JP2000067861A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2000067861A
JP2000067861A JP10240234A JP24023498A JP2000067861A JP 2000067861 A JP2000067861 A JP 2000067861A JP 10240234 A JP10240234 A JP 10240234A JP 24023498 A JP24023498 A JP 24023498A JP 2000067861 A JP2000067861 A JP 2000067861A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
range
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10240234A
Other languages
Japanese (ja)
Inventor
Michio Takahashi
道夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP10240234A priority Critical patent/JP2000067861A/en
Publication of JP2000067861A publication Critical patent/JP2000067861A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a large output capacity without lowering an energy density when a battery is used as a motor drive source of an electric vehicle by using LiTixMn2-xO4 in which one portion of Mn of LiMn2O4 having a cubic system spinel structure is substituted with Ti as a positive electrode active material and making a substituted amount in a specific range. SOLUTION: As a positive electrode active material of a lithium secondary battery, LiTixMn2-xO4 (x represents a substituted amount) in which one portion of Mn of LiMn2O4 having a cubic system spinel structure is substituted with Ti is used. A substituted amount x is preferably in a range of 0.01<=x<=0.5 and when it is in the range of 0.1<=x<=0.3, since an effect of a low resistance of the positive electrode active material particularly outstandingly appears, the range is more preferable. A synthesis of such LiTixMn2-xO4 is preferably carried out by calcinating a mixture of a salt and/or an oxide of each element prepared at a predetermined ratio at a range of 700-900 deg.C under an oxygen atmosphere for 5 to 50 hours.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、携帯型電子機器
の作動電源、電気自動車あるいはハイブリッド電気自動
車等のモータ駆動電源として使用される二次電池のなか
で、リチウム遷移金属複合酸化物を正極活物質として用
いた、内部抵抗が小さく、安定して大出力放電を行うこ
とが可能なリチウム二次電池に関する。
BACKGROUND OF THE INVENTION The present invention relates to a secondary battery used as an operating power source for a portable electronic device or a motor driving power source for an electric vehicle or a hybrid electric vehicle. The present invention relates to a lithium secondary battery used as a substance and having a small internal resistance and capable of performing high-power discharge stably.

【0002】[0002]

【従来の技術】 近年、携帯電話、VTR、ノート型コ
ンピュータ等の携帯型電子機器の小型軽量化が加速度的
に進行しており、その電源用電池としては、正極活物質
にリチウム遷移金属複合酸化物を、負極活物質に炭素質
材料を、電解液にLiイオン電解質を有機溶媒に溶解し
た有機電解液を用いた二次電池が用いられるようになっ
てきている。
2. Description of the Related Art In recent years, portable electronic devices such as mobile phones, VTRs, and notebook computers have been rapidly reduced in size and weight. As a power supply battery, a lithium transition metal composite oxide is used as a positive electrode active material. A secondary battery using an organic electrolytic solution obtained by dissolving a carbonaceous material as an anode active material and a Li-ion electrolyte in an organic solvent as an electrolytic solution has been used.

【0003】 このような電池は、一般的にリチウム二
次電池、もしくはリチウムイオン電池と称せられてお
り、エネルギー密度が大きく、また単電池の開回路電圧
も約4V程度と高い特徴を有することから、前記携帯型
電子機器のみならず、最近の環境問題を背景に、低公害
車として積極的な一般への普及が図られている電気自動
車(EV)あるいはハイブリッド電気自動車(HEV)
のモータ駆動電源としても注目を集めている。
[0003] Such a battery is generally called a lithium secondary battery or a lithium ion battery, and is characterized by a high energy density and a high open circuit voltage of a unit cell of about 4V. In addition to the portable electronic devices, an electric vehicle (EV) or a hybrid electric vehicle (HEV) has been actively promoted as a low-emission vehicle due to recent environmental problems.
Has also attracted attention as a motor drive power supply.

【0004】 さて、リチウム二次電池の充放電特性
は、使用する正極活物質の材料特性に依存するところが
大きい。正極活物質としてのリチウム遷移金属複合酸化
物としては、具体的に、LiCoO2、LiMn24
が用いられているが、LiCoO2については、Coの
産出地が限られており、また産出量が決して多いとは言
えず高価であるため、汎用的なリチウム二次電池に用い
るには問題がある。また、LiMn24と比較すると出
力密度が小さいという問題がある。特に、EV、HEV
用電池のように、加速時や登坂時といった馬力を必要と
する際に大出力が要求される用途に用いる場合には、出
力密度が小さいことは決定的な欠点となる。一方、Li
Mn24は原料が安価であり、また、出力密度が大き
く、電位が高いという特徴がある。
The charge and discharge characteristics of a lithium secondary battery largely depend on the material characteristics of a positive electrode active material to be used. As the lithium transition metal composite oxide as the positive electrode active material, specifically, LiCoO 2 , LiMn 2 O 4 and the like are used. However, with respect to LiCoO 2 , the production area of Co is limited, and the production of LiCoO 2 is limited. Since the amount is not large and expensive, there is a problem in using it for a general-purpose lithium secondary battery. In addition, there is a problem that the output density is lower than that of LiMn 2 O 4 . In particular, EV, HEV
When used in applications that require a large output when horsepower is required, such as when accelerating or climbing a slope, such as when using batteries, a low output density is a critical disadvantage. On the other hand, Li
Mn 2 O 4 is characterized in that the raw material is inexpensive, the output density is high, and the potential is high.

【0005】[0005]

【発明が解決しようとする課題】 しかしながら、電子
伝導性(導電性)とイオン伝導性との混合導電体である
LiMn24の導電性はあまり大きなものではない。そ
こで、LiMn24を正極活物質として用いる場合に
は、導電助剤としてアセチレンブラック等の微粉末を混
合して、導電性を改善する手段が採られているが、イオ
ン伝導に寄与しない導電助剤の添加は、電池内に充填で
きる正極活物質量を減少させ、エネルギー密度(重量密
度)を低下させるという欠点がある。また、アセチレン
ブラックは嵩密度が小さく、分散性が悪いので均一な混
合が困難であるといった問題もある。
However, the conductivity of LiMn 2 O 4 , which is a mixed conductor of electron conductivity (conductivity) and ionic conductivity, is not very large. Therefore, when LiMn 2 O 4 is used as the positive electrode active material, a means for improving the conductivity by mixing a fine powder such as acetylene black as a conductive aid has been adopted, but a conductive material that does not contribute to ionic conduction is employed. The addition of the auxiliary agent has the disadvantage that the amount of the positive electrode active material that can be filled in the battery is reduced, and the energy density (weight density) is reduced. Acetylene black also has a problem that it is difficult to uniformly mix acetylene black because of its low bulk density and poor dispersibility.

【0006】 そこで、このような導電助剤に頼ること
なく、LiMn24自体を低抵抗化することが好ましい
と考えられる。正極活物質自体の低抵抗化は、電池を組
んだ場合の内部抵抗の低抵抗化につながるものである
が、特に、EV等のモータ駆動用電源として用いられる
リチウム二次電池においては、エネルギー密度を低下さ
せることなく、加速、登坂等に必要な大電流出力を得
て、また、充放電効率を高めることができるようになる
点で非常に重要である。
Therefore, it is considered preferable to reduce the resistance of LiMn 2 O 4 itself without relying on such a conductive assistant. A reduction in the resistance of the positive electrode active material itself leads to a reduction in the internal resistance when a battery is assembled. In particular, in a lithium secondary battery used as a power supply for driving a motor such as an EV, the energy density is low. This is very important in that a large current output required for acceleration, climbing a slope, or the like can be obtained without lowering the power, and the charge / discharge efficiency can be increased.

【0007】[0007]

【課題を解決するための手段】 本発明は、上述した従
来技術の問題点に鑑みてなされたものであり、その目的
とするところは、正極活物質として用いるLiMn24
の低抵抗化を図ることで、作製されるリチウム二次電池
の内部抵抗を低減し充放電特性を改善することにある。
すなわち、本発明によれば、立方晶スピネル構造を有す
るLiMn24のMnの一部をTiで置換したLiTi
xMn2-x4(但し、xは置換量を表す。)を正極活物
質として用いたことを特徴とするリチウム二次電池、が
提供される。
Means for Solving the Problems The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to provide LiMn 2 O 4 used as a positive electrode active material.
It is an object of the present invention to reduce the internal resistance of the manufactured lithium secondary battery and improve the charge / discharge characteristics by reducing the resistance.
That is, according to the present invention, LiTi in which a part of Mn of LiMn 2 O 4 having a cubic spinel structure is substituted with Ti.
x Mn 2-x O 4 (where, x is. representing the amount of substitution) lithium secondary battery, characterized by using as the positive electrode active material, is provided.

【0008】 ここで、置換量xは、0.01≦x≦
0.5の範囲内とすることが好ましく、0.1≦x≦
0.3の範囲とすることがさらに好ましい。このような
LiTixMn2-x4の合成は、好適には、所定比に調
整された各元素の塩および/または酸化物の混合物を、
酸化雰囲気、700℃〜900℃の範囲で、5時間〜5
0時間かけて焼成することで行われる。このような本発
明のリチウム二次電池は、電気自動車もしくはハイブリ
ッド電気自動車のモータ駆動用電池として特に好適に用
いられる。
Here, the replacement amount x is 0.01 ≦ x ≦
It is preferable to be in the range of 0.5, and 0.1 ≦ x ≦
More preferably, it is in the range of 0.3. Such a synthesis of LiTi x Mn 2-x O 4 is preferably carried out by preparing a mixture of salts and / or oxides of the respective elements adjusted to a predetermined ratio.
Oxidizing atmosphere, 700 ° C to 900 ° C, 5 hours to 5 hours
This is performed by firing for 0 hours. Such a lithium secondary battery of the present invention is particularly suitably used as a battery for driving a motor of an electric vehicle or a hybrid electric vehicle.

【0009】 なお、特開平6−275265号公報に
は、負極と正極の少なくとも一方の電極の活物質とし
て、MnとV(バナジウム)或いはTiの中から選ばれ
た少なくとも一種の金属Mとリチウムの複合酸化物Li
xyMn1-y2を用いる旨の発明が開示されている。こ
の化学式LixyMn1-y2は、xおよびyの値の取り
方によっては、本発明のLiTixMn2-x4と同じ化
学式となる。しかし、特開平6−275265号公報に
おいては、その中で、本発明の基礎となるLiMn24
を引用してその長所、短所について触れ、LiMn24
とLixyMn1-y2とを差別化する記載がされている
ことから考えて、本発明と特開平6−275265号公
報開示の発明とは、化学式こそ類似するものの全く別の
物質を用いた別発明であることは明らかである。
Japanese Patent Application Laid-Open No. Hei 6-275265 discloses that as an active material of at least one of a negative electrode and a positive electrode, at least one kind of metal M selected from Mn and V (vanadium) or Ti and lithium. Composite oxide Li
invention the effect of using x M y Mn 1-y O 2 is disclosed. The formula Li x M y Mn 1-y O 2 , depending on the way of taking the values of x and y, the same chemical formula as LiTi x Mn 2-x O 4 of the present invention. However, Japanese Patent Application Laid-Open No. Hei 6-275265 discloses that LiMn 2 O 4
To mention its advantages and disadvantages, LiMn 2 O 4
And the Li x M y Mn 1-y O 2 thought because it is described to be differentiated, and the present invention and the invention of JP-A-6-275265 discloses disclosure, Formula entirely different but similar what Obviously, this is another invention using a substance.

【0010】 また、特開平6−275265号公報に
おいては、LixyMn1-y2における好適な組成範囲
として0.25<y<0.75を挙げているが、これを
LiMn24に当てはめると、0.5<y<1.5とな
り、前述した本発明におけるTiの置換範囲とずれてい
ることがわかる。本発明においては、後述するように、
LiTixMn2-x4 において0.5<xの範囲の置
換を行うことができなかったことからも、立方晶スピネ
ルLiMn24とLixyMn1-y2とは別物質である
と考えられる。
Further, in Japanese Laid-6-275265 discloses, Li x M y Mn 1- y O cites 0.25 <y <0.75 as a preferred composition range in 2, but the LiMn 2 When it is applied to O 4 , 0.5 <y <1.5, which indicates that it is out of the range of substitution of Ti in the present invention described above. In the present invention, as described below,
LiTi x Mn 2-x O 4 in 0.5 <from the fact that it is impossible to perform the substitution in the range of x, different from the cubic spinel LiMn 2 O 4 and Li x M y Mn 1-y O 2 Considered to be a substance.

【0011】 さらに、特開平6−275265号公報
においては、LixyMn1-y2を正極活物質として使
用できるとの記載はあるものの、負極活物質として使用
し、その場合に既知の正極活物質LiCoO2、LiM
24、金属Li等の高い電極電位を有する材料を用い
て大きな起電力を得る使用形態例しか開示されていな
い。リチウムイオンを吸蔵/放出することができる物質
は、使用する対極の電極電位との差から、正極活物質と
負極活物質のいずれにも用いることができるが、電極電
位が卑なLixyMn1-y2を正極活物質として用いた
場合に、実用的な起電力が得られる電池構成、つまり、
負極活物質との組み合わせの形態については、何ら触れ
られていない。
Furthermore, in JP-A 6-275265 discloses, although the description of the the Li x M y Mn 1-y O 2 can be used as the positive electrode active material it is, used as a negative electrode active material, known in this case Positive electrode active materials LiCoO 2 , LiM
There is disclosed only a usage example in which a large electromotive force is obtained using a material having a high electrode potential such as n 2 O 4 or metal Li. Material capable of lithium ion occlusion / release from the difference between the electrode potential of the counter electrode to be used, can be used in any of the cathode active material and the anode active material, the electrode potential is less noble Li x M y When Mn 1-y O 2 is used as the positive electrode active material, a battery configuration capable of obtaining a practical electromotive force, that is,
No mention is made of the form of the combination with the negative electrode active material.

【0012】 以上のことから、本発明と特開平6−2
75265号公報開示の発明は、表見こそ類似するもの
の全くの別発明であり、その用途、効果からも、本発明
が特開平6−275265号公報開示の発明に基づいて
容易になされたものでないことは明らかである。
From the above, the present invention and Japanese Patent Laid-Open No. 6-2
The invention disclosed in Japanese Patent No. 75265 is a completely different invention although the appearances are similar, and from the viewpoint of its use and effects, the present invention is not easily made based on the invention disclosed in Japanese Patent Application Laid-Open No. 6-275265. It is clear.

【0013】[0013]

【発明の実施の形態】 本発明のリチウム二次電池にお
いては、LiMn24のMnの一部を、Tiで置換した
LiTixMn2-x4を正極活物質として用いる。ここ
でxは置換量を表し、LiMn24は結晶系が立方晶に
属し、結晶構造としてスピネル構造を有する。
BEST MODE FOR CARRYING OUT THE INVENTION In a lithium secondary battery of the present invention, LiTi x Mn 2-x O 4 in which a part of Mn of LiMn 2 O 4 is substituted by Ti is used as a positive electrode active material. Here, x represents the substitution amount, and LiMn 2 O 4 has a cubic crystal system and a spinel structure as a crystal structure.

【0014】 ここで置換量xは、0.01≦x≦0.
5の範囲内とすることが好ましい。置換量xが0.01
以下では、正極活物質の抵抗の低減がみられなかった。
一方、置換量xが0.5超では、正極活物質の合成にお
いて異相(Ti化合物)の生成が粉末X線回折法(XR
D)により認められ、単相物質が得られなかった。電池
において、このような異相は、正極活物質の重量を増す
だけで電池反応には寄与しないことから、その生成、含
有を回避することが好ましいことはいうまでもない。な
お、置換量xを、0.1≦x≦0.3の範囲内とする
と、後述する実施例に示されるように、正極活物質の低
抵抗化の効果が特に顕著に現れ、好ましい。
Here, the substitution amount x is 0.01 ≦ x ≦ 0.
It is preferably within the range of 5. Replacement amount x is 0.01
Below, no reduction in the resistance of the positive electrode active material was observed.
On the other hand, when the substitution amount x exceeds 0.5, the formation of a foreign phase (Ti compound) in the synthesis of the positive electrode active material is reduced by the powder X-ray diffraction method (XR
D), no single phase material was obtained. In a battery, such a different phase only increases the weight of the positive electrode active material and does not contribute to the battery reaction. Therefore, it is needless to say that it is preferable to avoid generation and inclusion of the different phase. When the substitution amount x is in the range of 0.1 ≦ x ≦ 0.3, the effect of lowering the resistance of the positive electrode active material is particularly remarkably exhibited, as shown in Examples described later, which is preferable.

【0015】 なお、LiTixMn2-x4におけるL
i量は、化学式上は1となっているが、格子欠陥等によ
り過剰に存在させることも可能であるし、逆に1以下し
か含有しない場合もあり得る。また、Tiは、Liイオ
ンの吸蔵/放出や格子欠陥の影響を受け、+3価と+4
価の混合原子価の状態で存在するものと考えられる。さ
らに、LiTixMn2-x4中の酸素量についても化学
組成式としては4となっているが、結晶構造を維持する
ための範囲内で欠損して、あるいは過剰に存在する場合
を排除するものではない。つまり、本発明において示し
たLiTixMn2-x4という化学式は、立方晶スピネ
ル構造を有するマンガン酸リチウムの最も代表的な化学
組成LiMn24において、発明の主旨たるTiでのM
nの一部置換した状態を示したものであることが理解さ
れるべきである。
Note that L in LiTi x Mn 2-x O 4
Although the i amount is 1 in the chemical formula, it may be excessively present due to a lattice defect or the like, and on the contrary, it may contain only 1 or less. Further, Ti is affected by the occlusion / release of Li ions and lattice defects, and has a valence of +3 and +4.
It is thought to exist in a mixed valence state. Further, the oxygen content in LiTi x Mn 2-x O 4 is also 4 as a chemical composition formula, but the case where the oxygen content is missing or excessive within the range for maintaining the crystal structure is excluded. It does not do. That is, the chemical formula of LiTi x Mn 2-x O 4 shown in the present invention is expressed by the formula of LiMn 2 O 4 , which is the most typical chemical composition of lithium manganate having a cubic spinel structure.
It should be understood that this is a representation of a partially substituted state of n.

【0016】 さて、本発明のLiTixMn2-x4
合成は、好適には、所定比に調整された各元素の塩およ
び/または酸化物の混合物を、酸化雰囲気、700℃〜
900℃の範囲で、5時間〜50時間かけて焼成するこ
とで行われ、こうして、単相の生成物を容易に得ること
ができる。。各元素の塩は特に限定されるものではない
が、原料として純度が高くしかも安価なものを使用する
ことができることが好ましいことはいうまでもない。中
でも、昇温、焼成時に有害な分解ガスが発生しない炭酸
塩、酢酸塩を用いることが好ましいが、硝酸塩や塩酸
塩、硫酸塩等を用いることもできる。なお、有機金属化
合物を用いることもでき、高純度な合成と組成の均一性
を得ることができるが、一般的に前記無機系試薬に対し
て高価であるため、汎用用途の電池材料としては用い難
い。
In the synthesis of LiTi x Mn 2-x O 4 of the present invention, preferably, a mixture of salts and / or oxides of the respective elements adjusted to a predetermined ratio is mixed in an oxidizing atmosphere at 700 ° C.
The calcination is performed in the range of 900 ° C. for 5 hours to 50 hours, and thus a single-phase product can be easily obtained. . The salt of each element is not particularly limited, but it goes without saying that it is preferable to use a high-purity and inexpensive raw material. Above all, it is preferable to use carbonates and acetates which do not generate harmful decomposition gases at the time of heating and firing, but nitrates, hydrochlorides, sulfates and the like can also be used. Note that an organometallic compound can also be used, and high-purity synthesis and composition uniformity can be obtained.However, since it is generally expensive for the inorganic reagent, it is used as a general-purpose battery material. hard.

【0017】 本発明のように、Mnの一部をTiで置
換することにより、正極活物質自体の低抵抗化が図ら
れ、電池に組み込んだ場合には電池の内部抵抗を小さく
することができる。こうして、大出力(大電流)放電が
可能となるが、内部抵抗が小さいので、内部抵抗に起因
して生ずるジュール熱が小さく、電池の温度上昇が抑え
られて作動安定性が確保される。また、充放電時のエネ
ルギー損失を小さくすることができる。
By substituting a part of Mn with Ti as in the present invention, the resistance of the positive electrode active material itself can be reduced, and when incorporated in a battery, the internal resistance of the battery can be reduced. . In this way, high-power (high-current) discharge is possible, but since the internal resistance is small, the Joule heat generated due to the internal resistance is small, and the temperature rise of the battery is suppressed, and operation stability is secured. In addition, energy loss during charging and discharging can be reduced.

【0018】 さらに、Tiの固溶により充放電の繰り
返しによる電池容量の低下が抑えられる、すなわち、充
放電サイクル特性も改善される効果を奏することも明ら
かとなった。従来より、LiMn24にあっては、リチ
ウムイオンの吸蔵/放出によって結晶構造が非可逆的に
変化し、これに伴って電池容量が減少することが知られ
ているが、本発明のようにTiをLiMn24に固溶さ
せることによって、リチウムイオンの吸蔵/放出に対し
て結晶格子を安定化する効果が得られたものと考えられ
る。
Further, it has been found that the solid solution of Ti suppresses a decrease in battery capacity due to repetition of charge and discharge, that is, an effect of improving charge and discharge cycle characteristics. Conventionally, in LiMn 2 O 4 , it has been known that the crystal structure changes irreversibly due to occlusion / release of lithium ions, and the battery capacity decreases accordingly. It is considered that the effect of stabilizing the crystal lattice against occlusion / release of lithium ions was obtained by dissolving Ti in LiMn 2 O 4 in a solid solution.

【0019】 このような内部抵抗の低抵抗化が図られ
た電池は、特にEV、HEVのモータ駆動用電源として
用いた場合に、大出力が必要とされる加速時、登坂時の
走行性が維持され、好ましい。また、充放電サイクル特
性に優れ、容量低下が少ないことは、継続走行距離が経
時的に短くなることが抑制される点からも好ましい。
A battery having such a low internal resistance has a good traveling performance during acceleration or climbing a hill, which requires a large output, particularly when used as a power supply for driving an EV or HEV motor. Maintained and preferred. Further, it is preferable that the charge-discharge cycle characteristics are excellent and the capacity decrease is small from the viewpoint that the continuous running distance is prevented from becoming shorter with time.

【0020】 さて、本発明の正極活物質を用いた電池
の作製に当たって使用される他の材料は、特に限定され
るものではなく、従来公知の種々の材料を用いることが
できる。たとえば、負極活物質としては、ソフトカーボ
ンやハードカーボンといったアモルファス系炭素質材料
や高黒鉛化炭素材料等の人造黒鉛、あるいは天然黒鉛と
いった炭素質材料が用いられる。
The other materials used for producing the battery using the positive electrode active material of the present invention are not particularly limited, and various conventionally known materials can be used. For example, as the negative electrode active material, an amorphous carbon material such as soft carbon or hard carbon, artificial graphite such as highly graphitized carbon material, or a carbon material such as natural graphite is used.

【0021】 また、有機電解液としては、エチレンカ
ーボネート(EC)、ジエチルカーボネート(DE
C)、ジメチルカーボネート(DMC)といった炭酸エ
ステル系のもの、プロピレンカーボネート(PC)やγ
−ブチロラクトン、テトラヒドロフラン、アセトニトリ
ル等の有機溶媒の単独溶媒もしくは混合溶媒に、電解質
としてのLiPF6やLiBF4等のリチウム錯体フッ素
化合物、あるいはLiClO4といったリチウムハロゲ
ン化物等を1種類もしくは2種類以上を溶解したものを
用いることができる。
As the organic electrolyte, ethylene carbonate (EC), diethyl carbonate (DE)
C), carbonates such as dimethyl carbonate (DMC), propylene carbonate (PC) and γ
- butyrolactone, dissolved in tetrahydrofuran, alone or a mixed solvent of an organic solvent such as acetonitrile, lithium complex fluorine compound such as LiPF 6 and LiBF 4 as an electrolyte, or one or two or more kinds of LiClO 4 lithium halides such as Can be used.

【0022】 電池の構造についても限定されるもので
はない。薄板状のコイン型電池や、正負各電極活物質を
金属箔等の集電体に塗布したものを捲回もしくは積層し
てなる円柱型電池、箱型電池等、種々の構造を有する電
池に用いることができることはいうまでもない。続い
て、本発明をさらに実施例により詳細に説明する。
The structure of the battery is not limited. Used for batteries having various structures, such as a thin-plate coin-type battery, a columnar battery formed by applying positive and negative electrode active materials to a current collector such as a metal foil or the like, and a box-type battery, and the like. It goes without saying that it can be done. Next, the present invention will be described in more detail with reference to examples.

【0023】[0023]

【実施例】 (正極活物質LiTixMn2-x4の製
造)出発原料として、市販のLi2CO3、MnO2、T
iO2の粉末試薬を用い、表1中、試料番号1〜5の化
学組成となるように秤量、混合し、酸化雰囲気、800
℃で24時間焼成し、種々の正極活物質を得た。また、
比較のため、TiによるMnの置換を行わないLiMn
24(試料番号6)を同様の条件により作製するととも
に、Tiの代わりにCr、Co、FeでMnの一部を置
換した正極活物質(試料番号7〜9、原料としてCr2
3、Co34、Fe23をそれぞれ使用)も同様に作
製した。こうして作製した表1記載の各種正極活物質
は、XRDにより単相であることを確認した。なお、T
iによる置換の場合に、置換量xを0.5以上とした正
極活物質の合成も試みたが、前記合成方法を用いた場合
には、得られた正極活物質にTi化合物である異相が生
成していることがXRDにより確認されたため、表1に
は記載しなかった。
EXAMPLES (Production of Positive Electrode Active Material LiTi x Mn 2-x O 4 ) Commercially available Li 2 CO 3 , MnO 2 , T
Using an iO 2 powder reagent, the components were weighed and mixed so as to have the chemical compositions of Sample Nos. 1 to 5 in Table 1, and an oxidizing atmosphere was used.
Firing at 24 ° C. for 24 hours provided various positive electrode active materials. Also,
For comparison, LiMn without replacing Mn by Ti
Together to produce the same conditions 2 O 4 (Sample No. 6), Cr instead of Ti, Co, a cathode active material (sample No. 7-9 obtained by replacing a part of Mn by Fe, Cr 2 as a raw material
O 3 , Co 3 O 4 , and Fe 2 O 3 were used). Various positive electrode active materials described in Table 1 thus produced were confirmed to be single-phase by XRD. Note that T
In the case of substitution with i, synthesis of a positive electrode active material with a substitution amount x of 0.5 or more was also attempted. However, when the above synthesis method was used, a heterogeneous phase that was a Ti compound was obtained in the obtained positive electrode active material. Since formation was confirmed by XRD, it was not described in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】 (電池の製造)作製した種々の正極活物
質のそれぞれについて、正極活物質と、導電材たるアセ
チレンブラック粉末と、結着材たるポリフッ化ビニリデ
ンを、重量比で50:2:3の比で混合し、正極材料を
作製した。その正極材料0.02gを300kg/cm
2の圧力で直径20mmφの円板状にプレス成形し、正
極とした。次に、エチレンカーボネートとジエチルカー
ボネートが等体積比で混合された有機溶媒に電解質とし
てのLiPF6を1mol/Lの濃度となるように溶解
して作製した電解液と、カーボンからなる負極、および
正極と負極を隔てるセパレータを用いて、コイン型電池
(コインセル)を作製した。
(Manufacture of Battery) For each of the prepared various positive electrode active materials, the positive electrode active material, acetylene black powder as a conductive material, and polyvinylidene fluoride as a binder were mixed in a weight ratio of 50: 2: 3. The mixture was mixed at a ratio to prepare a positive electrode material. 0.02 g of the positive electrode material was added to 300 kg / cm
At a pressure of 2, a disk was formed into a disk shape having a diameter of 20 mmφ to obtain a positive electrode. Next, an electrolytic solution prepared by dissolving LiPF 6 as an electrolyte at a concentration of 1 mol / L in an organic solvent in which ethylene carbonate and diethyl carbonate are mixed at an equal volume ratio, a negative electrode made of carbon, and a positive electrode made of carbon A coin-type battery (coin cell) was fabricated using the separator separating the anode and the negative electrode.

【0026】 (電池の内部抵抗の測定)上述のように
して作製したコインセルについて、正極活物質の容量に
応じて1Cレートの定電流−定電圧で4.1Vまで充電
し、同じく1Cレートの定電流で2.5Vまで放電させ
る充放電試験を1サイクル行った。その後、コインセル
の内部抵抗を、充電終了後の休止状態での電位と、放電
開始直後での電位との差(電位差)を放電電流で除する
ことにより求めた。その結果を表1に並記した。
(Measurement of Internal Resistance of Battery) The coin cell prepared as described above was charged to 4.1 V at a constant current of 1 C rate and a constant voltage according to the capacity of the positive electrode active material, and was similarly charged at a constant rate of 1 C rate. One cycle of a charge / discharge test for discharging to 2.5 V with a current was performed. Thereafter, the internal resistance of the coin cell was determined by dividing the difference (potential difference) between the potential in the rest state after charging and the potential immediately after the start of discharging by the discharging current. The results are shown in Table 1.

【0027】 表1に示されるように、Mnの一部をT
iで置換することにより、LiMn24と比較して、内
部抵抗が低減されることが明らかとなった。そして、こ
の効果は、置換量xが0.01であっても得られること
が確認され、内部抵抗は置換量xが0.15のとき最も
小さく、LiMn24の約60%程度にまで低減される
ことが明らかとなった。また、置換量xが0.01≦x
≦0.5の範囲で、内部抵抗の低減が認められたが、特
に置換量xが、0.1≦x≦0.3のときに特に顕著な
内部抵抗の低減の効果が得られた。
As shown in Table 1, a part of Mn is changed to T
It became clear that the substitution with i reduced the internal resistance as compared to LiMn 2 O 4 . It was confirmed that this effect was obtained even when the substitution amount x was 0.01. The internal resistance was smallest when the substitution amount x was 0.15, and was about 60% of LiMn 2 O 4. It became clear that it was reduced. Further, the substitution amount x is 0.01 ≦ x
In the range of ≦ 0.5, the reduction of the internal resistance was recognized. In particular, when the substitution amount x was 0.1 ≦ x ≦ 0.3, a particularly remarkable effect of reducing the internal resistance was obtained.

【0028】 これに対し、Mnの一部を他の遷移金属
Cr、Co、Feで置換した正極活物質を用いたコイン
セルでは、元素置換を行わないLiMn24を用いた場
合と比較すれば、内部抵抗は低減しているものの、Ti
と比べるとその効果は小さく、TiでのMnの一部置換
が内部抵抗の低減に最も有効であることがわかる。
On the other hand, a coin cell using a positive electrode active material in which a part of Mn is replaced with another transition metal Cr, Co, or Fe is compared with a case where LiMn 2 O 4 without element replacement is used. Although the internal resistance is reduced, Ti
The effect is small as compared with that of the above, and it is understood that partial replacement of Mn with Ti is most effective in reducing the internal resistance.

【0029】[0029]

【発明の効果】 上述の通り、本発明のリチウム二次電
池によれば、正極活物質として立方晶スピネルLiMn
24のMnの一部をTiで置換して得られた低抵抗化さ
れた材料が用いられているため、電池の内部抵抗の大幅
な低抵抗化が実現される。これにより、本発明のリチウ
ム二次電池は、大出力放電を安定して行うことができる
という優れた効果を奏し、特に、EV、HEV用電池と
して好ましい特性を有する。また、LiTixMn2-x
4自体の結晶格子の安定化が図られサイクル特性が向上
する効果も得られる。さらに、導電助剤を添加しない、
あるいは添加量を低減することによって、正極活物質の
充填量を増し、エネルギー密度を大きくすることも可能
となる。
As described above, according to the lithium secondary battery of the present invention, cubic spinel LiMn is used as the positive electrode active material.
Since a low-resistance material obtained by substituting a part of Mn of 2 O 4 with Ti is used, the internal resistance of the battery is significantly reduced. Thereby, the lithium secondary battery of the present invention has an excellent effect that a large output discharge can be stably performed, and has particularly preferable characteristics as a battery for EV and HEV. In addition, LiTi x Mn 2-x O
The crystal lattice of 4 itself is stabilized, and the effect of improving cycle characteristics is also obtained. Furthermore, no conductive aid is added,
Alternatively, by reducing the amount of addition, the filling amount of the positive electrode active material can be increased, and the energy density can be increased.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA04 AB01 AC04 AC06 AD06 AE05 5H003 AA01 BA01 BB05 BD00 BD01 5H014 AA02 BB01 EE10 HH08 5H029 AJ02 AJ06 AK03 AL06 AM02 AM07 BJ02 BJ03 BJ14 CJ02 CJ28 HJ02 HJ14  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G048 AA04 AB01 AC04 AC06 AD06 AE05 5H003 AA01 BA01 BB05 BD00 BD01 5H014 AA02 BB01 EE10 HH08 5H029 AJ02 AJ06 AK03 AL06 AM02 AM07 BJ02 BJ03 BJ14 CJ02 HJ02 HJ02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 立方晶スピネル構造を有するLiMn2
4のMnの一部をTiで置換したLiTixMn2-x4
(但し、xは置換量を表す。)を正極活物質として用い
たことを特徴とするリチウム二次電池。
1. LiMn 2 having a cubic spinel structure
LiTi x Mn 2-x O 4 in which part of Mn of O 4 is substituted by Ti
(Where x represents a substitution amount) as a positive electrode active material.
【請求項2】 当該置換量xが、0.01≦x≦0.5
の範囲内にあることを特徴とする請求項1記載のリチウ
ム二次電池。
2. The replacement amount x is 0.01 ≦ x ≦ 0.5.
The lithium secondary battery according to claim 1, wherein
【請求項3】 当該置換量xが、0.1≦x≦0.3の
範囲内にあることを特徴とする請求項2記載のリチウム
二次電池。
3. The lithium secondary battery according to claim 2, wherein the replacement amount x is within a range of 0.1 ≦ x ≦ 0.3.
【請求項4】 当該LiTixMn2-x4が、所定比に
調整された各元素の塩および/または酸化物の混合物
を、酸化雰囲気、700℃〜900℃の範囲で、5時間
〜50時間かけて焼成して得られたものであることを特
徴とする請求項1〜3のいずれか一項に記載のリチウム
二次電池。
4. A mixture of salts and / or oxides of the respective elements, wherein the LiTi x Mn 2-x O 4 is adjusted to a predetermined ratio, in an oxidizing atmosphere at a temperature of 700 ° C. to 900 ° C. for 5 hours to 4 hours. The lithium secondary battery according to any one of claims 1 to 3, which is obtained by firing over 50 hours.
【請求項5】 電気自動車もしくはハイブリッド電気自
動車のモータ駆動用電池として用いられることを特徴と
する請求項1〜4のいずれか一項に記載のリチウム二次
電池。
5. The lithium secondary battery according to claim 1, which is used as a battery for driving a motor of an electric vehicle or a hybrid electric vehicle.
JP10240234A 1998-08-26 1998-08-26 Lithium secondary battery Pending JP2000067861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10240234A JP2000067861A (en) 1998-08-26 1998-08-26 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10240234A JP2000067861A (en) 1998-08-26 1998-08-26 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2000067861A true JP2000067861A (en) 2000-03-03

Family

ID=17056456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10240234A Pending JP2000067861A (en) 1998-08-26 1998-08-26 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2000067861A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071680A (en) * 2003-08-21 2005-03-17 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP5949555B2 (en) * 2010-12-13 2016-07-06 日本電気株式会社 Method for producing positive electrode active material for secondary battery, method for producing positive electrode for secondary battery, and method for producing secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521067A (en) * 1991-07-12 1993-01-29 Nippon Telegr & Teleph Corp <Ntt> Nonaqueous electrolytic battery
JPH07122299A (en) * 1993-10-21 1995-05-12 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JPH09245836A (en) * 1996-03-08 1997-09-19 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JPH1014013A (en) * 1996-06-14 1998-01-16 Fuji Photo Film Co Ltd Electric motorcar and its driving power unit
JPH10199509A (en) * 1997-01-17 1998-07-31 Ricoh Co Ltd Solid electrolyte battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521067A (en) * 1991-07-12 1993-01-29 Nippon Telegr & Teleph Corp <Ntt> Nonaqueous electrolytic battery
JPH07122299A (en) * 1993-10-21 1995-05-12 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JPH09245836A (en) * 1996-03-08 1997-09-19 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JPH1014013A (en) * 1996-06-14 1998-01-16 Fuji Photo Film Co Ltd Electric motorcar and its driving power unit
JPH10199509A (en) * 1997-01-17 1998-07-31 Ricoh Co Ltd Solid electrolyte battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071680A (en) * 2003-08-21 2005-03-17 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP5949555B2 (en) * 2010-12-13 2016-07-06 日本電気株式会社 Method for producing positive electrode active material for secondary battery, method for producing positive electrode for secondary battery, and method for producing secondary battery

Similar Documents

Publication Publication Date Title
JP3142522B2 (en) Lithium secondary battery
JP5078334B2 (en) Nonaqueous electrolyte secondary battery
JP5671831B2 (en) Method for producing lithium nitride-transition metal composite oxide, lithium nitride-transition metal composite oxide, and lithium battery
EP1130663B1 (en) Positive electrode material for battery and nonaqueous electrolyte secondary battery
US20080081258A1 (en) Carbon-coated composite material, manufacturing method thereof, positive electrode active material, and lithium secondary battery comprising the same
JP2000277116A (en) Lithium secondary battery
US6761997B2 (en) Positive electrode material and battery for nonaquous electrolyte secondary battery
JP2009224307A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2004253169A (en) Lithium secondary battery and manufacturing method of positive electrode active material used therefor
JP2006236830A (en) Lithium secondary battery
WO2011117992A1 (en) Active material for battery, and battery
JP3652539B2 (en) Method for manufacturing lithium secondary battery
JP2000200607A (en) Lithium secondary battery
JP2005158737A (en) Positive electrode for lithium secondary battery, and lithium secondary battery
JPH08115742A (en) Lithium secondary battery
JP4651279B2 (en) Nonaqueous electrolyte secondary battery
JPH09120815A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP5176317B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2004235166A (en) Lithium secondary battery
JP2001052752A (en) Lithium secondary battery
JP3497420B2 (en) Lithium secondary battery
JP3563268B2 (en) Lithium secondary battery
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
JP3566106B2 (en) Lithium secondary battery
JPH06267539A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040127