JPS63295447A - Production of optical glass element - Google Patents

Production of optical glass element

Info

Publication number
JPS63295447A
JPS63295447A JP13051387A JP13051387A JPS63295447A JP S63295447 A JPS63295447 A JP S63295447A JP 13051387 A JP13051387 A JP 13051387A JP 13051387 A JP13051387 A JP 13051387A JP S63295447 A JPS63295447 A JP S63295447A
Authority
JP
Japan
Prior art keywords
molding
diameter
optical glass
glass element
glass material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13051387A
Other languages
Japanese (ja)
Other versions
JPH0449493B2 (en
Inventor
Takayuki Kimoto
高幸 木本
Takashi Inoue
孝志 井上
Masaaki Ueda
昌明 上田
Masaaki Haruhara
正明 春原
Daijiro Yonetani
米谷 大二郎
Toshiaki Takano
利昭 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13051387A priority Critical patent/JPS63295447A/en
Publication of JPS63295447A publication Critical patent/JPS63295447A/en
Publication of JPH0449493B2 publication Critical patent/JPH0449493B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • C03B2215/48Convex-concave

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain a transcription face having high transcription coefficient and to stably produce a high-precision optical glass element by using a stock wherein the relation of both the difference between diameter of the required optical glass element and diameter of the glass stock for molding, and the moving rate of a molding die is specified and press-molding it. CONSTITUTION:An optical glass element 5 is produced by charging a glass stock 1 for molding into a molding die 4, heating and molding it under pressure. In this case, when the difference between diameter of the required optical glass element 5 and diameter of the glass stock 1 for molding is defined as Y and the moving rate of the molding die 4 is defined as X, the glass stock 1 wherein the following relation is satisfied is used. 0.02X<Y<0.8X. Thereby the shape of the glass stock for molding can be properly decided and the pressure of pressing is firstly exerted to a transcription face and then exerted to the part of diameter of a lens and thereby such possibilities that transcription is made insufficient are reduced. The transcription face having high transcription coefficient is obtained because the diameter of the lens is formed after the pressure of pressing is sufficiently exerted to the transcription face.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、主として高精度な光学ガラス素子(例えばレ
ンズ、プリズム等)をリヒートプレス成形する際に用い
る光学ガラス素子の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing an optical glass element, which is mainly used in reheat press molding of a high-precision optical glass element (for example, a lens, a prism, etc.).

従来の技術 近年、光学ガラス素子は、光学機器のレンズ構成の簡略
化及びレンズ部分の軽量化を同時に達成しうる非球面化
の方向にある。この非球面レンズを安価かつ多量に製造
するために、ダイレクトプレス成形法(特公昭54−3
8126号公li%りが検討されその中でリヒートプレ
ス法が有望視されている。
BACKGROUND OF THE INVENTION In recent years, optical glass elements have been trending toward aspheric surfaces that can simultaneously simplify the lens structure of optical equipment and reduce the weight of the lens portion. In order to manufacture this aspherical lens at low cost and in large quantities, a direct press molding method (Special Publication Publication No. 54-3
No. 8126 has been studied, and among them, the reheat press method is considered to be promising.

(特開昭60−81032号) 発明が解決しようとする問題点 上記光学ガラス素子の製造において、光学ガラス素子の
光学的性能は従来の研磨法による光学ガラス素子のそれ
に比べてより優れている必要があり非常に高い面精度及
び面粗度が要求される。例えば高精度カメラレンズの場
合、面精度ニュートンリング5本、アメ1本以内、面粗
さ0.03μm以内であることが要求される。このよう
に高精度な光学ガラス素子を製造するための方法として
、リヒートプレス法が有力である。リヒートプレス法と
いうのはあらかじめ所望の光学ガラス素子に近い形状に
加工した光学ガラス素材を加熱加圧成形して光学ガラス
素子を製造する方法である°、ソリヒートプレス法重要
な点は、成形用ガラス素材の面品質及び形状精度である
0面品質については表面処理を行うことにより0.1μ
mの表面粗さにすることができる0例えば、表面粗さが
0.5μm程度の成形用ガラス素材を成形すると表面状
態が悪いために透過率が低下しこのような光学ガラス素
子の光学性能は不十分であるが、表面処理により表面粗
さを0.1μm以下にした成形用ガラス素材を成形する
と、高透過率を有した光学ガラス素子を得ることが可能
である。しかしながら、所望の光学ガラス素子の径と成
形用ガラス素材の径の差を一対の成形型移動量に応じた
長さに研削加工しないと高精度な光学ガラス素子を安定
して得られない0例えば、成形型の移動量が少ない成形
用ガラス素材をプレス成形する場合、所望の光学ガラス
素子の径と成形用ガラス素材の径の差がゼロだとプレス
圧力が左右へ分圧され、高精度な成形型の面をガラスへ
転写できない、また、成形型の移動量が多い成形用ガラ
ス素材を成形する場合、所望の光学ガラス素子の径と成
形用ガラス素材の径の差が大きくなりすぎるとレンズに
偏心を生じる。
(Japanese Unexamined Patent Publication No. 60-81032) Problems to be Solved by the Invention In the production of the above-mentioned optical glass element, the optical performance of the optical glass element must be superior to that of the optical glass element produced by the conventional polishing method. Therefore, extremely high surface accuracy and surface roughness are required. For example, in the case of a high-precision camera lens, the surface accuracy is required to be within 5 Newton rings and 1 candy, and the surface roughness to be within 0.03 μm. As a method for manufacturing such a highly precise optical glass element, the reheat press method is effective. The reheat press method is a method of manufacturing optical glass elements by heating and pressing an optical glass material that has been processed in advance into a shape close to the desired optical glass element. The surface quality and shape accuracy of the glass material can be reduced to 0.1μ by surface treatment.
For example, when a molding glass material with a surface roughness of about 0.5 μm is molded, the transmittance decreases due to the poor surface condition, and the optical performance of such an optical glass element decreases. Although it is insufficient, it is possible to obtain an optical glass element with high transmittance by molding a glass material for molding whose surface roughness has been reduced to 0.1 μm or less by surface treatment. However, unless the difference between the diameter of the desired optical glass element and the diameter of the glass material for molding is processed to a length corresponding to the amount of movement of the pair of molds, it is not possible to stably obtain a highly accurate optical glass element. When press-molding a molding glass material with a small amount of movement of the mold, if the difference between the diameter of the desired optical glass element and the diameter of the molding glass material is zero, the press pressure will be divided to the left and right, making it difficult to achieve high precision. When molding a glass material for molding where the surface of the mold cannot be transferred to the glass or the mold moves a lot, if the difference between the diameter of the desired optical glass element and the diameter of the glass material for molding becomes too large, the lens causes eccentricity.

すなわち光学ガラス素材の形状によるレンズ性能に及ぼ
す影響は非常に大きい。
In other words, the shape of the optical glass material has a very large influence on lens performance.

問題点を解決するための手段 本発明は、上記問題点を解決するために高精度な、光学
ガラス素子をリヒートプレス法で製造する際に用いるガ
ラス形状を、所望の光学ガラス素子の径と成形用ガラス
素材の径の差をYとし、成形型の移動量をXとした場合
0.02X < Y < 0.8Xの関係式からなる形
状にした成形用ガラス素材をプレス成形する、光学ガラ
ス素子の製造方法を提供するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention aims to change the shape of the glass used when manufacturing high-precision optical glass elements by the reheat press method to the desired diameter and molding of the optical glass element. An optical glass element in which a glass material for molding is press-molded into a shape according to the relational expression 0.02X < Y < 0.8X, where Y is the difference in diameter of the glass material for use and X is the amount of movement of the mold. The present invention provides a method for manufacturing.

作用 リヒートプレス法において最も重要視されるのは、成形
用ガラス素材の変形方法である。変形を開始させるため
の一般的条件は、成形開始温度とプレス圧力とされてい
る。しかし成形開始温度は硝材形状により、加熱のされ
方が異なるため同じガラス組成の成形用ガラス素材でも
成形開始温度に差が生じていた。したがって成形時のプ
レス圧力も異なり高精度な転写面を安定して得ることが
難しかった。このような問題は本発明の光学ガラス素子
の製造方法を行うことによって解決される。
What is most important in the reheat press method is the method of deforming the glass material for molding. The general conditions for starting deformation are molding start temperature and press pressure. However, since the heating method differs depending on the shape of the glass material, the forming start temperature differs even for forming glass materials having the same glass composition. Therefore, the press pressure during molding differs, making it difficult to stably obtain a highly accurate transfer surface. Such problems can be solved by carrying out the method of manufacturing an optical glass element of the present invention.

すなわち本発明の成形用ガラス素材は所望のレンズ径と
成形型の移動量より適正な成形用ガラス素材の形状を決
定できる。プレス圧力が転写面より先にレンズ径の部分
へ圧力が加わって転写不十分となる可能性が少なく、プ
レス圧力が転写面に十分加わってからレンズ径を形成す
るため極めて転写率の高い転写面を得ることが可能であ
る。しかし転写面へのプレス圧力を上げるため成形用ガ
ラス素材の径を小さくすることも考えられるが、偏心を
起す要因になるため考慮する必要性がある。
That is, with the glass material for molding of the present invention, an appropriate shape of the glass material for molding can be determined based on the desired lens diameter and the amount of movement of the mold. There is less chance of press pressure being applied to the lens diameter part before the transfer surface, resulting in insufficient transfer, and the lens diameter is formed after sufficient press pressure is applied to the transfer surface, resulting in an extremely high transfer rate. It is possible to obtain However, it may be possible to reduce the diameter of the glass material for molding in order to increase the press pressure on the transfer surface, but this needs to be taken into consideration as it may cause eccentricity.

これらの条件を満たした成形用ガラス素材を加熱加圧成
形すると、高精度な転写面を安定して得ることが可能で
ある。
When a glass material for molding that satisfies these conditions is subjected to heating and pressure molding, it is possible to stably obtain a highly accurate transfer surface.

実施例 以下本発明の一実施例について、図面を参照しながら説
明する。
EXAMPLE An example of the present invention will be described below with reference to the drawings.

第1図は本発明の第1の実施例における光学ガラス素子
の製造方法を示すものである。第1図においてガラス素
材1は第3図で示されているガラス素材1と同じ球状の
ものである。4は光学ガラス素子を製造するための上下
の成形型で、この一対の成形型により成形された光学ガ
ラス素子5を点線より下部に表す。
FIG. 1 shows a method for manufacturing an optical glass element according to a first embodiment of the present invention. In FIG. 1, the glass material 1 has the same spherical shape as the glass material 1 shown in FIG. Reference numeral 4 indicates upper and lower molds for manufacturing an optical glass element, and the optical glass element 5 molded by this pair of molds is shown below the dotted line.

以下第1図及び第3図を用いてメニスカスレンズの製造
方法を説明する。使用した成形型4は超硬で作られてお
り、上成形型は凹面に、下成形型は凸面に加工されてい
る。光学ガラス素子の径となる成形型の径は8.2Mと
した。成形用ガラス素材としては、研摩し表面粗さが0
.05μm以下となっている第3図の1で示す球状のも
のを使用した。
The method for manufacturing a meniscus lens will be described below with reference to FIGS. 1 and 3. The mold 4 used was made of carbide, with the upper mold having a concave surface and the lower mold having a convex surface. The diameter of the mold, which is the diameter of the optical glass element, was 8.2M. As a glass material for molding, it is polished to have a surface roughness of 0.
.. A spherical material having a diameter of 0.05 μm or less and indicated by 1 in FIG. 3 was used.

この形状はφ5.6鶴である。成形方法としては成形型
内に成形用ガラス素材を入れ、加熱、加圧成形する方法
をとった。成形条件は成形型温度510℃、プレス圧力
20kg/cd、保持時間30秒、窒素雰囲気中であっ
た。プレス成形後の光学ガラス素子の波面収差はRM 
S = 0.024λと非常に高精度な転写面を有した
光学ガラス素子を得ることができた。この場合レンズ厚
さが2.3fiであり、成形用ガラス素材をφ5.6m
mとしたため、X=3.3flと算出される。したがっ
てyl+y2=Yであるため、この場合のY=2.6m
は本発明の条件式を満たし、高精度な光学ガラス素子を
製造することができる。
This shape is a φ5.6 crane. The molding method used was to place a molding glass material into a mold, heat it, and pressurize it. The molding conditions were a mold temperature of 510° C., a press pressure of 20 kg/cd, a holding time of 30 seconds, and a nitrogen atmosphere. The wavefront aberration of the optical glass element after press molding is RM
It was possible to obtain an optical glass element having a highly accurate transfer surface with S = 0.024λ. In this case, the lens thickness is 2.3fi, and the molding glass material is φ5.6m.
Since it is set to m, it is calculated that X=3.3 fl. Therefore, since yl+y2=Y, Y=2.6m in this case
satisfies the conditional expression of the present invention, and a highly accurate optical glass element can be manufactured.

以下本発明の第2の実施例について図面を参照しながら
説明する。第2図は、本発明の光学ガラス素子の製造方
法を示す図である。同図において、3は第3図に示すガ
ラス素材と同じものであり、曲率半径3.5鶴、中心肉
厚6.2鶴、コバ径4鶴の両凸形状に研削加工した。6
は成形型で上下型共に凹形状になっている。規制型7は
上成形型の移動量を規制するためのもので、内径を5+
nとした。
A second embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a diagram showing a method for manufacturing an optical glass element of the present invention. In the figure, 3 is the same glass material as shown in FIG. 3, and was ground into a biconvex shape with a radius of curvature of 3.5 mm, a center wall thickness of 6.2 mm, and an edge diameter of 4 mm. 6
is a mold, and both the upper and lower molds have a concave shape. The regulating die 7 is for regulating the amount of movement of the upper molding die, and has an inner diameter of 5+.
It was set as n.

上記のように構成された成形型と規制型の間にガラス素
材を保持し、プレス成形を行った。成形条件は前記第1
実施例と同じ条件で行いレンズ厚さ4.3鶴を有する光
学ガラス素子を得た。この場合の成形型の移動量Xは1
.9mであり、成形用ガラス素材としてのyl+y2−
Yは条件を満たしているため、高精度な光学ガラス素子
を製造することができる。
A glass material was held between the mold and the regulating mold configured as described above, and press molding was performed. The molding conditions are as described above.
An optical glass element having a lens thickness of 4.3 mm was obtained under the same conditions as in the example. In this case, the amount of movement X of the mold is 1
.. 9m, and yl+y2- as a glass material for molding.
Since Y satisfies the conditions, a highly accurate optical glass element can be manufactured.

発明の効果 以上の説明から明らかなように、本発明の光学ガラス素
子の製造方法は所望の光学ガラス素子の径と成形用ガラ
ス素材の径の差をYとし、成形型の移動量をXとした場
合0.02X<y< 0.8Xの関係式からなる成形用
ガラス素材を用いてプレス成形することを特徴としたも
のであり、所望のレンズ径と成形型の移動量より適正な
成形用ガラス素材の形状を決定できる。したがって、プ
レス圧力が転写面より先にレンズ径の部分へ圧力が加わ
って転写不十分となる可能性が少なく、プレス圧力が転
写面に十分加わってからレンズ径を形成するため極めて
転写率の高い転写面を得ることが可能である。なお、成
形用ガラス素材の形状は実施例で示した第3図のみに限
定されるものではなく、XとYの関係式を満たすもので
あれば如何なる形状のものでも良いことは言うまでもな
い。
Effects of the Invention As is clear from the above explanation, the method for manufacturing an optical glass element of the present invention is based on the method in which the difference between the diameter of the desired optical glass element and the diameter of the glass material for molding is Y, and the amount of movement of the mold is X. In this case, press molding is performed using a molding glass material that has the relational expression of 0.02X < y < 0.8 The shape of the glass material can be determined. Therefore, there is less possibility that pressure is applied to the lens diameter part before the transfer surface, resulting in insufficient transfer, and the lens diameter is formed after press pressure is sufficiently applied to the transfer surface, resulting in an extremely high transfer rate. It is possible to obtain a transfer surface. It goes without saying that the shape of the glass material for molding is not limited to that shown in FIG. 3 shown in the embodiment, and may be of any shape as long as it satisfies the relational expression between X and Y.

本発明の光学ガラス素子の製造方法により、非常に高精
度な光学ガラス素子が安定して得ることが可能になり、
本発明の工業的価値は極めて大なるものがある。
The method for manufacturing an optical glass element of the present invention makes it possible to stably obtain an optical glass element with very high precision.
The industrial value of the present invention is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における成形型と成形用ガラ
ス素材の断面図、第2図は本発明の第2実施例における
成形型と成形用ガラス素材の断面図、第3図は成形用ガ
ラス素材の形状を示す斜視図である。 1.2.3・・・・・・成形用ガラス素材、4.6・・
・・・・成形型、5・・・・・・光学ガラス素子、7・
・・・・・規制型。 代理人の氏名 弁理士 中尾敏男 はか1名/−−−が
ラス衆せ 4−−→ぺyF;U S−一一凭1ガラス衆3 第1図 3−−−ガラス県せ 6一−−威升3I
FIG. 1 is a sectional view of a mold and a glass material for molding in an embodiment of the present invention, FIG. 2 is a sectional view of a mold and a glass material for molding in a second embodiment of the invention, and FIG. 3 is a sectional view of a mold and a glass material for molding in a second embodiment of the invention. It is a perspective view showing the shape of the glass material for use. 1.2.3...Glass material for molding, 4.6...
... Molding mold, 5... Optical glass element, 7.
...Restricted type. Name of agent: Patent attorney Toshio Nakao 1 person/---garasu se 4--→payF; -Weisho 3I

Claims (3)

【特許請求の範囲】[Claims] (1)所望の光学ガラス素子の径と成形用ガラス素材の
径の差をYとし、成形型の移動量をXとした場合0.0
2X<Y<0.8Xの関係式からなる成形用ガラス素材
を用いてプレス成形することを特徴とする光学ガラス素
子の製造方法。
(1) If Y is the difference between the diameter of the desired optical glass element and the diameter of the glass material for molding, and X is the amount of movement of the mold, 0.0
A method for manufacturing an optical glass element, characterized in that press molding is performed using a molding glass material having a relational expression of 2X<Y<0.8X.
(2)成形型の移動量Xは、一対の成形型が成形用ガラ
ス素材に接触してから所望のレンズ形状になるまでのプ
レス距離で定義されることを特徴とする特許請求の範囲
第(1)項記載の光学ガラス素子の製造方法。
(2) The amount of movement X of the molds is defined as the press distance from when the pair of molds contacts the molding glass material to when the desired lens shape is formed. 1) A method for manufacturing an optical glass element according to item 1).
(3)光学ガラス素子の径と成形用ガラス素材の径の差
Yは、成形用ガラス素材の径より大きくならないことを
特徴とする特許請求の範囲第(1)項記載の光学ガラス
素子の製造方法。
(3) Manufacturing an optical glass element according to claim (1), wherein the difference Y between the diameter of the optical glass element and the diameter of the glass material for molding is not larger than the diameter of the glass material for molding. Method.
JP13051387A 1987-05-27 1987-05-27 Production of optical glass element Granted JPS63295447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13051387A JPS63295447A (en) 1987-05-27 1987-05-27 Production of optical glass element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13051387A JPS63295447A (en) 1987-05-27 1987-05-27 Production of optical glass element

Publications (2)

Publication Number Publication Date
JPS63295447A true JPS63295447A (en) 1988-12-01
JPH0449493B2 JPH0449493B2 (en) 1992-08-11

Family

ID=15036090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13051387A Granted JPS63295447A (en) 1987-05-27 1987-05-27 Production of optical glass element

Country Status (1)

Country Link
JP (1) JPS63295447A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153127A (en) * 1984-08-21 1986-03-17 Hitachi Ltd Pressing of glass lenses
JPS61227929A (en) * 1985-03-30 1986-10-11 Matsushita Electric Ind Co Ltd Forming device for glass lens
JPS6287A (en) * 1985-02-28 1987-01-06 Sankyo Co Ltd Rhizoxin derivative
JPS6291430A (en) * 1985-06-27 1987-04-25 Hoya Corp Press forming method for formed glass material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153127A (en) * 1984-08-21 1986-03-17 Hitachi Ltd Pressing of glass lenses
JPS6287A (en) * 1985-02-28 1987-01-06 Sankyo Co Ltd Rhizoxin derivative
JPS61227929A (en) * 1985-03-30 1986-10-11 Matsushita Electric Ind Co Ltd Forming device for glass lens
JPS6291430A (en) * 1985-06-27 1987-04-25 Hoya Corp Press forming method for formed glass material

Also Published As

Publication number Publication date
JPH0449493B2 (en) 1992-08-11

Similar Documents

Publication Publication Date Title
JP3224472B2 (en) Optical lens and mold for molding the same
JPS63295447A (en) Production of optical glass element
JPH0435426B2 (en)
JPS6051623A (en) Process for molding optical element
US6766661B2 (en) Method of manufacturing glass optical elements
JP3875306B2 (en) Method for manufacturing mold for molding optical element and method for molding optical element
JP2501588B2 (en) Mold for press molding optical glass element and molding method thereof
JPS61291427A (en) Molded lens and production thererof
JPH0455134B2 (en)
JPH05330832A (en) Method for molding calchogenide glass lens
JP2001270724A (en) Optical lens and metal mold for forming the same
JPH01226746A (en) Glass lens formation mold
JPS63182225A (en) Production of optical glass element
JPH01145339A (en) Forming of optical glass element
SU617393A1 (en) Method of making optical component
JPH0375494B2 (en)
SU842062A1 (en) Method of making optical parts preferably anodizing diaphragms
JPH08208246A (en) Glass press mold
JP3235290B2 (en) Molding glass material and method for producing optical glass element
JPH0712940B2 (en) Glass lens molding method
JP2621941B2 (en) Optical element molding method
JP3153827B2 (en) Optical element molding die
JPH01226745A (en) Glass lens formation mold
KR0125997Y1 (en) A mould for lens
JPH06127957A (en) Mold for molding glass lens

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term