JP2000066148A - Progressive refracting power lens - Google Patents

Progressive refracting power lens

Info

Publication number
JP2000066148A
JP2000066148A JP16267799A JP16267799A JP2000066148A JP 2000066148 A JP2000066148 A JP 2000066148A JP 16267799 A JP16267799 A JP 16267799A JP 16267799 A JP16267799 A JP 16267799A JP 2000066148 A JP2000066148 A JP 2000066148A
Authority
JP
Japan
Prior art keywords
progressive
axis
refractive surface
distance
power lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16267799A
Other languages
Japanese (ja)
Other versions
JP3757682B2 (en
Inventor
Hiroyuki Mukoyama
浩行 向山
Akira Komatsu
朗 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP16267799A priority Critical patent/JP3757682B2/en
Publication of JP2000066148A publication Critical patent/JP2000066148A/en
Application granted granted Critical
Publication of JP3757682B2 publication Critical patent/JP3757682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Eyeglasses (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a progressive refracting power lens which is subjected to an optimum aspherical design over the entire part of the lens including the progressive part with a simple design by creating a progressive refractive surface shape of an aspherical design by a specific method in accordance with the progressive shape of spherical design. SOLUTION: The coordinate system having an X-axis in a lateral direction where the progressive refractive surface is viewed from the front at the time of mounting spectacles, a Y-axis in a vertical direction, a Z-axis in a depth direction and a progression start point which is the bottom executed of a far sight part as an origin is defined. The coordinate which is the basis of the progressive refractive surface is defined as zp and the coordinate of the progressive refractive surface as zt and zt=zp+δ. And δhas a relation of δ=g(r) in the far sight part of the main meridian extending nearly along the Y-axis of the progressive refractive surface, δ=h(r) in the near sight part and δ=α.g(r)+β.h(r), provided that α+β=1.0, 0<=α<=1, 0<=β<=1, r is the distance from the progression start point, r=(x2+y2)1/2, g(r), h(r) are the functions depending upon only the r and g(r)≠h(r) and g(0)=0.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、視力補正用累進屈
折力レンズに関し、特に、その光学性能の向上あるいは
レンズの薄型化を目的とした、非球面累進屈折力レンズ
の設計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a progressive power lens for correcting visual acuity, and more particularly to the design of an aspherical progressive power lens for the purpose of improving its optical performance or reducing the thickness of the lens.

【0002】[0002]

【従来の技術】近年、累進屈折力レンズは、光学性能向
上のためさまざまな取リ組みがなされてきた。その一つ
として注目されているのが、非球面設計を用いた累進屈
折力レンズである。これは、眼鏡レンズを眼に装着した
ときと同条件を想定し、光線追跡により度数や、非点収
差、プリズム等を計算し、球面設計ではエラーの出てし
まう部分を補うものである。
2. Description of the Related Art In recent years, various approaches have been made to progressive power lenses to improve optical performance. One of the attentions is a progressive-power lens using an aspheric design. This assumes the same conditions as when the spectacle lens is attached to the eye, calculates power, astigmatism, prisms, and the like by ray tracing, and compensates for errors in spherical design.

【0003】尚、累進屈折面はもともと、遠方視用と近
方視用の異なる曲率の球面を、一面の中でなめらかにつ
ないだものであるため、それ自体非球面であるが、ここ
で言う累進屈折力レンズの非球面設計とは、遠用中心
や、近用中心などの累進屈折面の曲率が一定な領域にお
いてさえも、数学的にへそ点でないことを意味する。
[0003] A progressive refraction surface is originally an aspherical surface because a spherical surface having different curvatures for far vision and near vision is connected smoothly in one surface. The aspherical design of the progressive-power lens means that even in an area where the curvature of the progressive-refractive surface is constant, such as a distance center or a near center, it is not mathematically a navel point.

【0004】このような非球面設計を用いた累進屈折力
レンズは、特公平2−39768号公報に開示されてお
り、球面設計に比べ、非点収差の減少や、レンズの薄型
化といった効果をもたらしている。
A progressive-power lens using such an aspheric design is disclosed in Japanese Patent Publication No. 2-39768, and has an effect of reducing astigmatism and making the lens thinner than a spherical design. Has brought.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特公平
2−39768号公報でレンズを設計・製作するには、
いくつかの課題、あるいは不十分な点がある。
However, in order to design and manufacture a lens in Japanese Patent Publication No. 2-39768,
There are some challenges or deficiencies.

【0006】第一に、特公平2−39768号公報で
は、累進屈折力レンズの遠近方向に延びる主子午線の近
傍のみしか、その構造が開示されていない。確かに累進
屈折力レンズの主子午線は主注視線とも呼ばれるほど重
要な領域ではあるが、主子午線はあくまでも線であり、
人間が視野情報を得るときはそれ以外の広い面積も使っ
ている。
First, Japanese Patent Publication No. 3-39768 discloses a structure of a progressive-power lens only in the vicinity of a main meridian extending in the distance direction. Certainly, the main meridian of a progressive-power lens is an area that is so important that it is also called the main gaze, but the main meridian is just a line,
When humans obtain visual field information, they also use other large areas.

【0007】第二に、累進屈折力レンズはレンズの場所
によって度数が違うため、オリジナルの累進屈折面に付
加する理想的な非球面付加量も、レンズの場所によって
異なる必要がある。特公平2−39768号公報では、
主子午線の遠用部と近用部で非球面付加量が異なるが、
それ以外の部分ではどの様な非球面の設定をするかは不
明である。
Second, since the power of the progressive-power lens varies depending on the position of the lens, the ideal amount of aspherical surface to be added to the original progressive-refractive surface also needs to be different depending on the position of the lens. In Japanese Patent Publication No. 39768/1990,
The amount of aspheric addition differs between the far and near portions of the main meridian,
In other parts, it is unknown what kind of aspherical surface is set.

【0008】また、主子午線の中でも、連続的に屈折力
の変化する累進部領域への非球面付加は、理論的に必要
であるにもかかわらず、開示されている先行技術がない
のが現状である。
In addition, although the addition of an aspherical surface to the progressive portion where the refractive power changes continuously in the principal meridian is theoretically necessary, there is no prior art disclosed. It is.

【0009】さらに、累進屈折力レンズの累進屈折面
は、レンズが一つの屈折面の中で連続的に境目無く構成
されている必要がある。主子午線が連続していてもそれ
以外の領域が光学的に連続な境目のない非球面形状にな
らなくては、非球面設計を施した意味がない。しかしな
がら従来技術では、非球面になっている主子午線の各々
の点から主子午線に直交する方向に曲率を補間するくら
いしか、なめらかに屈折面をつなぐ方法が無く、主子午
線以外ではとても理想的な非球面形状が得られていると
はいいがたい。
Further, the progressive-power lens of the progressive-power lens requires that the lens be formed continuously and seamlessly within one refracting surface. Even if the main meridian is continuous, it is meaningless to apply the aspherical design unless the other region has an optically continuous aspherical shape without a boundary. However, in the prior art, there is only a way to interpolate the curvature in the direction orthogonal to the main meridian from each point of the main meridian that is aspherical, there is no way to connect the refraction surface smoothly, and it is very ideal except for the main meridian It is hard to say that an aspherical shape has been obtained.

【0010】また、累進屈折力の眼鏡レンズの受注生産
では、度数、処方に応じた非点収差の減少や、レンズの
薄型化といった効果をもたらす最適の非球面設計の累進
面形状を簡便に作り出すことが要求されている。
In order-made production of spectacle lenses having a progressive refractive power, it is possible to easily create a progressive surface shape of an optimal aspherical design which brings about effects such as reduction of astigmatism according to power and prescription and thinning of the lens. Is required.

【0011】本発明は、上記事情に鑑みてなされたもの
で、簡便なレンズ設計により、最適な非球面設計が累進
部を含んだレンズ全体に施された累進屈折力レンズを提
供することを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a progressive power lens in which an optimum aspherical surface design is applied to the entire lens including a progressive portion by a simple lens design. And

【0012】[0012]

【課題を解決するための手段】本発明は、上記目的を達
成するため、球面設計の累進面形状を基にして、非球面
設計の新たな累進屈折面形状を簡便な方法で作り出すレ
ンズ設計、あるいは、ある処方に対して設計された非球
面設計の累進面形状を基にして、他の処方に対して最適
な非球面設計の新たな累進屈折面形状を簡便な方法で作
り出すレンズ設計により、最適な非球面設計が累進部を
含んだレンズ全体に施された累進屈折力レンズを提供す
るものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a lens design in which a new progressive refraction surface shape of an aspherical surface design is created by a simple method based on the progressive surface shape of a spherical design. Alternatively, based on a progressive surface shape of an aspherical design designed for a certain prescription, a lens design that creates a new progressive refractive surface shape of an optimal aspherical design for another prescription by a simple method, An optimal aspheric design provides a progressive power lens applied to the entire lens including the progressive portion.

【0013】即ち、各処方に対する非球面付加量を、い
ちいち光線追跡に基づいて求めてやる必要は無く、同じ
基礎累進面を用いる処方の範囲に対して、その中の数例
に対して、実際に光線追跡から最適な非球面付加量を求
めてやり、それ以外の処方に対する非球面付加量を、内
挿によって求めるものである。
That is, it is not necessary to find the aspherical addition amount for each prescription based on ray tracing each time. For a range of prescriptions using the same basic progressive surface, for a few examples among them, Then, the optimum amount of aspherical surface addition is obtained from ray tracing, and the amount of aspherical surface addition for other prescriptions is obtained by interpolation.

【0014】本発明は、次の5つの非球面付加量の計算
方法により設計された累進屈折力レンズを提供する。
The present invention provides a progressive-power lens designed by the following five methods of calculating the aspheric addition amount.

【0015】すなわち、請求項1記載の発明は、眼鏡レ
ンズを構成する2つの屈折面のうち、少なくともどちら
か一つの屈折面が、異なる屈折力を備えた遠用部及び近
用部とこれらの問で屈折力が累進的に変化する累進部と
を備えた累進屈折面を有し、前記累進屈折面を眼鏡装用
時の正面から見て、左右方向をX軸、上下方向(遠近方
向)をY軸、奥行き方向をZ軸、前記遠用部の下端とな
る累進開始点を、(x,y,z)=(0,0,0)とす
る座標系を定義し、前記累進屈折面の基になる座標をz
で表し、前記累進屈折面の座標をzとしたとき、z
=z+δであり、前記δが、前記累進屈折面のほぼ
Y軸に沿って延びる主子午線の前記遠用部ではδ=g
(r)、前記累進屈折面のほぼY軸に沿って延びる主子
午線の前記近用部では、δ=h(r)、これら以外の部
分では、δ=α・g(r)+β・h(r)(但し、上記
式中、α、βは、α+β=1.0、0≦α≦1、0≦β
≦1であり、rは累進開始点からの距離で、r=(x
+y1/2であり、g(r)及びh(r)は、それ
ぞれrのみに依存する関数であり、g(r)≠h
(r)、かつ、g(0)=0である。)の関係を有する
ことを特徴とする累進屈折力レンズを提供する。
That is, according to the first aspect of the present invention, at least one of the two refracting surfaces constituting the spectacle lens has a distance portion and a near portion having different refractive powers and a distance portion and a near portion having different refractive powers. A progressive portion having a progressive portion whose refractive power changes progressively. When the progressive surface is viewed from the front when wearing spectacles, the horizontal direction is the X axis, and the vertical direction (the perspective direction) is A coordinate system in which the Y axis, the depth direction is the Z axis, and the progressive start point at the lower end of the distance portion is (x, y, z) = (0, 0, 0) is defined. The underlying coordinates are z
expressed in p, when the coordinates of the progressive refracting surface and a z t, z
t = z p + δ, where δ is δ = g at the distance portion of the main meridian extending substantially along the Y axis of the progressive surface
(R), δ = h (r) in the near portion of the main meridian extending substantially along the Y axis of the progressive refraction surface, and δ = α · g (r) + β · h ( r) (where α and β are α + β = 1.0, 0 ≦ α ≦ 1, 0 ≦ β
≦ 1, where r is the distance from the progressive start point and r = (x 2
+ Y 2 ) 1/2 , and g (r) and h (r) are functions dependent only on r, respectively, and g (r) ≠ h
(R) and g (0) = 0. The present invention provides a progressive-power lens having the following relationship:

【0016】請求項2記載の発明は、眼鏡レンズを構成
する2つの屈折面のうち、少なくともどちらか一つの屈
折面が、異なる屈折力を備えた遠用部及び近用部とこれ
らの問で屈折力が累進的に変化する累進部とを備えた累
進屈折面を有し、前記累進屈折面を眼鏡装用時の正面か
ら見て、左右方向をX軸、上下方向(遠近方向)をY
軸、奥行き方向をZ軸、前記遠用部の下端となる累進開
始点を、(x,y,z)=(0,0,0)とする座標系
を定義し、前記累進屈折面の基になる径方向の傾きをd
で表し、前記累進屈折面の径方向の傾きをdz
したとき、dz=dz+δであり、前記δが、前記
累進屈折面のほぼY軸に沿って延びる主子午線の前記遠
用部ではδ=g(r)、前記累進屈折面のほぼY軸に沿
って延びる主子午線の前記近用部では、δ=h(r)、
これら以外の部分では、δ=α・g(r)+β・h
(r)(但し、上記式中、α、βは、α+β=1.0、
0≦α≦1、0≦β≦1であり、rは累進開始点からの
距離で、r=(x+y1/2であり、g(r)及
びh(r)は、それぞれrのみに依存する関数であり、
g(r)≠h(r)、かつ、g(0)=0である。)の
関係を有することを特徴とする累進屈折力レンズを提供
する。
According to a second aspect of the present invention, at least one of the two refracting surfaces constituting the spectacle lens has a distance portion and a near portion having different refractive powers. A progressive refracting surface having a progressive portion whose refractive power changes progressively. When the progressive refracting surface is viewed from the front when wearing spectacles, the horizontal direction is the X axis, and the vertical direction (the perspective direction) is Y.
A coordinate system is defined in which an axis and a depth direction are a Z axis, and a progressive start point at the lower end of the distance portion is (x, y, z) = (0, 0, 0), and a base of the progressive refractive surface is defined. D is the radial inclination
expressed in z p, when the radial tilt of the progressive refractive surface and the dz t, a dz t = dz p + δ, wherein [delta] is the main meridian extending substantially along the Y axis of the progressive refractive surface Δ = g (r) in the distance portion, δ = h (r) in the near portion of the main meridian extending substantially along the Y axis of the progressive refractive surface,
In other parts, δ = α · g (r) + β · h
(R) (where α and β are α + β = 1.0,
0 ≦ α ≦ 1, 0 ≦ β ≦ 1, r is the distance from the progressive start point, r = (x 2 + y 2 ) 1/2 , and g (r) and h (r) are respectively a function that depends only on r
g (r) ≠ h (r) and g (0) = 0. The present invention provides a progressive-power lens having the following relationship:

【0017】請求項3記載の発明は、眼鏡レンズを構成
する2つの屈折面のうち、少なくともどちらか一つの屈
折面が、異なる屈折力を備えた遠用部及び近用部とこれ
らの問で屈折力が累進的に変化する累進部とを備えた累
進屈折面を有し、前記累進屈折面を眼鏡装用時の正面か
ら見て、左右方向をX軸、上下方向(遠近方向)をY
軸、奥行き方向をZ軸、前記遠用部の下端となる累進開
始点を、(x,y,z)=(0,0,0)とする座標系
を定義し、前記累進屈折面の基になる径方向の曲率をc
で表し、前記累進屈折面の径方向の曲率をcとした
とき、c=c+δであり、前記δが、前記累進屈折
面のほぼY軸に沿って延びる主子午線の前記遠用部では
δ=g(r)、前記累進屈折面のほぼY軸に沿って延び
る主子午線の前記近用部では、δ=h(r)、これら以
外の部分では、δ=α・g(r)+β・h(r)(但
し、上記式中、α、βは、α+β=1.0、0≦α≦
1、0≦β≦1であり、rは累進開始点からの距離で、
r=(x+y1/2であり、g(r)及びh
(r)は、それぞれrのみに依存する関数であり、g
(r)≠h(r)、かつ、g(0)=0である。)の関
係を有することを特徴とする累進屈折力レンズを提供す
る。
According to a third aspect of the present invention, at least one of the two refracting surfaces constituting the spectacle lens has a distance portion and a near portion having different refractive powers. A progressive refracting surface having a progressive portion whose refractive power changes progressively. When the progressive refracting surface is viewed from the front when wearing spectacles, the horizontal direction is the X axis, and the vertical direction (the perspective direction) is Y.
A coordinate system is defined in which an axis and a depth direction are a Z axis, and a progressive start point at the lower end of the distance portion is (x, y, z) = (0, 0, 0), and a base of the progressive refractive surface is defined. Is the radial curvature c
expressed in p, when the radial curvature of the progressive refractive surface and a c t, a c t = c p + δ, wherein [delta] is the main meridian far extending substantially along the Y axis of the progressive refractive surface Δ = g (r) in the use portion, δ = h (r) in the near use portion of the main meridian extending substantially along the Y axis of the progressive refraction surface, and δ = α · g ( r) + β · h (r) (where α and β are α + β = 1.0, 0 ≦ α ≦
1, 0 ≦ β ≦ 1, and r is the distance from the progressive start point,
r = (x 2 + y 2 ) 1/2 , g (r) and h
(R) is a function that depends only on r, and g
(R) ≠ h (r) and g (0) = 0. The present invention provides a progressive-power lens having the following relationship:

【0018】請求項4記載の発明は、眼鏡レンズを構成
する2つの屈折面のうち、少なくともどちらか一つの屈
折面が、異なる屈折力を備えた遠用部及び近用部とこれ
らの問で屈折力が累進的に変化する累進部とを備えた累
進屈折面を有し、前記累進屈折面を眼鏡装用時の正面か
ら見て、左右方向をX軸、上下方向(遠近方向)をY
軸、奥行き方向をZ軸、前記遠用部の下端となる累進開
始点を、(x,y,z)=(0,0,0)とする座標系
を定義し、前記累進屈折面の基になる座標をzで表
し、前記累進屈折面の座標zが、下記式(1)で定義
されるb
According to a fourth aspect of the present invention, at least one of the two refracting surfaces constituting the spectacle lens has a distance portion and a near portion having different refractive powers. A progressive refracting surface having a progressive portion whose refractive power changes progressively. When the progressive refracting surface is viewed from the front when wearing spectacles, the horizontal direction is the X axis, and the vertical direction (the perspective direction) is Y.
A coordinate system is defined in which an axis and a depth direction are a Z axis, and a progressive start point at the lower end of the distance portion is (x, y, z) = (0, 0, 0), and a base of the progressive refractive surface is defined. Is represented by z p , and the coordinate z t of the progressive refraction surface is represented by b p defined by the following equation (1).

【0019】[0019]

【数7】 (Equation 7)

【0020】を用いて、下記式(2)Using the following equation (2)

【0021】[0021]

【数8】 (Equation 8)

【0022】で表され、前記δが、前記累進屈折面のほ
ぼY軸に沿って延びる主子午線の前記遠用部ではδ=g
(r)、前記累進屈折面のほぼY軸に沿って延びる主子
午線の前記近用部では、δ=h(r)、これら以外の部
分では、δ=α・g(r)+β・h(r)(但し、上記
式中、α、βは、α+β=1.0、0≦α≦1、0≦β
≦1であり、rは累進開始点からの距離で、r=(x
+y1/2であり、g(r)及びh(r)は、それ
ぞれrのみに依存する関数であり、g(r)≠h
(r)、かつ、g(0)=0である。)の関係を有する
ことを特徴とする累進屈折力レンズを提供する。
Wherein δ is δ = g at the distance portion of the main meridian extending substantially along the Y axis of the progressive surface.
(R), δ = h (r) in the near portion of the main meridian extending substantially along the Y axis of the progressive refraction surface, and δ = α · g (r) + β · h ( r) (where α and β are α + β = 1.0, 0 ≦ α ≦ 1, 0 ≦ β
≦ 1, where r is the distance from the progressive start point and r = (x 2
+ Y 2 ) 1/2 , and g (r) and h (r) are functions dependent only on r, respectively, and g (r) ≠ h
(R) and g (0) = 0. The present invention provides a progressive-power lens having the following relationship:

【0023】請求項5記載の発明は、眼鏡レンズを構成
する2つの屈折面のうち、少なくともどちらか一つの屈
折面が、異なる屈折力を備えた遠用部及び近用部とこれ
らの問で屈折力が累進的に変化する累進部とを備えた累
進屈折面を有し、前記累進屈折面を眼鏡装用時の正面か
ら見て、左右方向をX軸、上下方向(遠近方向)をY
軸、奥行き方向をZ軸、前記遠用部の下端となる累進開
始点を、(x,y,z)=(0,0,0)とする座標系
を定義し、前記累進屈折面の基になる座標をzで表
し、前記累進屈折面の座標zが、下記式(1)で定義
されるb
According to a fifth aspect of the present invention, at least one of the two refracting surfaces constituting the spectacle lens has a distance portion and a near portion having different refractive powers. A progressive refracting surface having a progressive portion whose refractive power changes progressively. When the progressive refracting surface is viewed from the front when wearing spectacles, the horizontal direction is the X axis, and the vertical direction (the perspective direction) is Y.
A coordinate system is defined in which an axis and a depth direction are a Z axis, and a progressive start point at the lower end of the distance portion is (x, y, z) = (0, 0, 0), and a base of the progressive refractive surface is defined. Is represented by z p , and the coordinate z t of the progressive refraction surface is represented by b p defined by the following equation (1).

【0024】[0024]

【数9】 (Equation 9)

【0025】を用いて、下記式(3)Using the following formula (3)

【0026】[0026]

【数10】 (Equation 10)

【0027】で表され、前記δが、前記累進屈折面のほ
ぼY軸に沿って延びる主子午線の前記遠用部ではδ=g
(r)、前記累進屈折面のほぼY軸に沿って延びる主子
午線の前記近用部では、δ=h(r)、これら以外の部
分では、δ=α・g(r)+β・h(r)(但し、上記
式中、α、βは、α+β=1.0、0≦α≦1、0≦β
≦1であり、rは累進開始点からの距離で、r=(x
+y1/2であり、g(r)及びh(r)は、それ
ぞれrのみに依存する関数であり、g(r)≠h
(r)、かつ、g(0)=0である。)の関係を有する
ことを特徴とする累進屈折力レンズを提供する。
Where δ is δ = g at the distance portion of the main meridian extending substantially along the Y axis of the progressive surface.
(R), δ = h (r) in the near portion of the main meridian extending substantially along the Y axis of the progressive refraction surface, and δ = α · g (r) + β · h ( r) (where α and β are α + β = 1.0, 0 ≦ α ≦ 1, 0 ≦ β
≦ 1, where r is the distance from the progressive start point and r = (x 2
+ Y 2 ) 1/2 , and g (r) and h (r) are functions dependent only on r, respectively, and g (r) ≠ h
(R) and g (0) = 0. The present invention provides a progressive-power lens having the following relationship:

【0028】また、上記それぞれの非球面付加量の計算
方法に対して、遠用部における最適な非球面付加量g
(r)の割合αと近用部における最適な非球面付加量h
(r)の割合βの分布を、累進開始点での角度に応じて
補間することにより、非球面付加量を累進屈折面全体に
わたってなめらかに与えることができる。
For each of the above methods of calculating the aspherical surface addition amount, the optimum aspherical surface addition amount g in the distance portion is calculated.
(R) ratio α and optimum amount of aspherical surface addition h in the near portion
By interpolating the distribution of the ratio β of (r) according to the angle at the progressive start point, the aspherical addition amount can be smoothly given over the entire progressive refractive surface.

【0029】従って、請求項6記載の発明は、請求項1
〜5いずれかに記載の累進屈折力レンズにおいて、前記
累進開始点から前記累進屈折面の外周方向に延びる直線
と前記X軸とのなす角をwとするとき、前記αと前記β
が、それぞれ下記式(4)及び(5) α=0.5+0.5sin(w) …(4) β=0.5−0.5sin(w) …(5) の関係を有することを特徴とする累進屈折力レンズを提
供する。
Therefore, the invention according to claim 6 is the same as the claim 1.
5. The progressive power lens according to any one of claims 1 to 5, wherein, when an angle between a straight line extending from the progressive start point in an outer peripheral direction of the progressive refractive surface and the X axis is w, the α and the β
Have the relationship of the following formulas (4) and (5): α = 0.5 + 0.5 sin (w) (4) β = 0.5−0.5 sin (w) (5) To provide a progressive-power lens.

【0030】また、非球面付加量を内挿によって決定す
る際に、非球面付加量自体を内挿するのでは、データ量
が多いので、計算が大変である。そこで、非球面付加量
の分布を定義する関数を作ってやり、その関数を決める
係数について内挿をして、各処方に対する係数の値を決
めてやれば、計算量は大幅に減少し、簡便なレンズ設計
となる。
In addition, when determining the additional amount of aspherical surface by interpolation, if the additional amount of the aspherical surface is interpolated, the amount of data is large and the calculation is difficult. Therefore, a function that defines the distribution of the amount of aspherical addition is created, and the coefficients that determine the function are interpolated and the values of the coefficients for each prescription are determined. Lens design.

【0031】従って、請求項7記載の発明は、請求項1
〜5いずれかに記載の累進屈折力レンズにおいて、前記
g(r)、h(r)がそれぞれ下記式(6)、(7)
Therefore, the invention described in claim 7 is the same as that in claim 1
In the progressive-power lens described in any one of (1) to (5), the g (r) and h (r) are represented by the following formulas (6) and (7), respectively.

【0032】[0032]

【数11】 [Equation 11]

【0033】(但し、上記式中、G、Hはg(r)
及びh(r)を決める係数であり、ある一つの累進屈折
面に対してはrによらない定数であり、nは2以上の整
数である。)の関係を有することを特徴とする累進屈折
力レンズを提供する。
(Where G n and H n are g (r)
And h (r), a constant that does not depend on r for a certain progressive refractive surface, and n is an integer of 2 or more. The present invention provides a progressive-power lens having the following relationship:

【0034】また、レンズメータでの度数測定ポイント
を考慮して、累進開始点からある半径rまでは非球面
設計とせずに球面設計部とすることが好ましく、また、
を超えた場合、上記式(6)、(7)のrの多項式
で非球面付加量を表現することが好ましい。この場合、
は度数測定ポイントをカバーできる7mm以上、1
2mm未満が好ましい。
Further, in consideration of the frequency measurement point in the lens meter, to a radius r 0 in the progressive starting point it is preferably in the spherically designed part without aspheric design and,
When r 0 is exceeded, it is preferable to express the aspherical addition amount by the polynomial of r in Equations (6) and (7). in this case,
r 0 is 7 mm or more that can cover the frequency measurement point, 1
Preferably less than 2 mm.

【0035】従って、請求項8記載の発明は、請求項1
〜5いずれかに記載の累進屈折力レンズにおいて、前記
rが、0≦r≦rのときは、g(0)=0、h(0)
=0であり、r<rのときは、
Therefore, the invention described in claim 8 is the first invention.
5. In the progressive-power lens according to any one of (1) to (5), when said r satisfies 0 ≦ r ≦ r 0 , g (0) = 0 and h (0)
= 0 and when r 0 <r,

【0036】[0036]

【数12】 (Equation 12)

【0037】(但し、上記式中、G、Hはg(r)
及びh(r)を決める係数であり、ある一つの累進屈折
面に対してはrによらない定数であり、nは2以上の整
数である。)であることを特徴とする累進屈折力レンズ
を提供する。
(Where G n and H n are g (r)
And h (r), a constant that does not depend on r for a certain progressive refractive surface, and n is an integer of 2 or more. ) Is provided.

【0038】請求項9記載の発明は、請求項8記載の累
進屈折力レンズにおいて、前記rが7mm以上、12
mm未満であることを特徴とする累進屈折力レンズ提供
する。
[0038] The invention of claim 9, wherein, in the progressive-power lens according to claim 8, wherein r 0 is 7mm or more, 12
mm is provided.

【0039】さらに、累進屈折面を眼球側の屈折面に設
けることにより、累進屈折力レンズの欠点であるゆれや
歪みを軽減することができる。
Further, by providing the progressive refracting surface on the refracting surface on the eyeball side, it is possible to reduce fluctuation and distortion which are disadvantages of the progressive power lens.

【0040】従って、請求項10記載の発明は、請求項
1〜9いずれかに記載の累進屈折力レンズにおいて、前
記累進屈折面が、眼球側の屈折面に設けられていること
を特徴とする累進屈折力レンズを提供する。
Accordingly, a tenth aspect of the present invention is the progressive power lens according to any one of the first to ninth aspects, wherein the progressive refracting surface is provided on a refracting surface on the eyeball side. Provide a progressive power lens.

【0041】[0041]

【発明の実施の形態】以下、本発明の累進屈折力レンズ
の実施の形態について説明する。本発明の累進屈折力レ
ンズは、視力補正用のレンズであり、眼鏡レンズを構成
する物体側と眼球側の2つの屈折面のうち、少なくとも
どちらか1つの屈折面が異なる屈折力を備えた遠用部及
び近用部とこれらの問で屈折力が累進的に変化する累進
部とを備えた累進屈折面を有する。この累進屈折面は、
球面設計の累進面形状を基にして、新たな非球面設計の
累進面形状が簡便な方法で作り出されたものである。あ
るいは、ある処方に対して設計された非球面設計の累進
面形状を基にして、他の処方に対して最適な非球面設計
の新たな累進面形状が簡便な方法で作り出されたもので
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the progressive-power lens according to the present invention will be described. The progressive-power lens according to the present invention is a lens for correcting vision, and at least one of the two refracting surfaces on the object side and the eyeball constituting the spectacle lens has a different refractive power. It has a progressive refracting surface provided with a utility portion, a near portion, and a progressive portion whose refractive power changes progressively due to these factors. This progressive surface is
Based on the spherical surface progressive surface shape, a new aspherical surface progressive surface shape is created by a simple method. Alternatively, based on a progressive surface shape of an aspheric design designed for a certain prescription, a new progressive surface shape of an optimal aspheric design for another prescription is created by a simple method. .

【0042】本発明においては、特に、非球面累進レン
ズに対して、その非球面付加量を各処方毎に最適化し、
常に最適な累進面形状を簡単な計算方法で得ることがで
きるため、受注生産方式に適している。
In the present invention, in particular, for the aspherical progressive lens, the aspherical addition amount is optimized for each prescription,
Since the optimum progressive surface shape can always be obtained by a simple calculation method, it is suitable for a build-to-order system.

【0043】まず、累進屈折力レンズの座標系を、図1
に示すように、累進屈折面を眼鏡装用時の正面から見
て、左右方向をX軸、上下方向(遠近方向)をY軸、奥
行き方向をZ軸、遠用部の下端となる累進開始点Oを、
(x,y,z)=(0,0,0)(原点)とする座標系
を定義する。
First, the coordinate system of the progressive-power lens is shown in FIG.
As shown in the figure, when viewed from the front when wearing the spectacles, the progressive start point becomes the X axis in the left-right direction, the Y axis in the vertical direction (the perspective direction), the Z axis in the depth direction, and the lower end of the distance portion. O,
A coordinate system in which (x, y, z) = (0, 0, 0) (origin) is defined.

【0044】本発明では、上述したように、各処方に対
する非球面付加量を、いちいち光線追跡に基づいて求め
るのではなく、同じ基礎累進面を用いる処方の範囲に対
して、その中の数例に対して、実際に光線追跡から最適
な非球面付加量を求めてやり、それ以外の処方に対する
非球面付加量は、最適な非球面付加量を基にして、新た
な累進屈折面を、非球面付加量の分布を定義する関数を
作ってやり、内挿によって決める。この非球面付加量の
計算方法として、次の5つの計算方法がある。
According to the present invention, as described above, the amount of aspherical surface addition for each prescription is not obtained based on ray tracing each time. In practice, the optimum amount of aspherical surface addition is actually obtained from ray tracing, and the amount of aspherical surface addition for other prescriptions is calculated by adding a new progressive surface to the Create a function to define the distribution of the spherical addition, and determine by interpolation. There are the following five calculation methods for calculating the aspheric addition amount.

【0045】まず、第1の非球面付加量の計算方法は、
Z軸方向の非球面付加量の座標を直接計算する方法であ
る。基になる累進屈折面の奥行き方向の座標zは、 z=f(x,y) というように、座標(x,y)の関数で表される。z
にZ軸方向の非球面付加量δを付加すると、付加された
後のZ軸方向の合成座標、すなわち新たな累進屈折面の
座標をzとしたとき、 z=z+δ である。
First, a method of calculating the first aspherical surface addition amount is as follows.
This is a method of directly calculating the coordinates of the aspherical addition amount in the Z-axis direction. The coordinate z p in the depth direction of the base progressive refraction surface is represented by a function of the coordinates (x, y) as z p = f (x, y). z p
The addition of an aspheric addition amount [delta] of the Z-axis direction, when the Z-axis direction of the resultant coordinates after being added, i.e. the coordinates of the new progressive refractive surface and a z t, is z t = z p + δ.

【0046】このとき、レンズの光軸近傍(累進開始点
Oの近傍)は、プリズムも少なく非点収差も発生しずら
いため、非球面付加量は少なくてよいが、レンズ外周部
は眼から入射する光線に角度がつくため、非点収差が発
生しやすく、それを補正するための非球面付加量も大き
くなるのが一般的である。実際に付加する理想的な非球
面付加量は、使用者の処方(レンズの度数)により千差
万別であるが、光軸(累進開始点O)からの距離rに応
じて変化していく。以上より、付加する最適な非球面付
加量δは、累進開始点Oからの距離 r=(x+y1/2 の関数となる。
At this time, since the number of prisms is small and the astigmatism hardly occurs near the optical axis of the lens (near the progressive start point O), the amount of added aspherical surface may be small, but the outer periphery of the lens is incident from the eye. In general, astigmatism tends to occur due to the angle of the rays, and the amount of additional aspherical surface for correcting the astigmatism generally increases. The ideal amount of aspherical surface to be actually added varies widely depending on the prescription of the user (the power of the lens), but changes according to the distance r from the optical axis (the progressive start point O). . From the above, the optimum amount of additional aspherical surface δ to be added is a function of the distance r = (x 2 + y 2 ) 1/2 from the progressive start point O.

【0047】また、累進屈折力レンズは遠用部と近用部
で異なる屈折力を備えているので、付加する最適な非球
面付加量も遠用部と近用部で異なることが好ましい。よ
って付加座標δは、累進屈折面のほぼY軸に沿って延び
る主子午線の遠用部及び近用部ではそれぞれ、 δ=g(r) δ=h(r) g(r)≠h(r) なる条件を満たす。但し、累進開始点Oではg(0)=
0であり、g(r)及びh(r)は、それぞれrのみに
依存する関数である。
Further, since the progressive-power lens has different refractive powers in the distance portion and the near portion, it is preferable that the optimum amount of aspherical surface to be added is also different between the distance portion and the near portion. Therefore, the additional coordinate δ is δ = g (r) δ = h (r) g (r) ≠ h (r, respectively, in the distance portion and the near portion of the main meridian extending substantially along the Y axis of the progressive refractive surface. Satisfies the following condition. However, at the progressive start point O, g (0) =
0, and g (r) and h (r) are functions that depend only on r, respectively.

【0048】本発明の累進屈折力レンズで、遠用部にお
ける最適な非球面付加量g(r)と近用部における最適
な非球面付加量h(r)の大小関係は、レンズの処方に
よリ異なり特定することはできないが、ある一枚の累進
屈折力レンズ内であるならば、レンズの度数は一般的に
遠用度数から近用度数の範囲内しかありえないため、付
加する非球面成分δもg(r)からh(r)の中に設定
するとよい。このとき本発明では、累進屈折力レンズの
各領域毎に設定された目的距離に応じて、g(r)とh
(r)の比を決める。例えば、遠用部領域ではδを、1
00%のg(r)と0%のh(r)で構成し、近用部領
域ではδを、0%のg(r)と100%のh(r)で構
成する。累進部領域では、δをg(r)からh(r)に
徐々に変化させることにより、光学的に連続した屈折面
形状を得る。従って、遠用部領域と近用部領域の中間に
は、例えばδが50%のg(r)と50%のh(r)で
構成されている領域がある。
In the progressive-power lens according to the present invention, the relationship between the optimal aspheric addition amount g (r) in the distance portion and the optimal aspheric addition amount h (r) in the near portion is determined by the prescription of the lens. Although it cannot be specified differently, if it is within a single progressive power lens, the power of the lens generally can only be in the range of distance power to near power, so the aspherical component to be added δ may be set in the range from g (r) to h (r). At this time, according to the present invention, g (r) and h (h) are set according to the target distance set for each area of the progressive-power lens.
Determine the ratio of (r). For example, in the far vision region, δ is 1
In the near zone, δ is composed of 0% g (r) and 100% h (r). In the progressive portion region, an optically continuous refractive surface shape is obtained by gradually changing δ from g (r) to h (r). Accordingly, there is a region between the distance portion region and the near portion region, for example, a region composed of g (r) with δ of 50% and h (r) with 50%.

【0049】以上より、非球面付加量δは、累進屈折力
レンズの累進屈折面のほぼY軸に沿って延びる主子午線
の遠用部及び近用部以外の部分では、 δ=α・g(r)+β・h(r) α+β=1.0 0≦α≦1 0≦β≦1 なる関係をもち、α,βの値を累進屈折力レンズの任意
の点毎に決まっている目的距離に合わせて設定すること
により、容易に理想的な非球面形状をオリジナルの累進
屈折面に付加することができる。
As described above, the aspherical addition amount δ is δ = α · g (except for the far and near portions of the principal meridian extending substantially along the Y axis of the progressive-power lens of the progressive-power lens. r) + β · h (r) α + β = 1.00 0 ≦ α ≦ 1 0 ≦ β ≦ 1, and the values of α and β are set to the target distance determined for each arbitrary point of the progressive-power lens. By setting them together, an ideal aspherical shape can be easily added to the original progressive refractive surface.

【0050】この第1の非球面付加量の計算方法は、座
標を直接求めることができるため、計算が楽であるとい
う利点を有する。
This first method of calculating the aspherical surface addition amount has an advantage that the calculation is easy because the coordinates can be directly obtained.

【0051】第2の非球面付加量の計算方法は、基にな
る累進屈折面の径方向の傾きをdzで表し、新たな累
進屈折面の傾きをdzとしたとき、dz=dz
δの関係を用いる。非球面付加量δは、第1の非球面付
加量の計算方法と同じく、累進屈折面のほぼY軸に沿っ
て延びる主子午線の遠用部ではδ=g(r)、累進屈折
面のほぼY軸に沿って延びる主子午線の近用部では、δ
=h(r)、これら以外の部分では、δ=α・g(r)
+β・h(r)である。
[0051] Calculation of the second aspheric addition amount represents the radial tilt of the progressive refractive surface underlying at dz p, when the inclination of the new progressive refractive surface and the dz t, dz t = dz p +
The relationship of δ is used. The aspherical addition amount δ is δ = g (r) at the distance portion of the main meridian extending substantially along the Y axis of the progressive refraction surface, and is approximately the same as the first aspherical addition amount calculation method. At the near portion of the main meridian extending along the Y axis, δ
= H (r), in other parts, δ = α · g (r)
+ Β · h (r).

【0052】但し、上記式中、α、βは、α+β=1.
0、0≦α≦1、0≦β≦1であり、rは累進開始点O
からの距離で、r=(x+y1/2であり、g
(r)及びh(r)は、それぞれrのみに依存する関数
であり、g(r)≠h(r)、かつ、g(0)=0であ
る。
However, in the above formula, α and β are α + β = 1.
0, 0 ≦ α ≦ 1, 0 ≦ β ≦ 1, and r is the progressive start point O
And r = (x 2 + y 2 ) 1/2 and g
(R) and h (r) are functions dependent only on r, respectively, and g (r) ≠ h (r) and g (0) = 0.

【0053】この第2の非球面付加量の計算方法は、傾
きの分布を求めるため、プリズム量の制御が容易である
という利点を有する。Z座標は、原点から積分すること
により求めることができる。
This second method of calculating the aspherical surface addition amount has an advantage that the prism amount is easily controlled because the inclination distribution is obtained. The Z coordinate can be obtained by integrating from the origin.

【0054】第3の非球面付加量の計算方法は、基にな
る累進屈折面の径方向の曲率をcで表し、新たな累進
屈折面の曲率をcとしたとき、c=c+δの関係
を用いる。非球面付加量δは、累進屈折面のほぼY軸に
沿って延びる主子午線の遠用部ではδ=g(r)、累進
屈折面のほぼY軸に沿って延びる主子午線の近用部で
は、δ=h(r)、これら以外の部分では、δ=α・g
(r)+β・h(r)である。
[0054] Calculation method of the third aspheric addition amount represents the radial curvature of the progressive refractive surface underlying at c p, when the curvature of the new progressive refractive surface and the c t, c t = c The relationship of p + δ is used. The aspherical addition amount δ is δ = g (r) in the distance portion of the main meridian extending substantially along the Y axis of the progressive refraction surface, and in the near portion of the main meridian extending substantially along the Y axis of the progressive refraction surface. , Δ = h (r), in other parts, δ = α · g
(R) + β · h (r).

【0055】但し、上記式中、α、βは、α+β=1.
0、0≦α≦1、0≦β≦1であり、rは累進開始点O
からの距離で、r=(x+y1/2であり、g
(r)及びh(r)は、それぞれrのみに依存する関数
であり、g(r)≠h(r)、かつ、g(0)=0であ
る。
However, in the above formula, α and β are α + β = 1.
0, 0 ≦ α ≦ 1, 0 ≦ β ≦ 1, and r is the progressive start point O
And r = (x 2 + y 2 ) 1/2 and g
(R) and h (r) are functions dependent only on r, respectively, and g (r) ≠ h (r) and g (0) = 0.

【0056】この第3の非球面付加量の計算方法は、曲
率の分布を求めるため、光学的評価が簡単であり、設計
しやすく、目的とする処方が容易に得られるという利点
がある。 Z座標は、原点から積分することにより求め
ることができる。
The third method of calculating the amount of aspherical surface addition has the advantage that the optical evaluation is simple, the design is easy, and the desired prescription is easily obtained because the distribution of the curvature is obtained. The Z coordinate can be obtained by integrating from the origin.

【0057】第4の非球面付加量の計算方法は、基にな
る累進屈折面の座標をzで表し、新たな累進屈折面の
座標zが、累進屈折面のZ座標を曲率に置き換える下
記式(1)で定義されるb
In the fourth method of calculating the aspherical surface addition amount, the coordinates of the underlying progressive refraction surface are represented by z p , and the coordinates z t of the new progressive refraction surface replace the Z coordinate of the progressive refraction surface with the curvature. B p defined by the following equation (1)

【0058】[0058]

【数13】 (Equation 13)

【0059】を用いて、下記式(2)Using the following formula (2)

【0060】[0060]

【数14】 [Equation 14]

【0061】で表わされる関係を用いる。非球面付加量
δは、累進屈折面のほぼY軸に沿って延びる主子午線の
遠用部ではδ=g(r)、累進屈折面のほぼY軸に沿っ
て延びる主子午線の近用部では、δ=h(r)、これら
以外の部分では、δ=α・g(r)+β・h(r)であ
る。
The relationship expressed by the following equation is used. The aspherical addition amount δ is δ = g (r) in the distance portion of the main meridian extending substantially along the Y axis of the progressive refraction surface, and in the near portion of the main meridian extending substantially along the Y axis of the progressive refraction surface. , Δ = h (r), and in other parts, δ = α · g (r) + β · h (r).

【0062】但し、上記式中、α、βは、α+β=1.
0、0≦α≦1、0≦β≦1であり、rは累進開始点O
からの距離で、r=(x+y1/2であり、g
(r)及びh(r)は、それぞれrのみに依存する関数
であり、g(r)≠h(r)、かつ、g(0)=0であ
る。
However, in the above formula, α and β are α + β = 1.
0, 0 ≦ α ≦ 1, 0 ≦ β ≦ 1, and r is the progressive start point O
And r = (x 2 + y 2 ) 1/2 and g
(R) and h (r) are functions dependent only on r, respectively, and g (r) ≠ h (r) and g (0) = 0.

【0063】この第4の非球面付加量の計算方法は、曲
率の分布を求めるため、光学的評価が簡単であり、設計
しやすく、目的とする処方が容易に得られ、また、Z座
標が積分によらず直接計算出来るという利点がある。
In the fourth method of calculating the amount of aspherical surface addition, since the distribution of curvature is obtained, the optical evaluation is simple, the design is easy, and the desired prescription is easily obtained. It has the advantage that it can be calculated directly without relying on integration.

【0064】第5の非球面付加量の計算方法は、基にな
る累進屈折面の座標をzで表し、新たな累進屈折面の
座標zが、累進屈折面のZ座標を曲率に置き換える下
記式(1)で定義されるb
In the fifth method of calculating the aspheric addition amount, the coordinates of the underlying progressive refractive surface are represented by z p , and the coordinates z t of the new progressive refractive surface replace the Z coordinate of the progressive refractive surface with the curvature. B p defined by the following equation (1)

【0065】[0065]

【数15】 (Equation 15)

【0066】を用いて、下記式(3)Using the following formula (3)

【0067】[0067]

【数16】 (Equation 16)

【0068】で示される関係を用いる。非球面付加量δ
は、累進屈折面のほぼY軸に沿って延びる主子午線の遠
用部ではδ=g(r)、累進屈折面のほぼY軸に沿って
延びる主子午線の近用部では、δ=h(r)、これら以
外の部分では、δ=α・g(r)+β・h(r)であ
る。
The relationship shown in the following is used. Aspherical addition δ
Is δ = g (r) at the distance portion of the main meridian extending substantially along the Y axis of the progressive refractive surface, and δ = h (r) at the near portion of the main meridian extending substantially along the Y axis of the progressive refractive surface. r), in other parts, δ = α · g (r) + β · h (r).

【0069】但し、上記式中、α、βは、α+β=1.
0、0≦α≦1、0≦β≦1であり、rは累進開始点O
からの距離で、r=(x+y1/2であり、g
(r)及びh(r)は、それぞれrのみに依存する関数
であり、g(r)≠h(r)、かつ、g(0)=0であ
る。
However, in the above formula, α and β are α + β = 1.
0, 0 ≦ α ≦ 1, 0 ≦ β ≦ 1, and r is the progressive start point O
And r = (x 2 + y 2 ) 1/2 and g
(R) and h (r) are functions dependent only on r, respectively, and g (r) ≠ h (r) and g (0) = 0.

【0070】第5の非球面付加量の計算方法は、曲率の
変化がなめらかになるように設計でき、急激な度数変化
などの無い自然な累進面形状が得られる。
The fifth method of calculating the amount of aspherical surface addition can be designed so that the change in curvature is smooth, and a natural progressive surface shape without a sudden frequency change or the like can be obtained.

【0071】上記非球面付加量δの遠用部における最適
な非球面付加量g(r)と近用部における最適な非球面
付加量h(r)のそれぞれの割合を示すαとβの補間方
法として種々の形態が考えられる。
Interpolation of α and β indicating the respective ratios of the optimal aspherical surface addition amount g (r) in the distance portion of the aspherical surface addition amount δ and the optimal aspherical surface addition amount h (r) in the near portion. Various methods can be considered as the method.

【0072】例えば、図2に示すように、オリジナルの
累進屈折面を、遠用部、累進部、近用部とを直線的に区
分し、遠用部ではg(r)の比が100%なのでα:β
=100:0、近用部ではα:β=0:100、屈折力
が変化する累進部では目的距離に合わせ、α:βが徐々
に変化した領域区分とすることができる。
For example, as shown in FIG. 2, the original progressive refraction surface is linearly divided into a distance portion, a progressive portion, and a near portion, and the ratio of g (r) is 100% in the distance portion. So α: β
= 100: 0, α: β = 0: 100 in the near portion, and a progressive division in which the refractive power changes can be a region segment in which α: β gradually changes in accordance with the target distance.

【0073】また、図3に示すように、遠用部の下端と
なる累進開始点Oをほぼ中心とした扇形で区分されるこ
とが多い。このような場合には、付加する非球面の遠近
比率α:βの値も、オリジナルの累進屈折面の領域区分
に合わせて決めることにより、より効果的な光学性能向
上あるいはレンズの薄型化が行える。
Also, as shown in FIG. 3, the section is often divided in a sector shape with the progressive start point O, which is the lower end of the distance portion, substantially at the center. In such a case, the value of the perspective ratio α: β of the aspheric surface to be added is also determined according to the area division of the original progressive refraction surface, so that more effective optical performance improvement or thinning of the lens can be achieved. .

【0074】さらに、図4に示すように、累進開始点O
から累進屈折面の外周部方向に延びる直線OQと、X軸
とのなす角をwとするとき、前記α,βの値を角度wに
よりぞれぞれ以下のような式(4)、(5)に設定する
ことで、累進屈折面全域になめらかに非球面成分を付加
することができる。
Further, as shown in FIG.
When the angle between the straight line OQ extending in the direction of the outer peripheral portion of the progressive refraction surface and the X axis is w, the values of α and β are determined by the angle w according to the following equations (4) and (4). By setting to 5), an aspherical component can be smoothly added to the entire progressive refraction surface.

【0075】 α=0.5+0.5sin(w) …(4) β=0.5−0.5sin(w) …(5) 例えば上式をもとに主子午線の遠用部を計算すると、w
=90度であるから、α=1,β=0となり遠用の非球
面成分だけとなるし、累進屈折力レンズの水平方向の非
球面成分は、w=0度、あるいはw=180度のため、
α=β=0.5と遠近それぞれの非球面成分を均等に入
れることができ、かつ、非球面成分の移り変わりは累進
屈折面全体でなめらかに推移する。
Α = 0.5 + 0.5 sin (w) (4) β = 0.5−0.5 sin (w) (5) For example, when the distance portion of the main meridian is calculated based on the above equation, w
= 90 °, α = 1, β = 0, which means that there is only a distance aspherical component, and the horizontal aspherical component of the progressive-power lens is w = 0 ° or w = 180 °. For,
With α = β = 0.5, the aspherical components of the distance and near can be equally entered, and the transition of the aspherical components changes smoothly over the entire progressive refraction surface.

【0076】また、遠用部における最適な非球面付加量
g(r)と近用部における最適な非球面付加量h(r)
が、それぞれrの多項式で表現された下記式(6)、
(7)
Further, the optimal aspherical surface addition amount g (r) in the distance portion and the optimal aspherical surface addition amount h (r) in the near portion
Is represented by the following equation (6) expressed by a polynomial of r,
(7)

【0077】[0077]

【数17】 [Equation 17]

【0078】の関係を満たすことが好ましい。但し、上
記式中、G、Hはg(r)及びh(r)を決める係
数であり、ある一つの累進屈折面に対してはrによらな
い定数である。また、nは2以上の整数である。
It is preferable to satisfy the following relationship. However, in the above equation, G n and H n are coefficients that determine g (r) and h (r), and are constants that do not depend on r for a certain progressive refractive surface. N is an integer of 2 or more.

【0079】非球面付加量を、内挿によって決定する際
に、非球面付加量自体を内挿するのでは、データ量が多
いので、計算が大変である。そこで、非球面付加量の分
布を定義する上記関数g(r)、h(r)を上記式
(6)、(7)で表現し、これらの関数を決める係数G
、Hを同じn項について内挿をして、各処方に対す
る係数の値を決めてやれば、計算量は大幅に減少し、簡
便なレンズ設計となる。
When the additional amount of aspherical surface is determined by interpolation, if the additional amount of aspherical surface is interpolated, the amount of data is large and the calculation is difficult. Therefore, the functions g (r) and h (r) that define the distribution of the aspheric addition amount are expressed by the above equations (6) and (7), and the coefficient G that determines these functions is
If n and H n are interpolated for the same n terms to determine the value of the coefficient for each prescription, the amount of calculation is greatly reduced, and a simple lens design is achieved.

【0080】次に、レンズメータでの度数測定を考慮し
た累進屈折力レンズを説明する。累進屈折力レンズは、
図5に示すように、累進開始点Oから累進的に加入度数
が入ってくる。従って、レンズメータで度数を測定する
ときは、レンズメータの光線幅を加味して、累進開始点
Oよリ5〜10mm遠用側にオフセットした位置に度数
測定ポイントを設定することが一般的である。しかしな
がら、累進開始点Oの近傍まで非球面設計を施してしま
うと、レンズメータで度数を測定したときに、非点収差
が発生し、レンズの度数が保証できなくなってしまう。
Next, a description will be given of a progressive-power lens taking into account the power measurement with a lens meter. Progressive lens
As shown in FIG. 5, the addition power enters progressively from the progressive start point O. Therefore, when measuring the power with the lens meter, it is general to set the power measurement point at a position offset 5 to 10 mm farther from the progressive start point O by taking into account the light width of the lens meter. is there. However, if the aspherical design is applied to the vicinity of the progressive start point O, astigmatism will occur when the power is measured by a lens meter, and the power of the lens cannot be guaranteed.

【0081】そこで、図5に示すように、累進開始点O
からrが所定の距離rまでは、非球面を付加せずに球
面設計部とすることが好ましい。 具体的には、0≦r
≦r のときは、g(0)=0、h(0)=0、すなわ
ちδ=0であり、r<rのときは、g(r)、h
(r)は上記式(6)、(7)の関係を有するようにす
る。 rは度数測定ポイントをカバーできる7mm以
上、12mm未満が好ましい。
Therefore, as shown in FIG.
Is a predetermined distance r0Up to a sphere without adding an aspheric surface
Preferably, it is a surface design unit. Specifically, 0 ≦ r
≤r 0In the case of g (0) = 0, h (0) = 0, that is,
Where δ = 0 and r0When <r, g (r), h
(R) is set to have the relationship of the above equations (6) and (7).
You. r0Is 7mm or less that can cover frequency measurement points
Above, less than 12 mm is preferred.

【0082】このような球面設計部を設けても、累進開
始点Oの近傍は光軸に近く、もともと付加する理想的な
非球面付加量が小さいため、光学性能にさほど影響を及
ぼすことはない。
Even if such a spherical design unit is provided, the vicinity of the progressive start point O is close to the optical axis, and the ideal aspheric addition amount originally added is small, so that the optical performance is not significantly affected. .

【0083】以上、本発明の累進屈折力レンズの実施の
形態をいくつか述べてきたが、本発明の累進屈折力レン
ズは、累進屈折面を内面側、即ち、眼球側の屈折面に配
置することにより、最善の実施形態をとることができ
る。
As described above, several embodiments of the progressive-power lens of the present invention have been described. In the progressive-power lens of the present invention, the progressive-refractive surface is disposed on the inner surface side, that is, on the eyeball-side refractive surface. Thereby, the best embodiment can be taken.

【0084】内面に累進屈折面を配置することにより、
外面側の屈折面を球面にすることができる。これによ
り、累進屈折力レンズの欠点である、ゆれや歪みといっ
た要素が低減でき、光学性能が向上することが知られて
いる(W097/19382)。内面に累進屈折面を配
置した累進屈折力レンズに本発明を適用すれば、W09
7/19382に開示されるゆれや歪みの減少効果に加
え、本発明の効果である非点収差の削減、あるいはレン
ズの薄型化も同時に実現できる。
By arranging a progressive refractive surface on the inner surface,
The outer refracting surface can be spherical. As a result, it is known that factors such as fluctuation and distortion, which are disadvantages of the progressive-power lens, can be reduced and optical performance is improved (W097 / 19382). If the present invention is applied to a progressive-power lens having a progressive-refractive surface disposed on the inner surface, W09
In addition to the effect of reducing the fluctuation and distortion disclosed in Japanese Patent Application Laid-Open No. 7/19382, the effect of the present invention such as reduction of astigmatism and reduction in the thickness of the lens can be realized at the same time.

【0085】W097/19382の累進屈折面に本発
明を適用する方法は、図1に示した座標系を、図6の様
に定義し直すとよい。
In a method of applying the present invention to the progressive refracting surface of W097 / 19382, the coordinate system shown in FIG. 1 may be redefined as shown in FIG.

【0086】また、乱視処方への対応は、W097/1
9382に開示された、累進屈折面と乱視面の合成を行
った後の自由曲面に対し、前述した方法で非球面を付加
することで実現できる。
In addition, astigmatism prescription is described in W097 / 1.
This can be realized by adding an aspheric surface to the free-form surface after the combination of the progressive refraction surface and the astigmatic surface disclosed in US Pat.

【0087】すなわち、眼球側の面の任意の点P(x,
y,z)における座標zは、球面設計の累進屈折面の任
意の点Pでの近似曲率Cpと、球面設計の累進屈折面に
付加するトーリック面のx方向の曲率Cx及びy方向の
曲率Cyとを用いて次の式(8)で表される。
That is, an arbitrary point P (x,
The coordinates z in (y, z) are the approximate curvature Cp at an arbitrary point P on the spherical design progressive refraction surface, the x-direction curvature Cx and the y-direction curvature Cy of the toric surface added to the spherical design progressive refraction surface. And is represented by the following equation (8).

【0088】[0088]

【数18】 (Equation 18)

【0089】この式を用いて計算した累進屈折面と乱視
面の合成を行った後の自由曲面に、本発明に従い非球面
付加量を付加すればよい。この場合、非球面付加量の計
算方法は、上述した第4の非球面付加量の計算方法を用
いることが好ましい。
According to the present invention, an additional amount of aspherical surface may be added to the free-form surface after combining the progressive refraction surface and the astigmatic surface calculated using this equation. In this case, it is preferable to use the above-described fourth aspherical surface addition amount calculation method as a method for calculating the aspherical surface addition amount.

【0090】内面に累進屈折面を配置した累進屈折力レ
ンズに、本発明を適用することのメリットがさらにあ
る。外面に累進屈折面を配置した累進屈折力レンズは、
外面側で加入度数を保証しておき、球面度数、乱視度数
は、内面側を所定の曲率に研磨することで得ている。従
って、内面側は眼鏡使用者毎に異なる形状であるが、外
面の累進屈折面は全製作範囲の中のある度数からある度
数までは同一形状を採用している。よって、累進屈折面
に付加する非球面も、度数毎に量適な非球面を付加する
ことができず、最適でない度数があるにもかかわらず一
律にせざるを得ない。
There is a further advantage of applying the present invention to a progressive-power lens having a progressive-refractive surface disposed on the inner surface. A progressive power lens with a progressive refractive surface on the outer surface
The addition power is guaranteed on the outer surface side, and the spherical power and astigmatic power are obtained by polishing the inner surface to a predetermined curvature. Therefore, the inner surface side has a different shape for each spectacle user, but the outer progressive surface has the same shape from a certain power to a certain power in the entire manufacturing range. Therefore, an aspherical surface to be added to the progressive refraction surface cannot have an appropriate amount of aspherical surface for each power, and must be uniform even though there is a non-optimal power.

【0091】しかしながら、内面に累進屈折面を配置し
た累進屈折力レンズは、内面の形状だけで使用者一人一
人により異なる、球面度数、乱視度数、加入度数を得る
ため、完全なオーダーメード設計となる。従って内面に
付加する非球面付加量も、予め製作する処方がわかって
いるので、その処方に最適な非球面付加量を加味して設
計・製作できる。
However, a progressive-power lens having a progressive-refractive surface disposed on the inner surface has a completely custom-designed design in order to obtain a spherical power, an astigmatic power, and an addition power, which differ for each user only by the shape of the inner surface. . Therefore, since the prescription to be manufactured is known in advance also for the aspheric surface addition amount to be added to the inner surface, it is possible to design and manufacture the aspheric surface addition amount in consideration of the prescription.

【0092】[0092]

【実施例】次に、本発明の実施例について説明する。図
7に、S=+4.0D、C=0D、加入度2.0Dの処
方の眼球側に累進屈折面を形成した球面設計の眼鏡レン
ズの非点収差分布を示す。図8に、図7に示した処方と
同じ処方の内面累進のレンズを基にして本発明に従って
非球面付加量を付加して非球面設計としたレンズの非点
収差分布を示す。非球面設計とすることにより、非点収
差が改善され、光学性能が向上したことが認められる。
Next, an embodiment of the present invention will be described. FIG. 7 shows an astigmatism distribution of a spectacle lens having a spherical design in which a progressive refraction surface is formed on the eyeball side for a prescription of S = + 4.0D, C = 0D, and an addition power of 2.0D. FIG. 8 shows the astigmatism distribution of a lens having an aspherical design according to the present invention with an additional amount of aspherical surface added thereto, based on a progressive lens having the same prescription as that shown in FIG. It can be recognized that astigmatism is improved and optical performance is improved by adopting an aspheric design.

【0093】(第1実施例)図8に示した非球面設計の
内面累進のレンズを得るために、上述した第1の非球面
付加量の計算方法におけるg(r)及びh(r)を上記
式(6)と式(7)のrの多項式で表現した場合の各パ
ラメータの値を表1に示す。球面設計部の半径rは1
0mmである。
(First Embodiment) In order to obtain an aspherical surface progressive lens having an aspherical design shown in FIG. 8, g (r) and h (r) in the above-described first aspherical surface addition amount calculation method are calculated. Table 1 shows the value of each parameter when the above equation (6) and the equation (7) are represented by r polynomials. The radius r 0 of the spherical design part is 1
0 mm.

【0094】[0094]

【表1】 [Table 1]

【0095】表1に示したパラメータを用いて、累進開
始点Oからの角度wに対する上記式(4)と(5)を用
いたα、βの値と共に、累進開始点Oからの距離rと累
進開始点Oからの角度wに対して非球面付加量δ(単位
はμm)を計算した結果を表2に示す。
Using the parameters shown in Table 1, the values of α and β with respect to the angle w from the progressive start point O using the above equations (4) and (5), and the distance r from the progressive start point O and Table 2 shows the result of calculating the aspheric addition amount δ (unit: μm) with respect to the angle w from the progressive start point O.

【0096】[0096]

【表2】 [Table 2]

【0097】(第2実施例)図8に示した内面累進のレ
ンズを得るために、上述した第2の非球面付加量の計算
方法におけるg(r)及びh(r)を上記式(6)と式
(7)のrの多項式で表現した場合の各パラメータの値
を表3に示す。球面設計部の半径rは10mmであ
る。
(Second Embodiment) In order to obtain the progressive lens having the inner surface shown in FIG. 8, g (r) and h (r) in the above-described second method for calculating the aspheric addition amount are calculated by the above equation (6). ) And the polynomial of r in equation (7) show the values of each parameter. Radius r 0 of the spherical design portion is 10 mm.

【0098】[0098]

【表3】 [Table 3]

【0099】表3に示したパラメータを用いて、累進開
始点Oからの角度wに対する上記式(4)と(5)を用
いたα、βの値と共に、累進開始点Oからの距離rと累
進開始点Oからの角度wに対して非球面付加量δ(実際
の値を10000倍した値)を計算した結果を表4に示
す。
Using the parameters shown in Table 3, the values of α and β using the above equations (4) and (5) with respect to the angle w from the progressive start point O, and the distance r from the progressive start point O and Table 4 shows the result of calculating the aspheric addition amount δ (a value obtained by multiplying the actual value by 10000) with respect to the angle w from the progressive start point O.

【0100】[0100]

【表4】 [Table 4]

【0101】(第3実施例)図8に示した内面累進のレ
ンズを得るために、上述した第3の非球面付加量の計算
方法におけるg(r)及びh(r)を上記式(6)と式
(7)のrの多項式で表現した場合の各パラメータの値
を表5に示す。球面設計部の半径rは10mmであ
る。
(Third Embodiment) In order to obtain the progressive lens having the inner surface shown in FIG. 8, g (r) and h (r) in the third method for calculating the aspherical surface addition amount are calculated by the above equation (6). )) And the value of each parameter when expressed by the polynomial r in equation (7). Radius r 0 of the spherical design portion is 10 mm.

【0102】[0102]

【表5】 [Table 5]

【0103】表5に示したパラメータを用い、累進開始
点Oからの角度wに対する上記式(4)と(5)を用い
たα、βの値と共に、累進開始点Oからの距離rと累進
開始点Oからの角度wに対して非球面付加量δ(実際の
値を100000倍した値)を計算した結果を表6に示
す。
Using the parameters shown in Table 5, the values of α and β with respect to the angle w from the progressive start point O using the above equations (4) and (5), the distance r from the progressive start point O and the progressive Table 6 shows the result of calculating the aspheric addition amount δ (value obtained by multiplying the actual value by 100000) with respect to the angle w from the start point O.

【0104】[0104]

【表6】 [Table 6]

【0105】(第4実施例)図8に示した内面累進のレ
ンズを得るために、上述した第4の非球面付加量の計算
方法におけるg(r)及びh(r)を上記式(6)と式
(7)のrの多項式で表現した場合の各パラメータの値
を表7に示す。球面設計部の半径rは10mmであ
る。
(Fourth Embodiment) In order to obtain a progressive lens having the inner surface shown in FIG. 8, g (r) and h (r) in the above-described fourth method for calculating the aspherical surface addition amount are calculated by the above equation (6). )) And the value of each parameter when expressed by the polynomial r in equation (7). Radius r 0 of the spherical design portion is 10 mm.

【0106】[0106]

【表7】 [Table 7]

【0107】表7に示したパラメータを用い、累進開始
点Oからの角度wに対する上記式(4)と(5)を用い
たα、βの値と共に、累進開始点Oからの距離rと累進
開始点Oからの角度wに対して非球面付加量δ(実際の
値を100000倍した値)を計算した結果を表8に示
す。
Using the parameters shown in Table 7, the values of α and β with respect to the angle w from the progressive start point O using the above equations (4) and (5), the distance r from the progressive start point O and the progressive Table 8 shows the result of calculating the aspheric addition amount δ (value obtained by multiplying the actual value by 100,000) with respect to the angle w from the start point O.

【0108】[0108]

【表8】 [Table 8]

【0109】(第5実施例)図8に示した内面累進のレ
ンズを得るために、上述した第5の非球面付加量の計算
方法におけるg(r)及びh(r)を上記式(6)と式
(7)のrの多項式で表現した場合の各パラメータの値
を表9に示す。球面設計部の半径rは10mmであ
る。
(Fifth Embodiment) In order to obtain the progressive lens having the inner surface shown in FIG. 8, g (r) and h (r) in the fifth method for calculating the aspherical surface addition amount are calculated by the above equation (6). ) And the polynomial of r in equation (7). Radius r 0 of the spherical design portion is 10 mm.

【0110】[0110]

【表9】 [Table 9]

【0111】表9に示したパラメータを用いて、累進開
始点Oからの角度wに対する上記式(4)と(5)を用
いたα、βの値と共に、累進開始点Oからの距離rと累
進開始点Oからの角度wに対して非球面付加量δ(実際
の値そのまま)を計算した結果を表10に示す。
Using the parameters shown in Table 9, the values of α and β using the above equations (4) and (5) with respect to the angle w from the progressive start point O, the distance r from the progressive start point O, and Table 10 shows the results of calculating the aspheric addition amount δ (as is, the actual value) with respect to the angle w from the progressive start point O.

【0112】[0112]

【表10】 [Table 10]

【0113】[0113]

【発明の効果】本発明の累進屈折力レンズは、簡便な設
計によりレンズ全体にわたって最適な非球面成分が付加
され、非点収差の低減などの光学性能の向上とレンズの
薄型化が実現できる。
According to the progressive-power lens of the present invention, an optimum aspherical component is added to the entire lens by a simple design, and an improvement in optical performance such as reduction of astigmatism and a reduction in thickness of the lens can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】外面に累進屈折面を配置した累進屈折力レンズ
の座標系を示すもので、(a)は累進開始点を通るX軸
とZ軸の平面で切断した断面図、(b)は正面図であ
る。
FIG. 1 shows a coordinate system of a progressive-power lens in which a progressive-refractive surface is arranged on an outer surface, where (a) is a cross-sectional view cut along a plane of an X-axis and a Z-axis passing a progressive start point, and (b) is a sectional view. It is a front view.

【図2】本発明の累進屈折力レンズの累進屈折面の領域
毎に、付加する2種類の非球面成分の割合の領域区分を
示した正面図である。
FIG. 2 is a front view showing, for each area of a progressive-power surface of the progressive-power lens of the present invention, an area division of the ratio of two types of aspherical components to be added.

【図3】累進屈折力レンズの累進屈折面の付加する2種
類の非球面成分の割合の領域区分を示す正面図である。
FIG. 3 is a front view showing an area division of a ratio of two types of aspherical components added to a progressive power surface of a progressive power lens.

【図4】本発明の累進屈折力レンズの累進屈折面の座標
系を示す正面図である。
FIG. 4 is a front view showing a coordinate system of a progressive power surface of the progressive-power lens according to the present invention.

【図5】累進屈折力レンズの累進屈折面の主子午線の度
数変化と、度数測定ポイントを示した正面図である。
FIG. 5 is a front view showing a power change of a main meridian of a progressive power surface of the progressive power lens and power measurement points.

【図6】内面に累進屈折面を配置した累進屈折力レンズ
の座標系を示すもので、(a)は累進開始点を通るX軸
とZ軸の平面で切断した断面図、(b)は正面図であ
る。
6A and 6B show a coordinate system of a progressive-power lens having a progressive-refractive surface disposed on an inner surface, wherein FIG. 6A is a cross-sectional view cut along a plane of an X-axis and a Z-axis passing through a progressive start point, and FIG. It is a front view.

【図7】球面設計の内面側に累進屈折面を設けた累進屈
折力レンズの非点収差分布を示す正面図である。
FIG. 7 is a front view showing an astigmatism distribution of a progressive-power lens provided with a progressive-refractive surface on the inner surface side of a spherical design.

【図8】本発明の内面側に非球面設計を施した累進屈折
面を設けた累進屈折力レンズの非点収差分布を示す正面
図である。
FIG. 8 is a front view showing an astigmatism distribution of a progressive-power lens provided with a progressive-refractive surface having an aspheric design on the inner surface side of the present invention.

【符号の説明】[Explanation of symbols]

X:三次元座標のX軸 Y:三次元座標のY軸 Z:三次元座標のZ軸 x:X座標 y:y座標 z:Z座標 α:遠用部用の非球面付加量の割合 β:近用部用の非球面付加量の割合 w:フィッティングポイントから累進屈折力レンズの外
周部方向に延びる直線と前記X軸とのなす角 O:累進開始点 Q:フィッティングポイントから累進屈折力レンズの外
周部方向に延びる直線とレンズ外径との交点 r:球面設計部の半径
X: X-axis of three-dimensional coordinates Y: Y-axis of three-dimensional coordinates Z: Z-axis of three-dimensional coordinates x: X-coordinate y: y-coordinate z: Z-coordinate α: ratio of added amount of aspherical surface for distance use β : Proportion of additional amount of aspherical surface for near portion w: Angle between straight line extending from fitting point toward outer periphery of progressive power lens and the X axis O: Progression start point Q: Progressive power lens from fitting point Intersection of a straight line extending in the outer peripheral direction of the lens and the outer diameter of the lens r 0 : radius of the spherical design part

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 眼鏡レンズを構成する2つの屈折面のう
ち、少なくともどちらか一つの屈折面が、異なる屈折力
を備えた遠用部及び近用部とこれらの問で屈折力が累進
的に変化する累進部とを備えた累進屈折面を有し、前記
累進屈折面を眼鏡装用時の正面から見て、左右方向をX
軸、上下方向(遠近方向)をY軸、奥行き方向をZ軸、
前記遠用部の下端となる累進開始点を、 (x,y,z)=(0,0,0) とする座標系を定義し、前記累進屈折面の基になる座標
をzで表し、前記累進屈折面の座標をzとしたと
き、 z=z+δ であり、前記δが、前記累進屈折面のほぼY軸に沿って
延びる主子午線の前記遠用部では δ=g(r) 、前記累進屈折面のほぼY軸に沿って延びる主子午線の
前記近用部では、 δ=h(r) 、これら以外の部分では、 δ=α・g(r)+β・h(r) (但し、上記式中、α、βは、α+β=1.0、0≦α
≦1、0≦β≦1であり、rは累進開始点からの距離
で、r=(x+y1/2であり、g(r)及びh
(r)は、それぞれrのみに依存する関数であり、g
(r)≠h(r)、かつ、g(0)=0である。)の関
係を有することを特徴とする累進屈折力レンズ。
At least one of two refracting surfaces constituting a spectacle lens has a distance portion and a near portion having different refracting power, and the refracting power progressively depends on these portions. And a progressive portion having a changing progressive portion. When viewed from the front when wearing the spectacles, the progressive portion has a horizontal X direction.
Axis, vertical direction (perspective direction) Y axis, depth direction Z axis,
The progressive starting point as a lower end of the distance portion, represent (x, y, z) = defines the coordinate system with (0,0,0), the coordinates underlying the progressive refractive surface in z p when the coordinates of the progressive refracting surface and a z t, z t = a z p + [delta], wherein [delta] is in the distance portion of the main meridian extending substantially along the Y axis of the progressive refractive surface [delta] = g (R), δ = h (r) in the near portion of the main meridian extending substantially along the Y axis of the progressive refraction surface, and δ = α · g (r) + β · h ( r) (where α and β are α + β = 1.0, 0 ≦ α)
≦ 1, 0 ≦ β ≦ 1, r is the distance from the progressive start point, r = (x 2 + y 2 ) 1/2 , g (r) and h
(R) is a function that depends only on r, and g
(R) ≠ h (r) and g (0) = 0. A progressive-power lens having the following relationship:
【請求項2】 眼鏡レンズを構成する2つの屈折面のう
ち、少なくともどちらか一つの屈折面が、異なる屈折力
を備えた遠用部及び近用部とこれらの問で屈折力が累進
的に変化する累進部とを備えた累進屈折面を有し、前記
累進屈折面を眼鏡装用時の正面から見て、左右方向をX
軸、上下方向(遠近方向)をY軸、奥行き方向をZ軸、
前記遠用部の下端となる累進開始点を、 (x,y,z)=(0,0,0) とする座標系を定義し、前記累進屈折面の基になる径方
向の傾きをdzで表し、前記累進屈折面の径方向の傾
きをdzとしたとき、 dz=dz+δ であり、前記δが、前記累進屈折面のほぼY軸に沿って
延びる主子午線の前記遠用部では δ=g(r) 、前記累進屈折面のほぼY軸に沿って延びる主子午線の
前記近用部では、 δ=h(r) 、これら以外の部分では、 δ=α・g(r)+β・h(r) (但し、上記式中、α、βは、α+β=1.0、0≦α
≦1、0≦β≦1であり、rは累進開始点からの距離
で、r=(x+y1/2であり、g(r)及びh
(r)は、それぞれrのみに依存する関数であり、g
(r)≠h(r)、かつ、g(0)=0である。)の関
係を有することを特徴とする累進屈折力レンズ。
2. At least one of the two refracting surfaces constituting the spectacle lens has a distance portion and a near portion having different refracting powers, and the refracting power progressively depends on these. And a progressive portion having a changing progressive portion. When viewed from the front when wearing the spectacles, the progressive portion has a horizontal X direction.
Axis, vertical direction (perspective direction) Y axis, depth direction Z axis,
A coordinate system in which the progressive start point at the lower end of the distance portion is (x, y, z) = (0, 0, 0) is defined, and the radial gradient based on the progressive refractive surface is dz expressed in p, when the radial tilt of the progressive refractive surface and the dz t, a dz t = dz p + δ, wherein [delta] is the main meridian far extending substantially along the Y axis of the progressive refractive surface Δ = g (r) in the use portion, δ = h (r) in the near portion of the main meridian extending substantially along the Y axis of the progressive refraction surface, and δ = α · g ( r) + β · h (r) (where α and β are α + β = 1.0, 0 ≦ α
≦ 1, 0 ≦ β ≦ 1, r is the distance from the progressive start point, r = (x 2 + y 2 ) 1/2 , g (r) and h
(R) is a function that depends only on r, and g
(R) ≠ h (r) and g (0) = 0. A progressive-power lens having the following relationship:
【請求項3】 眼鏡レンズを構成する2つの屈折面のう
ち、少なくともどちらか一つの屈折面が、異なる屈折力
を備えた遠用部及び近用部とこれらの問で屈折力が累進
的に変化する累進部とを備えた累進屈折面を有し、前記
累進屈折面を眼鏡装用時の正面から見て、左右方向をX
軸、上下方向(遠近方向)をY軸、奥行き方向をZ軸、
前記遠用部の下端となる累進開始点を、 (x,y,z)=(0,0,0) とする座標系を定義し、前記累進屈折面の基になる径方
向の曲率をcで表し、前記累進屈折面の径方向の曲率
をcとしたとき、 c=c+δ であり、前記δが、前記累進屈折面のほぼY軸に沿って
延びる主子午線の前記遠用部では δ=g(r) 、前記累進屈折面のほぼY軸に沿って延びる主子午線の
前記近用部では、 δ=h(r) 、これら以外の部分では、 δ=α・g(r)+β・h(r) (但し、上記式中、α、βは、α+β=1.0、0≦α
≦1、0≦β≦1であり、rは累進開始点からの距離
で、r=(x+y1/2であり、g(r)及びh
(r)は、それぞれrのみに依存する関数であり、g
(r)≠h(r)、かつ、g(0)=0である。)の関
係を有することを特徴とする累進屈折力レンズ。
3. At least one of the two refracting surfaces constituting the spectacle lens is a distance portion and a near portion having different refracting powers, and the refracting power progressively depends on these. And a progressive portion having a changing progressive portion. When viewed from the front when wearing the spectacles, the progressive portion has a horizontal X direction.
Axis, vertical direction (perspective direction) Y axis, depth direction Z axis,
A coordinate system in which the progressive start point at the lower end of the distance portion is (x, y, z) = (0, 0, 0) is defined, and the radial curvature on which the progressive refractive surface is based is c. expressed in p, when the radial curvature of the progressive refractive surface and a c t, a c t = c p + δ, wherein [delta] is the main meridian far extending substantially along the Y axis of the progressive refractive surface Δ = g (r) in the use portion, δ = h (r) in the near portion of the main meridian extending substantially along the Y axis of the progressive refraction surface, and δ = α · g ( r) + β · h (r) (where α and β are α + β = 1.0, 0 ≦ α
≦ 1, 0 ≦ β ≦ 1, r is the distance from the progressive start point, r = (x 2 + y 2 ) 1/2 , g (r) and h
(R) is a function that depends only on r, and g
(R) ≠ h (r) and g (0) = 0. A progressive-power lens having the following relationship:
【請求項4】 眼鏡レンズを構成する2つの屈折面のう
ち、少なくともどちらか一つの屈折面が、異なる屈折力
を備えた遠用部及び近用部とこれらの問で屈折力が累進
的に変化する累進部とを備えた累進屈折面を有し、前記
累進屈折面を眼鏡装用時の正面から見て、左右方向をX
軸、上下方向(遠近方向)をY軸、奥行き方向をZ軸、
前記遠用部の下端となる累進開始点を、 (x,y,z)=(0,0,0) とする座標系を定義し、前記累進屈折面の基になる座標
をzで表し、前記累進屈折面の座標zが、下記式
(1)で定義されるb 【数1】 を用いて、下記式(2) 【数2】 で表され、前記δが、前記累進屈折面のほぼY軸に沿っ
て延びる主子午線の前記遠用部では δ=g(r) 、前記累進屈折面のほぼY軸に沿って延びる主子午線の
前記近用部では、 δ=h(r) 、これら以外の部分では、 δ=α・g(r)+β・h(r) (但し、上記式中、α、βは、α+β=1.0、0≦α
≦1、0≦β≦1であり、rは累進開始点からの距離
で、r=(x+y1/2であり、g(r)及びh
(r)は、それぞれrのみに依存する関数であり、g
(r)≠h(r)、かつ、g(0)=0である。)の関
係を有することを特徴とする累進屈折力レンズ。
4. At least one of the two refracting surfaces constituting the spectacle lens is a distance portion and a near portion having different refracting powers, and the refracting power progressively depends on these. And a progressive portion having a changing progressive portion. When viewed from the front when wearing the spectacles, the progressive portion has a horizontal X direction.
Axis, vertical direction (perspective direction) Y axis, depth direction Z axis,
The progressive starting point as a lower end of the distance portion, represent (x, y, z) = defines the coordinate system with (0,0,0), the coordinates underlying the progressive refractive surface in z p , The coordinate z t of the progressive surface is defined as b p defined by the following equation (1). By using the following equation (2) In the far vision portion of the main meridian extending substantially along the Y axis of the progressive refraction surface, δ = g (r), and of the main meridian extending substantially along the Y axis of the progressive refraction surface. In the near portion, δ = h (r), in other portions, δ = α · g (r) + β · h (r) (where α and β are α + β = 1.0 , 0 ≦ α
≦ 1, 0 ≦ β ≦ 1, r is the distance from the progressive start point, r = (x 2 + y 2 ) 1/2 , g (r) and h
(R) is a function that depends only on r, and g
(R) ≠ h (r) and g (0) = 0. A progressive-power lens having the following relationship:
【請求項5】 眼鏡レンズを構成する2つの屈折面のう
ち、少なくともどちらか一つの屈折面が、異なる屈折力
を備えた遠用部及び近用部とこれらの問で屈折力が累進
的に変化する累進部とを備えた累進屈折面を有し、前記
累進屈折面を眼鏡装用時の正面から見て、左右方向をX
軸、上下方向(遠近方向)をY軸、奥行き方向をZ軸、
前記遠用部の下端となる累進開始点を、 (x,y,z)=(0,0,0) とする座標系を定義し、前記累進屈折面の基になる座標
をzで表し、前記累進屈折面の座標zが、下記式
(1)で定義されるb 【数3】 を用いて、下記式(3) 【数4】 で表され、前記δが、前記累進屈折面のほぼY軸に沿っ
て延びる主子午線の前記遠用部では δ=g(r) 、前記累進屈折面のほぼY軸に沿って延びる主子午線の
前記近用部では、 δ=h(r) 、これら以外の部分では、 δ=α・g(r)+β・h(r) (但し、上記式中、α、βは、α+β=1.0、0≦α
≦1、0≦β≦1であり、rは累進開始点からの距離
で、r=(x+y1/2であり、g(r)及びh
(r)は、それぞれrのみに依存する関数であり、g
(r)≠h(r)、かつ、g(0)=0である。)の関
係を有することを特徴とする累進屈折力レンズ。
5. At least one of the two refracting surfaces constituting the spectacle lens is a distance portion and a near portion having different refracting powers, and the refracting power progressively increases due to the distance and near portions. And a progressive portion having a changing progressive portion. When viewed from the front when wearing the spectacles, the progressive portion has a horizontal X direction.
Axis, vertical direction (perspective direction) Y axis, depth direction Z axis,
The progressive starting point as a lower end of the distance portion, represent (x, y, z) = defines the coordinate system with (0,0,0), the coordinates underlying the progressive refractive surface in z p coordinate z t of the progressive refractive surface is, b p equation 3] defined by the following formula (1) By using the following equation (3) In the far vision portion of the main meridian extending substantially along the Y axis of the progressive refractive surface, δ = g (r), where δ is the main meridian extending substantially along the Y axis of the progressive refractive surface. In the near portion, δ = h (r), and in other portions, δ = α · g (r) + β · h (r) (where α and β are α + β = 1.0 , 0 ≦ α
≦ 1, 0 ≦ β ≦ 1, where r is the distance from the progressive start point, r = (x 2 + y 2 ) 1/2 , g (r) and h
(R) is a function that depends only on r, and g
(R) ≠ h (r) and g (0) = 0. A progressive-power lens having the following relationship:
【請求項6】 請求項1〜5いずれかに記載の累進屈折
力レンズにおいて、前記累進開始点から前記累進屈折面
の外周方向に延びる直線と前記X軸とのなす角をwとす
るとき、前記αと前記βが、それぞれ下記式(4)及び
(5) α=0.5+0.5sin(w) …(4) β=0.5−0.5sin(w) …(5) の関係を有することを特徴とする累進屈折力レンズ。
6. The progressive-power lens according to claim 1, wherein an angle between a straight line extending from the progressive start point in an outer peripheral direction of the progressive-refractive surface and the X axis is w. The above α and β are expressed by the following expressions (4) and (5), respectively. Α = 0.5 + 0.5 sin (w) (4) β = 0.5−0.5 sin (w) (5) A progressive-power lens comprising:
【請求項7】 請求項1〜5いずれかに記載の累進屈折
力レンズにおいて、前記g(r)、h(r)がそれぞれ
下記式(6)、(7) 【数5】 (但し、上記式中、G、Hはg(r)及びh(r)
を決める係数であり、ある一つの累進屈折面に対しては
rによらない定数であり、nは2以上の整数である。)
の関係を有することを特徴とする累進屈折力レンズ。
7. The progressive-power lens according to claim 1, wherein said g (r) and h (r) are represented by the following equations (6) and (7), respectively. (However, in the above formula, G n and H n are g (r) and h (r)
Is a constant that does not depend on r for a certain progressive refractive surface, and n is an integer of 2 or more. )
A progressive-power lens having the following relationship:
【請求項8】 請求項1〜5いずれかに記載の累進屈折
力レンズにおいて、前記rが、0≦r≦rのときは、
g(0)=0、h(0)=0であり、r<rのとき
は、 【数6】 (但し、上記式中、G、Hはg(r)及びh(r)
を決める係数であり、ある一つの累進屈折面に対しては
rによらない定数であり、nは2以上の整数である。)
であることを特徴とする累進屈折力レンズ。
8. The progressive-power lens according to claim 1, wherein when r satisfies 0 ≦ r ≦ r 0 ,
g (0) = 0, h (0) = 0, and when r 0 <r, (However, in the above formula, G n and H n are g (r) and h (r)
Is a constant that does not depend on r for a certain progressive refractive surface, and n is an integer of 2 or more. )
A progressive-power lens.
【請求項9】 請求項8記載の累進屈折力レンズにおい
て、前記rが7mm以上、12mm未満であることを
特徴とする累進屈折力レンズ。
9. The progressive-power lens according to claim 8, wherein said r 0 is not less than 7 mm and less than 12 mm.
【請求項10】 請求項1〜9いずれかに記載の累進屈
折力レンズにおいて、前記累進屈折面が、眼球側の屈折
面に設けられていることを特徴とする累進屈折力レン
ズ。
10. The progressive-power lens according to claim 1, wherein the progressive-refractive surface is provided on an eyeball-side refractive surface.
JP16267799A 1998-06-12 1999-06-09 Progressive power lens design method Expired - Fee Related JP3757682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16267799A JP3757682B2 (en) 1998-06-12 1999-06-09 Progressive power lens design method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16555998 1998-06-12
JP10-165559 1998-06-12
JP16267799A JP3757682B2 (en) 1998-06-12 1999-06-09 Progressive power lens design method

Publications (2)

Publication Number Publication Date
JP2000066148A true JP2000066148A (en) 2000-03-03
JP3757682B2 JP3757682B2 (en) 2006-03-22

Family

ID=26488386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16267799A Expired - Fee Related JP3757682B2 (en) 1998-06-12 1999-06-09 Progressive power lens design method

Country Status (1)

Country Link
JP (1) JP3757682B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070274B2 (en) 2004-03-30 2006-07-04 Seiko Epson Corporation Spectacle lens
EP1688780A1 (en) 2005-02-04 2006-08-09 Seiko Epson Corporation Method of designing a spectacle lens
US7118215B2 (en) 2002-10-08 2006-10-10 Hoya Corporation Method for determining optical value of lens of eyeglasses, process for producing lens of eyeglasses, lens of eyeglasses and its ordering/ordr receiving system
WO2007010806A1 (en) * 2005-07-21 2007-01-25 Nikon-Essilor Co., Ltd. Progressive refractive power lens
WO2008010504A1 (en) * 2006-07-20 2008-01-24 Nikon-Essilor Co., Ltd. Method for designing progressive refraction lens, method for manufacturing the same, and eyeglasses lens supplying system
JP2008518255A (en) * 2004-10-29 2008-05-29 エシロール アンテルナシオナル (コンパニー ジェネラレ ドプテイク) Multifocal lens for pre-presbyopia
JP2010055085A (en) * 2008-07-31 2010-03-11 Hoya Corp Progressive-power lens, method for preparing shape data thereof, method for manufacturing the lens, and apparatus and program for preparing shape data
JP2011070234A (en) * 2005-08-22 2011-04-07 Seiko Epson Corp Progressive-power lens
JP2012531633A (en) * 2009-06-30 2012-12-10 エシロール アンテルナシオナル (コンパニー ジェネラル ドプティック) Method and apparatus for designing optical lenses
JP2013050556A (en) * 2011-08-30 2013-03-14 Hoya Corp Method for designing spectacle lens, method for manufacturing spectacle lens, and system for designing spectacle lens
US8678585B2 (en) 2005-08-22 2014-03-25 Hoya Lens Manufacturing Philippines Inc. Progressive-power lens
JP2018077401A (en) * 2016-11-10 2018-05-17 伊藤光学工業株式会社 Design method of progressive refractive power lens
JP2018112633A (en) * 2017-01-10 2018-07-19 伊藤光学工業株式会社 Progressive refractive power lens
US10831041B2 (en) 2015-03-30 2020-11-10 Rodenstock Gmbh Method for creating a design of a prescription surface of a multifocal lens and multifocal lens comprising such a prescription surface

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7118215B2 (en) 2002-10-08 2006-10-10 Hoya Corporation Method for determining optical value of lens of eyeglasses, process for producing lens of eyeglasses, lens of eyeglasses and its ordering/ordr receiving system
US7070274B2 (en) 2004-03-30 2006-07-04 Seiko Epson Corporation Spectacle lens
JP2008518255A (en) * 2004-10-29 2008-05-29 エシロール アンテルナシオナル (コンパニー ジェネラレ ドプテイク) Multifocal lens for pre-presbyopia
EP1688780A1 (en) 2005-02-04 2006-08-09 Seiko Epson Corporation Method of designing a spectacle lens
US7422325B2 (en) 2005-02-04 2008-09-09 Seiko Epson Corporation Method of designing a spectacle lens
JP5000505B2 (en) 2005-07-21 2012-08-15 株式会社ニコン・エシロール Progressive power lens
WO2007010806A1 (en) * 2005-07-21 2007-01-25 Nikon-Essilor Co., Ltd. Progressive refractive power lens
US8678585B2 (en) 2005-08-22 2014-03-25 Hoya Lens Manufacturing Philippines Inc. Progressive-power lens
JP2011070234A (en) * 2005-08-22 2011-04-07 Seiko Epson Corp Progressive-power lens
WO2008010504A1 (en) * 2006-07-20 2008-01-24 Nikon-Essilor Co., Ltd. Method for designing progressive refraction lens, method for manufacturing the same, and eyeglasses lens supplying system
US7959285B2 (en) 2006-07-20 2011-06-14 Nikon-Essilor Co., Ltd. Method for designing progressive refraction lens, method for manufacturing the same, and eyeglasses lens supplying system
JP2014139680A (en) * 2006-07-20 2014-07-31 Nikon-Essilor Co Ltd Progressive refractive power lens design method, manufacturing method of the same and spectacle lens distribution system
JP2010055085A (en) * 2008-07-31 2010-03-11 Hoya Corp Progressive-power lens, method for preparing shape data thereof, method for manufacturing the lens, and apparatus and program for preparing shape data
JP2012531633A (en) * 2009-06-30 2012-12-10 エシロール アンテルナシオナル (コンパニー ジェネラル ドプティック) Method and apparatus for designing optical lenses
JP2013050556A (en) * 2011-08-30 2013-03-14 Hoya Corp Method for designing spectacle lens, method for manufacturing spectacle lens, and system for designing spectacle lens
US10831041B2 (en) 2015-03-30 2020-11-10 Rodenstock Gmbh Method for creating a design of a prescription surface of a multifocal lens and multifocal lens comprising such a prescription surface
JP2018077401A (en) * 2016-11-10 2018-05-17 伊藤光学工業株式会社 Design method of progressive refractive power lens
JP2018112633A (en) * 2017-01-10 2018-07-19 伊藤光学工業株式会社 Progressive refractive power lens

Also Published As

Publication number Publication date
JP3757682B2 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
JP4192899B2 (en) Eyeglass lens design method
KR100940699B1 (en) Progressive-power lens
JP3800629B2 (en) Multifocal lens for spectacles and spectacle lens
JP4408112B2 (en) Double-sided aspherical progressive-power lens and design method thereof
US5137343A (en) Multifocal surface for a multifocal spectacle lens
US6955433B1 (en) Methods for designing composite ophthalmic lens surfaces
JP3066029B2 (en) Lens for progressive power glasses
US7914145B2 (en) Progressive power lens and manufacturing method therefor
JP4437482B2 (en) Double-sided aspherical progressive-power lens and design method thereof
JP4164550B2 (en) Progressive power spectacle lens
KR20000022871A (en) Progressive addition lenses
JPH0990291A (en) Progressive multifocus lens
JP3617004B2 (en) Double-sided aspherical progressive-power lens
JP2000066148A (en) Progressive refracting power lens
JP2003121801A5 (en)
JP2008058576A (en) Spectacle lens design method
US6220704B1 (en) Progressive power lens
JP2004502963A (en) Progressive spectacle lens with low shaking movement
US7125118B2 (en) Progressive multifocal lens and method of designing the same
JPH11264955A (en) Progressive multifocus lens
JP6396880B2 (en) Design method for progressive power lens group
JP2019045545A (en) Bifocal lens and method for manufacturing the same
JP4219148B2 (en) Double-sided aspherical progressive-power lens
JP4404317B2 (en) Double-sided aspherical progressive-power lens and design method thereof
JP2019139120A (en) Bifocal lens and method of manufacturing bifocal lens

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040408

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3757682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees