JP2000072456A - Optical element forming device and production of optical element - Google Patents

Optical element forming device and production of optical element

Info

Publication number
JP2000072456A
JP2000072456A JP10242675A JP24267598A JP2000072456A JP 2000072456 A JP2000072456 A JP 2000072456A JP 10242675 A JP10242675 A JP 10242675A JP 24267598 A JP24267598 A JP 24267598A JP 2000072456 A JP2000072456 A JP 2000072456A
Authority
JP
Japan
Prior art keywords
optical element
molding
mold
adjusting member
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10242675A
Other languages
Japanese (ja)
Other versions
JP2000072456A5 (en
Inventor
Hiroaki Iguchi
裕章 井口
Jun Takano
潤 高野
Kazuo Kitazawa
和雄 北沢
Mitsumasa Negishi
光正 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10242675A priority Critical patent/JP2000072456A/en
Publication of JP2000072456A publication Critical patent/JP2000072456A/en
Publication of JP2000072456A5 publication Critical patent/JP2000072456A5/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • C03B2215/48Convex-concave

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To form an optical element which is kept at a specified distance between optical function faces without the collapse of these optical function faces. SOLUTION: A spacing regulating member 12 is projected from a drum mold 13 for a lower die under a difference in coeffts. of thermal expansion by raising forming temp. and before a drum mold 14 for an upper die is brought into tight contact with the mold 13 for the lower die under a pressure by a press, the front surface of the spacing regulating member 12 is brought into tight contact with the drum mold 13 for the lower die. The spacing regulating member 12 is shrunk by gradually lowering the temp. down to 610 deg.C and the state, that the pressure by the press is applied on a glass blank 15, is attained. Further, the glass blank is taken out when the tamp. falls down to the temp. allowing the take-out. The optical element is thus obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非球面レンズに代
表される高精度光学素子をプレス成形によって形成する
ようにした光学素子成形装置に関する物である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element molding apparatus for forming a high-precision optical element represented by an aspherical lens by press molding.

【0002】[0002]

【従来技術】近年、高精度非球面レンズや特殊形状光学
素子(プリズムやフライアイレンズ等)の製造法とし
て、研磨工程を必要とせずプレス成形により製造する方
法が使われるようになって来た。これにより従来、光学
素子製造で行われてきた複雑な工程は省かれ、同形状を
多量且つ安価に製造することが出来るようになった。
2. Description of the Related Art In recent years, as a method of manufacturing a high-precision aspherical lens or a specially shaped optical element (such as a prism or a fly-eye lens), a method of manufacturing by press molding without requiring a polishing step has been used. . As a result, complicated steps conventionally performed in the manufacture of optical elements are omitted, and the same shape can be manufactured in large quantities at low cost.

【0003】以下に従来行われていた光学素子成形方法
の一例について説明する。図1は光学素子成形型により
ボール形状のガラス素材を両凸形状に成形する状態を示
す模式図である。1は上型用胴型、2は下型用胴型、3
は上成形型,4は下成形型、5はボール形状のガラス素
材、6はプレス軸、7は胴型1、2をプレス軸6に繋ぎ
止めるプレートである。両面研磨したガラス素材5を上
成形型3及び下成形型4の間に配置し、金型部材等が酸
化しないように成形装置内を窒素ガス雰囲気に置換し、
ガラス素材5が変形可能な温度まで加熱した後、プレス
軸6で適当な時間及び圧力で押圧成形し金型形状をガラ
ス素材5に転写させる。そしてガラス転移温度より十分
低い温度まで冷却し、転写された成形面形状が安定化し
たところでプレス圧力を除去し、取り出し可能温度で大
気を導入し、金型を開いて両凸形状の光学素子を得てい
る。
An example of a conventional optical element molding method will be described below. FIG. 1 is a schematic diagram showing a state in which a glass material in a ball shape is formed into a biconvex shape using an optical element molding die. 1 is the upper die, 2 is the lower die, 3
Is an upper molding die, 4 is a lower molding die, 5 is a ball-shaped glass material, 6 is a press shaft, and 7 is a plate for connecting the body dies 1 and 2 to the press shaft 6. The glass material 5 polished on both sides is placed between the upper mold 3 and the lower mold 4, and the inside of the molding apparatus is replaced with a nitrogen gas atmosphere so that the mold members and the like are not oxidized.
After the glass material 5 is heated to a temperature at which the glass material 5 can be deformed, the glass material 5 is pressed and molded with a press shaft 6 for an appropriate time and pressure to transfer the mold shape to the glass material 5. Then, it is cooled to a temperature sufficiently lower than the glass transition temperature, the press pressure is removed when the transferred molding surface shape is stabilized, the atmosphere is introduced at a temperature at which it can be taken out, the mold is opened, and the biconvex optical element is opened. It has gained.

【0004】通常、光学素子性能は光学機能面形状の他
に中心厚に代表される機能面間距離も重要な因子として
存在する。従来方法では押し込み量調整には上下胴型を
密着させる方法やプレス軸移動距離をソフトウェア制御
で行う方法が使われてきた。
In general, the performance of an optical element is determined not only by the shape of the optical functional surface but also by the distance between functional surfaces represented by the center thickness as an important factor. In the conventional method, a method of closely contacting the upper and lower body dies and a method of controlling the moving distance of the press shaft by software have been used for adjusting the pushing amount.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来技術において胴型を密着させる方法は、成形後の光学
機能面間距離は常に一定になる反面、上下胴型が密着し
た瞬間ガラス素材に掛かる圧力を除去した状態と同等に
なる。つまり成形初期にこの状態になった光学素子はガ
ラス転移温度までの除冷行程中に粘性流動による面変化
が発生し、光学機能面形状を崩す原因になった。
However, in the above-mentioned conventional technique, the distance between the optically functional surfaces after molding is always constant, but the pressure applied to the glass material at the moment when the upper and lower body dies are brought into close contact with each other. Is the same as the state in which is removed. In other words, the optical element in this state in the early stage of molding undergoes a surface change due to viscous flow during the cooling process up to the glass transition temperature, causing the optical functional surface to lose its shape.

【0006】またプレス軸移動距離のソフトウェア制御
では加熱冷却を繰り返す成形装置の性質上、外気温や冷
却水温度等の変化により装置全体の伸縮を顧慮する必要
があり、数ミクロンの押し込み量制御を必要とする高精度レ
ンズ成形には不向きであった。この発明は、このような
問題に鑑みてなされたものであり、光学機能面形状を崩
さず、光学機能面間距離も一定に保つ事の出来る光学素
子成形用装置とこれを用いた光学素子製造方法を提供す
ることを目的とする。
In software control of the press axis moving distance, it is necessary to take into account expansion and contraction of the entire apparatus due to changes in outside temperature, cooling water temperature, etc. due to the nature of the molding apparatus that repeats heating and cooling. It was not suitable for the required high-precision lens molding. The present invention has been made in view of such a problem, and an optical element molding apparatus capable of maintaining a constant distance between optical function surfaces without disturbing the shape of the optical function surface, and an optical element manufacturing device using the same. The aim is to provide a method.

【0007】[0007]

【課題を解決するための手段】この発明は、上記課題を
解決するものとして、加熱軟化させた光学材料を上下金
型でプレス成形する金型構造において、成形後の光学機
能面間距離を一定にするための間隔調整部材を金型構造
内に配設する事を特徴とし、成形温度に於ける光学材料
の熱膨張係数をα1、成形金型の熱膨張係数をα2、胴
型部材の熱膨張係数をα3、間隔調整部材の熱膨張係数
をα4、光学素子の最大厚みをh1、光学素子が最大厚
みをとる位置における上下成形金型の全高をh2、さら
に上下胴型の全高をh3とした時、 間隔調整部材の高さ>(h1×α1+h2×α2−h3×α3)/α4....(a) の関係をみたすことを特徴とする光学素子成形装置構造
を提供する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a mold structure for press-molding an optical material that has been heated and softened by using upper and lower dies, so that the distance between optical functional surfaces after molding is constant. In this case, a space adjusting member for making the optical material has a thermal expansion coefficient of α1 at the molding temperature, a thermal expansion coefficient of the molding die of α2 at the molding temperature, and a heat The expansion coefficient is α3, the thermal expansion coefficient of the gap adjusting member is α4, the maximum thickness of the optical element is h1, the total height of the upper and lower molding dies at the position where the optical element takes the maximum thickness is h2, and the total height of the upper and lower molds is h3. Then, the height of the gap adjusting member> (h1.times..alpha.1 + h2.times..alpha.2-h3.times..alpha.3) /. Alpha.4... (A) is provided.

【0008】この発明に於いては、まず成型時に間隔調
整部材で加重を受けることで光学機能面間距離を一定に
保つ事が出来る。さらに、条件(a)に適合した長さの
間隔調整部材を使用することで、冷却時における成形金
型の熱収縮量とガラス素材の熱収縮量の合計以上に間隔
調整部材が縮むため、ガラス素材には常に圧力が加わり
粘性流動による光学機能面形状の劣化の問題もなくな
る。
In the present invention, the distance between the optically functional surfaces can be kept constant by first receiving a load by the spacing adjusting member during molding. Further, by using the interval adjusting member having a length suitable for the condition (a), the interval adjusting member shrinks more than the sum of the heat shrinkage of the molding die and the glass material during cooling. Pressure is always applied to the material, and the problem of deterioration of the optical function surface shape due to viscous flow is eliminated.

【0009】[0009]

【発明の実施の形態】以下に、本実施の形態で使用した
材料の熱膨張係数を表1に示し、光学素子成型用装置と
成形方法を実施例をもとに図を参照しながら説明してい
く。
BEST MODE FOR CARRYING OUT THE INVENTION The thermal expansion coefficients of the materials used in the present embodiment are shown in Table 1 below, and an optical element molding apparatus and a molding method will be described based on examples with reference to the drawings. To go.

【0010】[0010]

【表1】 [Table 1]

【0011】図2,図3は本実施の形態で使用した超硬
金型の断面図ある。図4は本実施の形態により作成した
重クラウン系光学ガラス素子150の概略図である。図
5は本実施の形態で使用した炭クロム系セラミック製間
隔調整部材12の断面図である。まず下成形用金型1
0、上成形用金型11、間隔調整部材12を図6で示す
ように超硬製下型用胴型(高さ25mm)13,上型用
胴型(高さ20mm)14内にそれぞれ配設する。この
とき間隔調整部材12は下型10の外周から10mmの
外側の位置に3本、等間隔で配設している。このとき間
隔調整部材12の高さはガラス素子の厚さが最も大きい
E位置を基準に考えて計算すると、
FIGS. 2 and 3 are cross-sectional views of the cemented carbide mold used in the present embodiment. FIG. 4 is a schematic view of a heavy crown optical glass element 150 produced according to the present embodiment. FIG. 5 is a sectional view of the chromium carbonaceous ceramic spacing adjusting member 12 used in the present embodiment. First, the lower molding die 1
As shown in FIG. 6, the upper mold 11 and the gap adjusting member 12 are disposed in a lower mold body 13 (height 25 mm) 13 and an upper mold body 20 (height 20 mm) 14 as shown in FIG. Set up. At this time, three space adjusting members 12 are arranged at equal intervals at a position 10 mm outside the outer periphery of the lower mold 10. At this time, the height of the gap adjusting member 12 is calculated based on the E position where the thickness of the glass element is the largest.

【0012】[0012]

【数1】 (Equation 1)

【0013】となり間隔調整部材12の高さ25mmが
(a)式を満たす事は明らかである。続いて両面研磨し
た平凸形状のガラスブランク15を下成形型10及び上
成形型11で挟み込むようにして下型用胴型13内に配
置する。上成形型10及び下成形型11の成形面は研削
研磨により曲率R30及びR50形状に鏡面加工され、
その成形面にはイオンプレーティング法により白金−イ
リジウムの合金が厚さ2μmでコーティングしてある。
このガラスブランク15、上下成形型10、11、上下
胴型13,14、間隔調整部材12がセットされた状態
のものをプレス軸16にプレート18を介して不図示の
ボルトで固定する。
It is apparent that the height 25 mm of the gap adjusting member 12 satisfies the expression (a). Subsequently, the plano-convex glass blank 15 polished on both sides is placed in the lower mold body 13 so as to be sandwiched between the lower mold 10 and the upper mold 11. The molding surfaces of the upper mold 10 and the lower mold 11 are mirror-finished into a shape of curvature R30 and R50 by grinding and polishing.
The molding surface is coated with a platinum-iridium alloy to a thickness of 2 μm by an ion plating method.
The glass blank 15, the upper and lower molds 10, 11, the upper and lower body dies 13, 14, and the space adjusting member 12 are fixed to a press shaft 16 via a plate 18 with bolts (not shown).

【0014】成形装置内部の酸素濃度が10ppm以下
になるまで窒素ガスで置換する。次に周囲を囲った赤外
線ランプ17により成形温度720度まで加熱する。3
分間この温度を保持し金型及びガラス素材の均熱化を図
る。このとき間隔調整部材12は熱膨張により高さが伸
び、その先端は下型用胴型13から少し(例えば、0.
12mm)突き出た位置にある。その後、プレス軸16
の移動を始め間隔調整部材12の上面と上型用胴型14
とが密着する位置まで1tの圧力でガラスブランク15
の成形を行う。
[0014] The nitrogen gas is replaced until the oxygen concentration inside the molding apparatus becomes 10 ppm or less. Next, it is heated to a molding temperature of 720 degrees by an infrared lamp 17 surrounding the periphery. Three
This temperature is maintained for one minute, so as to equalize the temperature of the mold and the glass material. At this time, the height of the gap adjusting member 12 is increased by thermal expansion, and the tip of the gap adjusting member 12 is slightly (for example, 0.
12mm) It is in a protruding position. Then, press shaft 16
The upper surface of the gap adjusting member 12 and the upper mold die 14
The glass blank 15 at a pressure of 1 t until the
Is formed.

【0015】プレスによってレンズ形状がほぼ形成され
る最終段階では、1tの圧力は全て間隔調整部材12で
受けてガラスブランク15の中心厚をほぼ決定する。密
着位置到達後、0.3度/secの温度制御を行いなが
ら610度まで冷却する。この間、間隔調整部材12の
熱収縮量がガラスブランク15と成形金型10,11の
熱収縮量を常に上回る為、光学機能面には適度な力が加
わり続け粘性流動による面変化を防止することが出来
る。610度で圧力を除圧し、その後、取り出し可能温
度になったら成形装置内に大気を導入して、金型を開け
ば、図3の様な光学素子が完成する。このようにして出
来た光学素子150を測定した結果、機能面形状の崩れ
もなく、中心厚のバラツキ幅は3ミクロン以内に押さえ
られていた。
In the final stage in which the lens shape is substantially formed by pressing, the pressure of 1 t is all received by the spacing adjusting member 12 to substantially determine the center thickness of the glass blank 15. After reaching the close contact position, the temperature is cooled to 610 degrees while controlling the temperature at 0.3 degrees / sec. During this time, since the heat shrinkage of the gap adjusting member 12 always exceeds the heat shrinkage of the glass blank 15 and the molding dies 10, 11, an appropriate force is continuously applied to the optical function surface to prevent the surface change due to viscous flow. Can be done. The pressure is released at 610 ° C., and when the temperature reaches a temperature at which it can be taken out, air is introduced into the molding apparatus, and the mold is opened. Thus, an optical element as shown in FIG. 3 is completed. As a result of measuring the optical element 150 formed in this way, it was found that the functional surface shape did not collapse and the variation in the center thickness was kept within 3 microns.

【0016】なお、実施の形態で示した型は凹凸両方の
形状を有するものであったが、この形状は光学性能を満
足するものであれば平面形状、両凹形状等を有するもの
でも問題はない。また、光学素子材料の形状も平凸形状
に限らず近似球面、ボール等使い分けることも可能であ
り、光学素子材料の種類も用途により適宜変更すること
ができることは言うまでもない。また、本実施の形態で
使用した間隔調整部材は3本の炭化クロム系セラミック
ピンで加重を受ける形態をとったが、これは上下胴型の
平行を保ち、成形圧力に耐えられる物であればその数や
形態は問わない。
Although the mold shown in the embodiment has both concave and convex shapes, the mold may have a planar shape or a biconcave shape as long as it satisfies the optical performance. Absent. Further, the shape of the optical element material is not limited to the plano-convex shape, and it is also possible to use an approximate spherical surface, a ball, or the like, and it is needless to say that the type of the optical element material can be appropriately changed depending on the application. In addition, the spacing adjusting member used in the present embodiment is configured to receive a load by three chromium carbide ceramic pins. However, the spacing adjusting member may be a material that can maintain the parallelism of the upper and lower body molds and withstand the molding pressure. The number and form are not limited.

【0017】比較のため間隔調整部材を設けない従来の
金型を作成して同様の成形実験を行った。従来タイプの
金型では、胴型密着方式であるため、光学機能面形状が
崩れ約半分成形品が使用に耐えなかった。それに対し、
本発明に係る金型では、機能面形状の崩れは生じないた
め、全ての成形品を使用できる。また、従来タイプの金
型では、プレス軸移動距離のソフトウェア制御では機能
面形状崩れはほとんど発生しなかったものの、中心厚の
バラツキ幅は100ミクロンに広がり、鏡筒に投入して
性能評価行う際、間隔調整が必要になった。それに対
し、本発明に係る金型によれば、中心厚のバラツキ幅は
3ミクロン以内であるため、間隔調整等が不要である。
それに対し、本発明に係る金型によれば、中心厚のバラ
ツキ幅は3ミクロン以内であるため、間隔調整等が不要
である。
For comparison, a conventional mold having no interval adjusting member was prepared and a similar molding experiment was performed. In the conventional type mold, the shape of the optical function surface is broken due to the body-type close contact method, and about half of the molded product cannot be used. For it,
In the mold according to the present invention, all molded products can be used because the functional surface shape does not collapse. In addition, in the conventional mold, the functional surface shape collapse hardly occurred by software control of the press axis moving distance, but the variation in the center thickness widened to 100 microns. , I needed to adjust the spacing. On the other hand, according to the mold according to the present invention, since the variation width of the center thickness is within 3 μm, it is not necessary to adjust the interval.
On the other hand, according to the mold according to the present invention, since the variation width of the center thickness is within 3 μm, it is not necessary to adjust the interval.

【0018】[0018]

【発明の効果】以上のように、本発明によれば素材重量
のバラツキによる成形タイミングずれがあっても、光学
機能面形状を崩さず、中心厚を数ミクロンのバラツキ幅に押
さえることが可能になるので、高精度な光学素子を安定
的に量産できる効果がある。
As described above, according to the present invention, even if there is a molding timing shift due to a variation in the weight of the material, the center thickness can be suppressed to a width of several microns without breaking the optical function surface shape. Therefore, there is an effect that high-precision optical elements can be stably mass-produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は従来の光学素子成形用金型の断面図である。FIG. 1 is a sectional view of a conventional optical element molding die.

【図2】は本発明の光学素子成形用金型の断面図であ
る。
FIG. 2 is a sectional view of a mold for molding an optical element of the present invention.

【図3】は本発明の光学素子成形用金型の断面図であ
る。
FIG. 3 is a sectional view of a mold for molding an optical element according to the present invention.

【図4】は本発明により成形された光学素子である。FIG. 4 is an optical element formed according to the present invention.

【図5】は本発明で使用した間隔調整部材の断面図であ
る。
FIG. 5 is a sectional view of a gap adjusting member used in the present invention.

【図6】は本発明装置の模式図である。FIG. 6 is a schematic view of the device of the present invention.

【符号の説明】[Explanation of symbols]

1:上型用胴型 2:下型用胴型 3:上成形型 4:
下成形型 5:光学素子 6:プレス軸 7:プレート 10:下
成形型 11:上成形型 12:間隔調整部材 13:下型用胴
型 14:上型用胴型 15:ガラスブランク 16:プレ
ス軸 17:赤外線ランプ 18:プレート 150:光学素
1: Upper die mold 2: Lower die mold 3: Upper mold 4:
Lower forming die 5: Optical element 6: Press shaft 7: Plate 10: Lower forming die 11: Upper forming die 12: Interval adjusting member 13: Lower die body die 14: Upper die trunk die 15: Glass blank 16: Press Axis 17: Infrared lamp 18: Plate 150: Optical element

フロントページの続き (72)発明者 根岸 光正 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内Continued on the front page (72) Inventor Mitsumasa Negishi 3-2-3 Marunouchi, Chiyoda-ku, Tokyo Nikon Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 加熱軟化させた光学材料を研磨加工した
上下金型でプレス成形する光学素子成形装置において、
成形後の光学機能面間距離を一定にするための間隔調整
部材を金型構造内に配設する事を特徴とする光学素子成
形装置。
1. An optical element molding apparatus for press-molding an optical material heated and softened by polishing upper and lower molds,
An optical element molding apparatus, wherein an interval adjusting member for keeping a distance between optical functional surfaces after molding is arranged in a mold structure.
【請求項2】 請求項1において、成形温度に於ける光
学材料の熱膨張係数をα1、成形金型の熱膨張係数をα
2、胴型部材の熱膨張係数をα3、間隔調整部材の熱膨
張係数をα4、光学素子の最大厚みをh1、光学素子が
最大厚みをとる位置における上下成形金型の全高をh
2、さらに上下胴型の全高をh3とした時、 間隔調整部材の高さ>(h1×α1+h2×α2−h3
×α3)/α4 の関係を満たす事を特徴とする光学素子成形装置。
2. The method according to claim 1, wherein the thermal expansion coefficient of the optical material at the molding temperature is α1, and the thermal expansion coefficient of the molding die is α1.
2. The coefficient of thermal expansion of the body member is α3, the coefficient of thermal expansion of the gap adjusting member is α4, the maximum thickness of the optical element is h1, and the total height of the upper and lower molding dies at the position where the optical element takes the maximum thickness is h.
2. Further, when the total height of the upper and lower torso is defined as h3, the height of the gap adjusting member> (h1 × α1 + h2 × α2-h3
× α3) / α4.
【請求項3】 請求項1の成形装置を使用してつくる光
学素子製造方法。
3. A method for manufacturing an optical element using the molding apparatus according to claim 1.
JP10242675A 1998-08-28 1998-08-28 Optical element forming device and production of optical element Pending JP2000072456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10242675A JP2000072456A (en) 1998-08-28 1998-08-28 Optical element forming device and production of optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10242675A JP2000072456A (en) 1998-08-28 1998-08-28 Optical element forming device and production of optical element

Publications (2)

Publication Number Publication Date
JP2000072456A true JP2000072456A (en) 2000-03-07
JP2000072456A5 JP2000072456A5 (en) 2005-10-27

Family

ID=17092574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10242675A Pending JP2000072456A (en) 1998-08-28 1998-08-28 Optical element forming device and production of optical element

Country Status (1)

Country Link
JP (1) JP2000072456A (en)

Similar Documents

Publication Publication Date Title
US4591373A (en) Method for molding high-precision glass products
KR20130020846A (en) Process for production of molded articles, glass material, and method for determing the surface shapes of glass material and mold
US5987922A (en) Manufacturing method for molded glass articles
CN100398473C (en) Model forming device and method for optical glass lens
JP4045833B2 (en) Optical element manufacturing method
JP4559784B2 (en) Optical element manufacturing method
JP2000072456A (en) Optical element forming device and production of optical element
US6766661B2 (en) Method of manufacturing glass optical elements
JP2000233934A (en) Method for press-forming glass product and device therefor
JPS61291427A (en) Molded lens and production thererof
JPH0455134B2 (en)
JP5100790B2 (en) Optical element manufacturing method
JP2501588B2 (en) Mold for press molding optical glass element and molding method thereof
JP2006001803A (en) Mold press forming mold, method of manufacturing optical element and mold pressed lens
JP2000086255A (en) Method for molding optical element
JPH1160251A (en) Formation of optical element
JPH08133767A (en) Optical element forming method
JPH02196039A (en) Method for molding glass optical device
JP4473692B2 (en) Manufacturing method of molded products
JPH0741327A (en) Optical element forming method
JPH0372016B2 (en)
JPH10152331A (en) Molding of optical element
JPH10158019A (en) Formation of optical element, optical element, production of optical element forming material, formation of precision element and precision element
JP2003063835A (en) Mold for forming optical element and method for manufacturing the same
JPS63295447A (en) Production of optical glass element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930