕上げ機械加
工の後、めっき層の組成としてBが1%で残部が実質的
にNiからなるように、B源とNi源を含有しためっき
浴に車軸を浸漬し電気めっきを施した。なお、めっき浴
の温度は60℃、電流密度は3A/dm2 とした。上記
のようにして製作した小型車軸を用いて、回転曲げ疲労
試験を行った。
The low alloy steel is melted in a vacuum electric melting furnace, cast into a steel ingot, roughly formed into a round bar by hot forging, and then oil quenched at 850 ° C. and tempered at 550 ° C. sequentially. did. Next, semi-finishing machining was performed to make the fitting portion diameter 40.8 mm, and then induction hardening was performed. In the induction hardening, the fitting end and its surrounding area were rapidly heated by an induction heating coil, rapidly cooled by water injection, and then tempered at 200 ° C. The induction heating conditions were adjusted so that the depth of the hardened layer was 0.5 mm, and the range of formation of the hardened layer in the axial direction was a range of a fitting portion (width 90 mm) and 105 mm on both sides thereof (a total of 300 mm). After induction hardening, finish machining was performed, and the diameter of the fitting portion was 40 mm. After finishing machining, the axle was immersed in a plating bath containing a B source and a Ni source, and electroplating was performed so that the composition of the plating layer was 1% B and the balance substantially consisted of Ni. The temperature of the plating bath was 60 ° C., and the current density was 3 A / dm 2 . A rotary bending fatigue test was performed using the small axle manufactured as described above.

【0038】図3は、小型車軸疲労試験装置の概要図で
ある。同図に示すように、試験は、軸中央部のはめ合い
部に応力を付加した状態の両支持回転曲げにておこな
い、繰返し数が2×107 回でも未破断の最大応力振幅
を疲労限度とした。
FIG. 3 is a schematic diagram of a small axle fatigue test apparatus. As shown in the figure, the test was performed with both supports rotating and bending with a stress applied to the fitting part at the center of the shaft. Even if the number of repetitions was 2 × 10 7 times, the maximum stress amplitude that was not broken was the fatigue limit. And

【0039】表3に、上記疲労試験による疲労限度を、
硬化層の厚さ、めっき層の厚さと共に示す。
Table 3 shows the fatigue limit in the above fatigue test.
It is shown together with the thickness of the hardened layer and the thickness of the plating layer.

【0040】[0040]

【表3】 [Table 3]

【0041】表3に示すように、本発明例1は、硬化層
の厚さが0.5mm(K/D:0.0125)で、めっ
き層の厚さが20μm(M/K:0.04)であった。
なお、同表に示すように、めっき有無、めっき成分、め
っき厚および硬化層の厚さの各条件において、比較例1
ではめっき未実施、比較例2ではめっき成分、比較例3
と4では硬化層の厚さ、比較例5と6ではめっき厚さ、
以外の条件は本発明例1と同様とした。
As shown in Table 3, in Example 1 of the present invention, the thickness of the hardened layer was 0.5 mm (K / D: 0.0125), and the thickness of the plating layer was 20 μm (M / K: 0.3 mm). 04).
In addition, as shown in the same table, in each condition of the presence or absence of plating, the plating component, the plating thickness, and the thickness of the hardened layer, Comparative Example 1
No plating, Comparative Example 2 plating components, Comparative Example 3
And 4, the thickness of the hardened layer, Comparative Examples 5 and 6, the plating thickness,
The other conditions were the same as in Example 1 of the present invention.

【0042】表3に示すように、本発明例1の疲労強度
は370MPaであり、比較例1〜6の中で最も高い疲
労強度320MPaを示した比較例1に比べて15%以
上改善した。
As shown in Table 3, the fatigue strength of Example 1 of the present invention was 370 MPa, which was improved by 15% or more as compared with Comparative Example 1 showing the highest fatigue strength of 320 MPa among Comparative Examples 1 to 6.

【0043】(実施例2) 表4に示す化学成分の炭素
鋼を用い、実施例1で示したと同じ寸法の小型車軸を製
作し、疲労限度を評価した。車軸の製作方法、および疲
労試験方法は、実施例1で説明したと同様の方法でおこ
なった。表5に、疲労試験結果を示す。
Example 2 A small axle having the same dimensions as that shown in Example 1 was manufactured using carbon steel having the chemical composition shown in Table 4, and the fatigue limit was evaluated. The axle manufacturing method and the fatigue test method were performed in the same manner as described in Example 1. Table 5 shows the results of the fatigue test.

【0044】[0044]

【表4】 [Table 4]

【0045】[0045]

【表5】 [Table 5]

【0046】表5に示すように、本発明例2は、硬化層
の厚さが0.5mm(K/D:0.0125)で、めっ
き層の厚さが20μm(M/K:0.04)であった。
なお、同表に示すように、比較例7は、めっき未実施以
外の条件は本発明例2と同様とした。
As shown in Table 5, in Example 2 of the present invention, the thickness of the hardened layer was 0.5 mm (K / D: 0.0125), and the thickness of the plating layer was 20 μm (M / K: 0.3 mm). 04).
As shown in the same table, Comparative Example 7 was the same as Example 2 of the present invention except for the condition where plating was not performed.

【0047】表5に示すように、本発明例2の疲労限度
は310MPaであり、比較例7に比べ15%程度向上
した。
As shown in Table 5, the fatigue limit of Example 2 of the present invention was 310 MPa, which was improved by about 15% as compared with Comparative Example 7.

【0048】(実施例3) 表1と表4にそれぞれ示す
合金鋼と炭素鋼を用い、長さ2600mmで、軸端部に
幅180mmで直径200mmのはめ合い部を有する大
型車軸を製作し、疲労強度を評価した。
(Example 3) Using alloy steel and carbon steel shown in Tables 1 and 4, respectively, a large axle having a length of 2600 mm, a fitting portion having a width of 180 mm at the shaft end and a diameter of 200 mm was manufactured, The fatigue strength was evaluated.

【0049】真空電気溶解炉にて上記鋼を溶解し、鋼塊
に鋳込み、熱間鍛造にて丸棒状に粗成形した後、850
℃にて油焼入れ、550℃にて焼戻しを順次実施した。
次に、半仕上げ機械加工をおこない、はめ合い部直径を
202mm、その他の部位(非はめ合い部)の直径を1
92mmとした後、高周波焼入れをし、その後200℃
で焼戻しをおこなった。誘導加熱条件は、硬化層の厚さ
が5mmで、硬化層の軸方向における形成範囲が、はめ
合い端部から両側に40mm以上となるように調整し
た。高周波焼入れ後、仕上げ機械加工をおこない、はめ
合い部直径を200mmとした。仕上げ機械加工の後、
めっき層の組成としてBが1%で残部が実質的にNiか
らなるように、B源とNi源を含有しためっき浴に車軸
を浸漬し厚さ50μmの電気めっきを施した。なお、め
っき浴の温度は60℃とした。
The above steel was melted in a vacuum electric melting furnace, cast into a steel ingot, and roughly formed into a round bar by hot forging.
Oil quenching at 550 ° C and tempering at 550 ° C were sequentially performed.
Next, semi-finished machining is performed, the diameter of the fitting portion is 202 mm, and the diameter of the other portion (non-fitting portion) is 1 mm.
After 92 mm, induction hardening, then 200 ° C
Tempered. The induction heating conditions were adjusted so that the thickness of the cured layer was 5 mm and the range of formation of the cured layer in the axial direction was 40 mm or more on both sides from the fitting end. After induction hardening, finish machining was performed, and the diameter of the fitting portion was set to 200 mm. After finishing machining,
The axle was immersed in a plating bath containing a B source and a Ni source, and electroplated to a thickness of 50 μm so that the composition of the plating layer was 1% B and the balance substantially consisted of Ni. The temperature of the plating bath was set to 60 ° C.

【0050】次に、上記の大型車軸を用いて、回転曲げ
疲労試験を行った。
Next, a rotary bending fatigue test was performed using the large axle.

【0051】図4は、大型車軸疲労試験装置の概要図で
ある。同図に示すように、試験は、片側に車輪を平均7
0MPaで圧入した状態の片支持回転曲げにて、はめ合
い部での曲げ公称応力(曲げモーメント/はめ合い部の
断面係数)が200MPaとなるように設定し、2×1
7 回の繰返し曲げを与えておこなった。なお、上記2
00MPaは、JIS−E4501に規定されている第
4種(高周波焼入れ車軸)の許容応力である147MP
aより十分高く、車軸が実際の鉄道車両に装着されて十
分使用に耐えると判断される値である。表6に、上記疲
労試験結果を、硬化層の厚さ、めっき層の厚さと共に示
す。
FIG. 4 is a schematic diagram of a large axle fatigue test apparatus. As shown in FIG.
In a single support rotary bending press-fitted at 0 MPa, the nominal bending stress (bending moment / cross-sectional modulus of the fitting portion) at the fitting portion was set to 200 MPa, and 2 × 1
0 7 times of repeated bending given was carried out. The above 2
00MPa is 147MP which is the allowable stress of the fourth type (induction hardened axle) specified in JIS-E4501.
This is a value that is sufficiently higher than a and is judged to be sufficient for use when the axle is mounted on an actual railway vehicle. Table 6 shows the results of the fatigue test together with the thickness of the hardened layer and the thickness of the plating layer.

【0052】[0052]

【表6】 [Table 6]

【0053】表6に示すように、本発明例3、4は、い
ずれも2×107 回の繰返し曲げで破断せず良好であっ
た。
As shown in Table 6, Examples 3 and 4 of the present invention were all good without being broken by repeated bending of 2 × 10 7 times.

【0054】[0054]

【発明の効果】本発明により、従来と比較してより高い
疲労強度を有する鉄道車両用車軸を得ることができる。
これによって、新幹線車両などの高速化に対応すること
ができる。
According to the present invention, it is possible to obtain an axle for a railway vehicle having higher fatigue strength than the conventional one.
This makes it possible to cope with speeding-up of a Shinkansen vehicle or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】車軸の摩擦係数の測定要領を示す模式図であ
る。
FIG. 1 is a schematic diagram showing a procedure for measuring a friction coefficient of an axle.

【図2】本発明に係る車軸の一例を示す模式図で、同図
(a)は車軸全体図、同図(b)は同図(a)のY部の
部分断面模式図である。
FIGS. 2A and 2B are schematic views showing an example of an axle according to the present invention. FIG. 2A is an overall view of the axle, and FIG. 2B is a schematic partial cross-sectional view of a portion Y in FIG.

【図3】小型車軸疲労試験装置の概要図である。FIG. 3 is a schematic diagram of a small axle fatigue test device.

【図4】大型車軸疲労試験装置の概要図である。FIG. 4 is a schematic diagram of a large axle fatigue test device.

【符号の説明】[Explanation of symbols]

1 車軸 2 はめ合い部 3 はめ合い端部 4 硬化層 5 めっき層 DESCRIPTION OF SYMBOLS 1 Axle 2 Fitting part 3 Fitting end 4 Hardened layer 5 Plating layer

フロントページの続き (72)発明者 山村 佳成 大阪市此花区島屋5丁目1番109号 住友 金属工業株式会社関西製造所製鋼品事業所 内 Fターム(参考) 4K024 AA03 BA03 BB04 BC10 DA01 DA10 DB01 GA16 Continued on front page (72) Inventor Yoshinari Yamamura 5-1-1, Shimaya, Konohana-ku, Osaka Sumitomo Metal Industries, Ltd. Kansai Works Steel Works, F-term (reference) 4K024 AA03 BA03 BB04 BC10 DA01 DA10 DB01 GA16

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.3〜0.48%、S
i:0.05〜1%、Mn:0.5〜2%、Cr:0〜
1.5%、Mo:0〜0.3%、Ni:0〜2.4%を
含む鋼からなり、表面から内部にかけて焼戻しマルテン
サイトまたはベイナイトの領域を有し、少なくともはめ
合い端部とその周辺領域においては、ビッカース硬さが
400以上である硬化層を有し、該硬化層の厚さ(K)
がはめ合い部直径(D)に対する比(K/D)で0.0
05〜0.05で、前記硬化層の上側にBを重量%で
0.02〜2%含有し、残部がNiと不可避的不純物と
からなるめっき層を有し、前記硬化層の下側に焼戻しマ
ルテンサイトまたはベイナイトの領域を有することを特
徴とする鉄道車両用車軸。
C .: 0.3 to 0.48% by weight, S
i: 0.05 to 1%, Mn: 0.5 to 2%, Cr: 0 to 0
It is made of steel containing 1.5%, Mo: 0 to 0.3%, and Ni: 0 to 2.4%, and has a tempered martensite or bainite region from the surface to the inside. In the peripheral region, a hardened layer having a Vickers hardness of 400 or more has a thickness (K) of the hardened layer.
The ratio (K / D) to the diameter (D) of the fitting portion is 0.0
And a plating layer containing B in an amount of 0.02 to 2% by weight on the upper side of the hardened layer and a balance of Ni and unavoidable impurities. An axle for a railway vehicle having a tempered martensite or bainite region.
【請求項2】 めっき層の厚さ(M)が硬化層の厚さ
(K)との比(M/K)で0.005〜0.2であるこ
とを特徴とする請求項1に記載の鉄道車両用車軸。
2. The method according to claim 1, wherein a thickness (M) of the plating layer is 0.005 to 0.2 in a ratio (M / K) to a thickness (K) of the hardened layer. Axle for railway vehicles.
JP24173198A 1998-08-27 1998-08-27 Railcar axle Expired - Fee Related JP3951467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24173198A JP3951467B2 (en) 1998-08-27 1998-08-27 Railcar axle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24173198A JP3951467B2 (en) 1998-08-27 1998-08-27 Railcar axle

Publications (2)

Publication Number Publication Date
JP2000073140A true JP2000073140A (en) 2000-03-07
JP3951467B2 JP3951467B2 (en) 2007-08-01

Family

ID=17078709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24173198A Expired - Fee Related JP3951467B2 (en) 1998-08-27 1998-08-27 Railcar axle

Country Status (1)

Country Link
JP (1) JP3951467B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009041917A (en) * 2007-08-06 2009-02-26 Railway Technical Res Inst Film thickness measuring system of railroad rail surface hardening layer
JP2011511214A (en) * 2007-11-30 2011-04-07 ベー アンド エミ ド ブラジル ソシエダッド アノニマ Axle from seamless pipe for railway vehicles and method for manufacturing axle from seamless steel pipe for railway vehicles
CN103160737A (en) * 2013-03-07 2013-06-19 中国铁道科学研究院金属及化学研究所 Bainite steel, steel guard rail prepared by bainite steel thereof and preparation method
JP2015081790A (en) * 2013-10-21 2015-04-27 三菱重工業株式会社 Fretting fatigue testing device and fretting fatigue testing method
WO2017033818A1 (en) * 2015-08-24 2017-03-02 新日鐵住金株式会社 Railway axle
JP2018001304A (en) * 2016-06-29 2018-01-11 東日本旅客鉄道株式会社 Axle fine polishing device and axle fine polishing method
EP3112489A4 (en) * 2014-02-26 2018-03-07 Nippon Steel & Sumitomo Metal Corporation Train axle
CN109476177A (en) * 2016-07-07 2019-03-15 博纳特兰集团合股公司 Axle for a rail vehicle
WO2019194274A1 (en) 2018-04-04 2019-10-10 日本製鉄株式会社 Railroad axle
WO2019194273A1 (en) 2018-04-04 2019-10-10 日本製鉄株式会社 Railway axle
CN110904387A (en) * 2019-12-11 2020-03-24 北京交通大学 Bainite axle steel for heavy-duty railway wagon and preparation method thereof
CN112176255A (en) * 2020-09-25 2021-01-05 马鞍山钢铁股份有限公司 Carbon steel high-speed rail axle with speed per hour being more than or equal to 400 kilometers and modification method thereof
WO2022071262A1 (en) 2020-09-29 2022-04-07 日本製鉄株式会社 Railway axle

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009041917A (en) * 2007-08-06 2009-02-26 Railway Technical Res Inst Film thickness measuring system of railroad rail surface hardening layer
JP2011511214A (en) * 2007-11-30 2011-04-07 ベー アンド エミ ド ブラジル ソシエダッド アノニマ Axle from seamless pipe for railway vehicles and method for manufacturing axle from seamless steel pipe for railway vehicles
CN103160737A (en) * 2013-03-07 2013-06-19 中国铁道科学研究院金属及化学研究所 Bainite steel, steel guard rail prepared by bainite steel thereof and preparation method
JP2015081790A (en) * 2013-10-21 2015-04-27 三菱重工業株式会社 Fretting fatigue testing device and fretting fatigue testing method
EP3112489A4 (en) * 2014-02-26 2018-03-07 Nippon Steel & Sumitomo Metal Corporation Train axle
US10392683B2 (en) * 2014-02-26 2019-08-27 Nippon Steel Corporation Rail vehicle axle
WO2017033818A1 (en) * 2015-08-24 2017-03-02 新日鐵住金株式会社 Railway axle
JPWO2017033818A1 (en) * 2015-08-24 2018-05-31 新日鐵住金株式会社 Rail axle
JP2018001304A (en) * 2016-06-29 2018-01-11 東日本旅客鉄道株式会社 Axle fine polishing device and axle fine polishing method
JP2019530840A (en) * 2016-07-07 2019-10-24 ボナトランス グループ アー.エス. Railcar axle
CN109476177A (en) * 2016-07-07 2019-03-15 博纳特兰集团合股公司 Axle for a rail vehicle
WO2019194274A1 (en) 2018-04-04 2019-10-10 日本製鉄株式会社 Railroad axle
WO2019194273A1 (en) 2018-04-04 2019-10-10 日本製鉄株式会社 Railway axle
CN112236538A (en) * 2018-04-04 2021-01-15 日本制铁株式会社 Axle for railway
JPWO2019194273A1 (en) * 2018-04-04 2021-04-15 日本製鉄株式会社 Railroad axle
JPWO2019194274A1 (en) * 2018-04-04 2021-05-13 日本製鉄株式会社 Railroad axle
CN112236538B (en) * 2018-04-04 2021-08-31 日本制铁株式会社 Axle for railway
JP7024860B2 (en) 2018-04-04 2022-02-24 日本製鉄株式会社 Railroad axle
JP7136195B2 (en) 2018-04-04 2022-09-13 日本製鉄株式会社 railway axle
CN110904387A (en) * 2019-12-11 2020-03-24 北京交通大学 Bainite axle steel for heavy-duty railway wagon and preparation method thereof
CN112176255A (en) * 2020-09-25 2021-01-05 马鞍山钢铁股份有限公司 Carbon steel high-speed rail axle with speed per hour being more than or equal to 400 kilometers and modification method thereof
WO2022071262A1 (en) 2020-09-29 2022-04-07 日本製鉄株式会社 Railway axle

Also Published As

Publication number Publication date
JP3951467B2 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
EP3778967B1 (en) Railway axle
EP3778969B1 (en) Railway axle
JP3951467B2 (en) Railcar axle
JP6615256B2 (en) Stainless steel plate and brake system parts
JP3329263B2 (en) Axles for rolling stock and manufacturing methods
JP3297793B2 (en) Railway axle and method of manufacturing the same
JP3709758B2 (en) Axle for railway vehicle and manufacturing method thereof
JP6555447B2 (en) Rail manufacturing method
JP3631712B2 (en) Heat-treated pearlitic rail with excellent surface damage resistance and toughness, and its manufacturing method
CN114058965B (en) High-contact-fatigue-resistance microalloyed steel wheel and production method thereof
JP2000178690A (en) Pearlitic rail excellent in resistance to wear and internal fatigue damage, and its manufacture
JPH0953169A (en) Carburized and quenched parts for driving shaft coupling and its production
JPH108204A (en) Axle for railroad and its production
CN115341150B (en) Fatigue crack resistant steel for locomotive wheels, method for producing locomotive wheels and application
JP4041330B2 (en) Steel wire for hard springs and hard springs with excellent fatigue strength
JP3713805B2 (en) Induction hardening steel with excellent cold forgeability and its manufacturing method
US11566307B2 (en) Rail
JPH09137227A (en) Production of high wear resistant pearlite rail
JP3620935B2 (en) Machine structural steel with excellent cold forgeability, induction hardenability and rolling fatigue properties
JP3815354B2 (en) Bearing member with excellent rolling fatigue characteristics and workability in high-frequency heat-treated parts
CN117794656A (en) Forged steel roll for cold rolling
JP4331868B2 (en) Wear-resistant rails containing spheroidized carbides
Radzevich Gear Materials
JPH07100840B2 (en) Gears with excellent impact resistance
JPH06158171A (en) High strength axial parts for machine structure and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees