JP2011070234A - Progressive-power lens - Google Patents

Progressive-power lens Download PDF

Info

Publication number
JP2011070234A
JP2011070234A JP2011005602A JP2011005602A JP2011070234A JP 2011070234 A JP2011070234 A JP 2011070234A JP 2011005602 A JP2011005602 A JP 2011005602A JP 2011005602 A JP2011005602 A JP 2011005602A JP 2011070234 A JP2011070234 A JP 2011070234A
Authority
JP
Japan
Prior art keywords
power
progressive
refractive
lens
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011005602A
Other languages
Japanese (ja)
Other versions
JP2011070234A5 (en
Inventor
Tadayuki Kaga
唯之 加賀
Shunei Shinohara
俊英 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011005602A priority Critical patent/JP2011070234A/en
Publication of JP2011070234A publication Critical patent/JP2011070234A/en
Publication of JP2011070234A5 publication Critical patent/JP2011070234A5/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inner face progressive-power lens that solves defects such as thinness of a lens or appearances in the inner face progressive-power lens with a progressive refraction surface on a refractive surface of a side of augen. <P>SOLUTION: A refractive surface 11 of a side of augen of a distant portion is concave and at least part of a refractive surface 3 of the side of the augen of a near portion is a convex region 31 where one or both of principal meridians of the surface are convex. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、主として老視を補正するための眼鏡に使用される累進屈折力レンズに関する。   The present invention relates to a progressive-power lens used mainly for spectacles for correcting presbyopia.

累進屈折力レンズは、屈折力の異なる2つの視野部分と、これらの間で屈折力が累進的に変わる視野部分とを備えたレンズであり、これらの視野部分に境目がなく外観的に優れ、さらに、1つのレンズで異なる屈折力の視野を得ることができる。このため、老視などの視力の補正機能を備えた眼鏡レンズとして多く用いられている。   The progressive power lens is a lens having two field parts having different refractive powers and a field part in which the refractive power changes progressively between them. Furthermore, a field of different refractive power can be obtained with one lens. For this reason, it is often used as a spectacle lens having a vision correction function such as presbyopia.

図3に、累進屈折力レンズの一般的な構造を示す。図3(a)は正面図、図3(b)は縦方向の断面図である。累進屈折力レンズ100は、相対的に遠方を見るための視野部分である遠用部2が上方に設けられ、相対的に近方を見るために遠用部2と異なる屈折力を備えた視野部分が近用部3として遠用部2の下方に設けられている。そして、これら遠用部2と近用部3が、遠方と近方の中間距離の物を見るために連続的に変化する屈折力を備えた視野部分である中間部(累進部)4によって滑らかに連絡されている。   FIG. 3 shows a general structure of a progressive power lens. 3A is a front view, and FIG. 3B is a longitudinal sectional view. The progressive power lens 100 is provided with a distance portion 2 which is a field portion for viewing a relatively far distance, and a field of view having a refractive power different from that of the distance portion 2 for viewing a relatively near distance. The portion is provided below the distance portion 2 as the near portion 3. The distance portion 2 and the near portion 3 are smoothly smoothed by an intermediate portion (progressive portion) 4 which is a visual field portion having a refractive power that continuously changes in order to see an object at an intermediate distance between the distance and the near. Have been contacted.

眼鏡用に用いられる単板のレンズにおいては、眼球側の屈折面11と、物体側の屈折面12の2つの面によって眼鏡レンズに要求される全ての性能、例えば、ユーザーの度数に合った頂点屈折力、乱視を矯正するための円柱屈折力、老視を補正するための加入屈折力、さらには斜位を矯正するためのプリズム屈折力などを付与する必要がある。このため、従来の累進屈折力レンズにおいては、これら遠用部2、近用部3および中間部4を構成するために連続的に変化する屈折力を与える累進屈折面が物体側の屈折面12に形成され、眼球側の屈折面11は乱視矯正用の屈折面などとして用いられている。   In a single-plate lens used for spectacles, all the performance required for the spectacle lens by the two surfaces of the eyeball-side refractive surface 11 and the object-side refractive surface 12, for example, the apex that matches the power of the user It is necessary to provide a refractive power, a cylindrical refractive power for correcting astigmatism, an addition refractive power for correcting presbyopia, and a prism refractive power for correcting oblique position. For this reason, in the conventional progressive-power lens, the progressive refractive surface that gives the refractive power that continuously changes to form the distance portion 2, the near portion 3, and the intermediate portion 4 is the refractive surface 12 on the object side. The eyeball side refractive surface 11 is used as a refractive surface for correcting astigmatism.

このような物体側の屈折面12に累進屈折面を有する外面累進屈折力レンズでは、像のゆがみが大きくなる。そのため、初めて累進屈折力レンズを使用する人や、別の設計の累進屈折力レンズから掛け替える人の中には、違和感を感じる場合がある。   In such an outer surface progressive addition lens having a progressive refractive surface on the object-side refractive surface 12, the distortion of the image increases. For this reason, a person who uses a progressive power lens for the first time or a person who changes from a progressive power lens of another design may feel uncomfortable.

外面累進屈折力レンズのこのような像の倍率の変化によるゆがみの発生を押さえるために、最近では特許文献1に示されているように、累進屈折面を眼球側の屈折面11に配置した内面累進屈折力レンズと呼ばれるものも製品化されるようになった。内面累進屈折力レンズ100では、図3(b)に示すように、物体側屈折面12は球面又は回転軸対称の非球面である。眼球側屈折面11には、遠用部2、近用部3、中間部4を有する累進屈折面が設けられ、累進屈折面にトーリック面、さらにはレンズの軸外収差を補正するための補正非球面要素を合成した複雑な曲面が使われている。更に、この内面累進屈折力レンズ100を薄くするための技術が特許文献2に記載されている。   In order to suppress the occurrence of distortion due to such a change in image magnification of the outer surface progressive-power lens, an inner surface in which a progressive refraction surface is arranged on the refraction surface 11 on the eyeball side as shown in Patent Document 1 recently. A so-called progressive power lens has also been commercialized. In the inner surface progressive-power lens 100, as shown in FIG. 3B, the object-side refractive surface 12 is a spherical surface or a rotationally symmetric aspherical surface. The eyeball-side refracting surface 11 is provided with a progressive refracting surface having a distance portion 2, a near portion 3, and an intermediate portion 4, and the toric surface is further corrected on the progressive refracting surface and further correction for correcting off-axis aberrations of the lens. A complex curved surface combining aspherical elements is used. Further, Patent Document 2 describes a technique for thinning the inner surface progressive addition lens 100.

国際公開第97/19382号パンフレットInternational Publication No. 97/19382 Pamphlet 特開2000−227579号公報JP 2000-227579 A

しかしながら、内面累進屈折力レンズは、内面側で加入屈折力を得るような曲面にするために、遠用部の面屈折力は近用部の面屈折力より加入屈折力分大きな値に設定しなければならない。更に、内面累進屈折力レンズは、遠用部に必要な遠用屈折力を確保する必要がある。例えば、遠用部がプラス処方を有する場合には、プラス処方に応じ、物体側屈折面の面屈折力を大きくする必要がある。そのため、遠用部にプラス処方を有する内面累進屈折力レンズは、外面累進屈折力レンズより物体側の屈折面の凸面の出っ張りが大きくなる。このように、内面累進屈折力レンズは、像のゆがみといった光学性能面では有利であるが、レンズの薄さや外観等の面では欠点を有している。前述した特許文献2で示されているような薄型化技術が提案されているが、不十分である。   However, in order to make the inner surface progressive addition lens curved so as to obtain the addition power on the inner surface side, the surface refractive power of the distance portion is set to a value larger by the addition power than the surface power of the near portion. There must be. Furthermore, it is necessary for the inner surface progressive-power lens to secure the distance power required for the distance portion. For example, when the distance portion has a plus prescription, it is necessary to increase the surface refractive power of the object-side refractive surface according to the plus prescription. Therefore, in the inner surface progressive addition lens having a plus prescription in the distance portion, the protrusion of the convex surface of the refractive surface on the object side is larger than that of the outer surface progressive addition lens. As described above, the inner surface progressive addition lens is advantageous in terms of optical performance such as image distortion, but has disadvantages in terms of thinness and appearance of the lens. A thinning technique as shown in Patent Document 2 described above has been proposed, but is insufficient.

本発明は、上記事情に鑑みてなされたもので、眼球側の屈折面に累進屈折面を有する内面累進屈折力レンズにおけるレンズの薄さや外観等の面での欠点を解決できる内面累進屈折力レンズを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an inner surface progressive addition lens capable of solving defects in terms of thinness and appearance of the lens in an inner surface progressive addition lens having a progressive addition surface on the refractive surface on the eyeball side. The purpose is to provide.

上記目的を達成するため、本発明は、第1に、物体側と眼球側の2つの屈折面を有し、前記眼球側の屈折面が、相対的に遠方を見るための屈折力をもつ遠用部と、相対的に近方を見るための屈折力をもつ近用部と、これらの中間の距離を連続的に見るための屈折力をもつ中間部とを有する累進屈折力レンズにおいて、前記遠用部の眼球側の屈折面が凹形状を有し、前記近用部の眼球側の屈折面の少なくとも一部において、面の主経線の一方又は両方が凸形状である凸面領域を有することを特徴とする累進屈折力レンズを提供する。   In order to achieve the above object, the present invention firstly has two refracting surfaces of the object side and the eyeball side, and the eyeball side refracting surface has a refracting power for relatively far viewing. In a progressive-power lens having a power portion, a near power portion having a refractive power for relatively viewing near, and an intermediate portion having a power for continuously viewing an intermediate distance therebetween, The eye-side refracting surface of the distance portion has a concave shape, and at least part of the eye-side refracting surface of the near portion has a convex region where one or both of the principal meridians of the surface are convex. A progressive power lens characterized by the above is provided.

この内面累進屈折力レンズは、眼球側の屈折面における近用部の領域に眼球側に凸となっている凸面領域を設けた構造を有する。近用部に凸面領域を設けたことにより、眼球側の遠用部を、所定の加入屈折力を得る際に、小さな曲率の凹面とすることができる。更に遠用部に必要な屈折力を確保するための物体側の屈折面の曲率を、眼球側の小さな曲率に合わせて小さくすることができる。従って、近用部に凸面領域を設けたことにより、浅いベースカーブとなり、その結果、外観が良好で薄くすることが可能となる。   This inner surface progressive addition lens has a structure in which a convex surface region convex toward the eyeball side is provided in the region of the near portion of the refractive surface on the eyeball side. By providing the convex area in the near portion, the distance portion on the eyeball side can be a concave surface having a small curvature when obtaining a predetermined addition power. Furthermore, the curvature of the refracting surface on the object side for securing the refractive power necessary for the distance portion can be reduced in accordance with the small curvature on the eyeball side. Therefore, by providing the convex area in the near portion, a shallow base curve is obtained. As a result, the appearance can be improved and the thickness can be reduced.

本発明は、第2に、上記第1の累進屈折力レンズにおいて、前記凸面領域の主経線の最大面屈折力が絶対値で2ディオプトリーを超えないことを特徴とする累進屈折力レンズを提供する。   The present invention secondly provides the progressive power lens according to the first progressive power lens, wherein the maximum surface power of the principal meridian of the convex region does not exceed 2 diopters in absolute value. .

近用部に凸面領域を設けたことにより、外観が良好で薄い内面累進屈折力レンズを実現することができる。その反面、ベースカーブが浅くなることにより、非点収差が増加し、その結果、光学性能が劣化してしまう、という問題点が生じる。この問題点は設計技術の進歩により克服することが可能になった。そして、本願は、更に凸面領域の凸の程度を制限することにより、このような光学性能の劣化を最小限とすることができる。   By providing a convex surface area in the near portion, it is possible to realize a thin inner surface progressive addition lens having a good appearance. On the other hand, as the base curve becomes shallow, the astigmatism increases, resulting in a problem that the optical performance deteriorates. This problem can be overcome by advances in design technology. In the present application, the deterioration of the optical performance can be minimized by further limiting the degree of convexity of the convex surface region.

本発明は、第3に、上記第1又は第2の累進屈折力レンズにおいて、前記累進屈折力レンズの幾何学中心から半径25mmの内側における前記凸面領域の占める面積割合は、30%以下であることを特徴とする累進屈折力レンズを提供する。   Thirdly, in the first or second progressive-power lens according to the present invention, the area ratio occupied by the convex surface region within a radius of 25 mm from the geometric center of the progressive-power lens is 30% or less. A progressive-power lens is provided.

凸面領域の占める面積割合を制限することにより、浅いベースカーブとしたことによる光学性能の劣化を最小限とすることができる。   By limiting the area ratio occupied by the convex region, it is possible to minimize the deterioration of the optical performance due to the shallow base curve.

本発明の累進屈折力レンズの概念を示し、(a)は正面図、(b)は断面図。The concept of the progressive-power lens of this invention is shown, (a) is a front view, (b) is sectional drawing. (a)は本発明の、(b)は従来の累進屈折力レンズの各面の屈折力を示す図。(A) of this invention, (b) is a figure which shows the refractive power of each surface of the conventional progressive-power lens. 従来の累進屈折力レンズの概念を示し、(a)は正面図、(b)は断面図。The concept of the conventional progressive-power lens is shown, (a) is a front view, (b) is sectional drawing. 眼球側の屈折面に小玉を設けた二重焦点レンズの一例を示し、(a)は正面図、(b)は断面図。An example of the double focus lens which provided the small ball in the refractive surface by the side of an eyeball is shown, (a) is a front view, (b) is sectional drawing. 実施例1の累進屈折力レンズの眼球側屈折面の面屈折力分布図。FIG. 3 is a surface refractive power distribution diagram of an eyeball side refractive surface of the progressive-power lens of Example 1; 実施例1の累進屈折力レンズの眼球側屈折面の非点収差分布図。FIG. 4 is an astigmatism distribution diagram on the eyeball side refractive surface of the progressive-power lens of Example 1; 実施例1の累進屈折力レンズの目視収差図。FIG. 6 is a visual aberration diagram of the progressive-power lens of Example 1. 実施例1の累進屈折力レンズの眼球側屈折面の座標図。FIG. 3 is a coordinate diagram of a refractive surface on the eyeball side of the progressive-power lens of Example 1. 実施例2の累進屈折力レンズの眼球側屈折面の面屈折力分布図。FIG. 5 is a surface refractive power distribution diagram of an eyeball side refractive surface of the progressive-power lens of Example 2. 実施例2の累進屈折力レンズの眼球側屈折面の非点収差分布図。FIG. 6 is an astigmatism distribution diagram on the eyeball side refractive surface of the progressive-power lens of Example 2. 実施例2の累進屈折力レンズの目視収差図。FIG. 6 is a visual aberration diagram of the progressive-power lens of Example 2. 実施例2の累進屈折力レンズの眼球側屈折面の座標図。6 is a coordinate diagram of an eyeball side refractive surface of a progressive-power lens according to Embodiment 2. FIG. 比較例の累進屈折力レンズの眼球側屈折面の面屈折力分布図。The surface refractive power distribution map of the eyeball side refractive surface of the progressive-power lens of a comparative example. 比較例の累進屈折力レンズの眼球側屈折面の非点収差分布図。The astigmatism distribution diagram of the eyeball side refractive surface of the progressive-power lens of the comparative example. 比較例の累進屈折力レンズの目視収差図。The visual aberration diagram of the progressive-power lens of a comparative example. 比較例の累進屈折力レンズの眼球側屈折面の座標図。The coordinate figure of the eyeball side refractive surface of the progressive-power lens of a comparative example.

以下、本発明の累進屈折力レンズの実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。   Hereinafter, embodiments of the progressive-power lens according to the present invention will be described, but the present invention is not limited to the following embodiments.

図1は、本発明の累進屈折力レンズの概念を示すもので、(a)は正面図、(b)は縦方向の断面図である。この累進屈折力レンズ1は、メニスカスレンズであり、その凹面形状である眼球側の屈折面11に累進屈折面が設けられ、凸面形状である物体側の屈折面12は例えば球面又は回転軸対称の非球面に形成されている内面累進屈折力レンズである。眼球側の屈折面11に設けられている累進屈折面は、相対的に遠方を見るための屈折力をもつ遠用部2と、相対的に近方を見るための屈折力をもつ近用部3と、これらの中間の距離を連続的に見るための屈折力をもつ中間部4とを有する。眼球側の屈折面11には、累進屈折面の他に、乱視を矯正するための屈折力として例えば円柱屈折力、斜位を矯正するためのプリズム屈折力、収差を補正するための非球面などが付与される。   1A and 1B show the concept of a progressive-power lens according to the present invention, where FIG. 1A is a front view and FIG. 1B is a longitudinal sectional view. The progressive-power lens 1 is a meniscus lens, and has a concave refractive surface provided with a progressive refractive surface 11 on the eyeball side, and the convex object-side refractive surface 12 is, for example, spherical or rotationally symmetric. It is an inner surface progressive addition lens formed in an aspherical surface. The progressive refracting surface provided on the eyeball side refracting surface 11 includes a distance portion 2 having a refractive power for relatively looking at a distance and a near portion having a refractive power for relatively looking at a near distance. 3 and an intermediate portion 4 having a refractive power for continuously viewing these intermediate distances. In addition to the progressive refractive surface, the refractive surface 11 on the eyeball side has, for example, a cylindrical refractive power as a refractive power for correcting astigmatism, a prism refractive power for correcting oblique position, and an aspherical surface for correcting aberration. Is granted.

本発明の累進屈折力レンズ1は、このような内面累進屈折力レンズにおいて、遠用部2の屈折面が眼球側に凹形状を有する。言い換えれば、遠用部2の屈折面が有する曲率半径の中心が、その屈折面よりも眼球側に存在する。また、近用部3の屈折面の少なくとも一部において、面の主経線の一方又は両方が眼球側に凸である、言い換えれば近用部3の屈折面のある一点の面の主経線の一方又は両方の曲率半径の中心がその屈折面よりも物体側に存在する凸面領域31を有する。この凸面領域31は、面屈折力の符号を物体側に凸の形状をプラス、眼球側に凸の形状をマイナスとした場合、平均面屈折力がマイナスである領域である。   The progressive-power lens 1 of the present invention is such an internal progressive-power lens, and the refracting surface of the distance portion 2 has a concave shape on the eyeball side. In other words, the center of the radius of curvature of the refractive surface of the distance portion 2 is present on the eyeball side with respect to the refractive surface. Further, in at least a part of the refracting surface of the near portion 3, one or both of the principal meridians of the surface are convex to the eyeball side, in other words, one of the principal meridians of one surface having the refracting surface of the near portion 3. Or the center of both the curvature radii has the convex surface area | region 31 which exists in the object side rather than the refractive surface. The convex surface region 31 is a region where the average surface refractive power is negative when the sign of the surface refractive power is positive on the object side and the convex shape on the eyeball side is negative.

この凸面領域31は、図1(b)に示すように、遠用部2を含んでメニスカスレンズの凹面形状となっている眼球側の屈折面11にあって、近用部3の領域で眼球側へ凸形状となっている。凸面領域31を面の主経線の一方又は両方が眼球側へ凸形状であると定義したのは、内面累進屈折力レンズでは累進屈折面と乱視矯正のためのトーリック面とが合成された屈折面となる場合があり、この合成屈折面における凸面領域では、面の主経線の一方がトーリック面により眼球側に向かって凹になり、面の主経線の他方が眼球側に向かって凸になる場合があるからである。眼球側に凸になっているというためには、面の主経線の少なくとも一方が眼球側に凸になっている必要がある。なお、面の主経線とは、JIS規格(JIS/T7330:2000年10月18日刊行:日本工業標準調査会)に規定される通り、面上の一点での最大曲率と最小曲率の存在する経線をいう。   As shown in FIG. 1B, the convex surface region 31 is located on the refractive surface 11 on the eyeball side including the distance portion 2 and having a concave shape of the meniscus lens, and the eyeball in the region of the near portion 3. Convex shape to the side. The convex surface region 31 is defined as one or both of the principal meridians of the surface convex toward the eyeball side. In the inner surface progressive addition lens, a refractive surface in which a progressive refractive surface and a toric surface for correcting astigmatism are combined. In the convex surface area of the synthetic refractive surface, one of the principal meridians of the surface is concaved toward the eyeball side by the toric surface, and the other of the principal meridians of the surface is convex toward the eyeball side. Because there is. In order to be convex toward the eyeball side, at least one of the principal meridians of the surface needs to be convex toward the eyeball side. The principal meridian of a surface has a maximum curvature and a minimum curvature at one point on the surface as defined in JIS standard (JIS / T7330: published on October 18, 2000: Japan Industrial Standards Committee). A meridian.

近用部に眼球側に凸の凸面領域31を設けたことにより、眼球側11の屈折面の遠用部2において所定の加入屈折力を得るために小さな曲率の凹面とすることができ、更に遠用部2に必要な遠用屈折力を確保するための物体側の屈折面12の曲率を眼球側の遠用部2の小さな曲率に合わせて小さくすることができる。近用部3に凸面領域31を設けたことにより、ベースカーブとよばれる物体側の屈折面12を浅くすることができ、そのために外観が良好で薄くすることが可能となる内面累進屈折力レンズ1を実現することができる。   By providing a convex surface region 31 convex on the eyeball side in the near portion, the distance portion 2 of the refractive surface on the eyeball side 11 can have a concave surface with a small curvature in order to obtain a predetermined addition refractive power. The curvature of the refracting surface 12 on the object side for ensuring the distance refracting power necessary for the distance portion 2 can be reduced according to the small curvature of the distance portion 2 on the eyeball side. By providing the convex region 31 in the near portion 3, the object-side refractive surface 12, called a base curve, can be made shallow, so that an internal progressive-power lens that has a good appearance and can be made thin. 1 can be realized.

近用部に凸面領域を設けることにより浅いベースカーブとすることができることを具体的に説明する。内面累進屈折力レンズでは、物体側(外面)の面屈折力(ベースカーブ)D1と眼球側(内面)の遠用部面屈折力D2fと近用部面屈折力D2n、レンズの処方度数を構成する遠用度数S、加入度数Adの間にはつぎの関係がある。
S=D1−D2f
Ad=D2f−D2n
ここで、これらの屈折力を表す単位はディオプトリー(D)であり、面屈折力D1,D2f,D2nのそれぞれの符号は、物体側に凸(眼球側に凹)の場合を+、物体側に凹(眼球側に凸)の場合を−とする。
The fact that a shallow base curve can be obtained by providing a convex surface area in the near portion will be specifically described. In the inner surface progressive addition lens, the object side (outer surface) surface refractive power (base curve) D1, the eyeball side (inner surface) distance portion surface refractive power D2f, the near portion surface refractive power D2n, and the lens prescription power are configured. The following relationship exists between the distance dioptric power S and the addition power Ad.
S = D1-D2f
Ad = D2f-D2n
Here, the unit expressing these refractive powers is diopter (D), and the respective signs of the surface refractive powers D1, D2f, and D2n are + for the case of convex on the object side (concave on the eyeball side), and on the object side. The case of concave (convex to the eyeball side) is set to −.

従来の内面累進屈折力レンズでは、近用部面屈折力D2nは
D2n≧0 (D)
であった。即ち、近用部全体が凹面か一部が平面である。
このため遠用度数が+で高加入度の場合、次の式で示されるように、ベースカーブは遠用度数Sと加入度数Adと近用部面屈折力D2nの和となるため、内面累進屈折力レンズの場合、ベースカーブが外面に累進面をもつレンズ(外面累進レンズ)にくらべ、深くならざるを得なかった。
D1=S+D2f=S+Ad+D2n
その結果、外観上出っ張った感じになり見た目が悪いという問題があった。また中心厚も厚くなるという問題もあった。
In a conventional inner surface progressive-power lens, the near-surface refractive power D2n is D2n ≧ 0 (D)
Met. That is, the entire near portion is concave or part is flat.
For this reason, when the distance power is + and the power is high, the base curve is the sum of the distance power S, the power Add, and the near surface power D2n, as shown by the following formula. In the case of a refractive power lens, the base curve has to be deeper than a lens having a progressive surface on the outer surface (outer surface progressive lens).
D1 = S + D2f = S + Ad + D2n
As a result, there was a problem that the external appearance of the product was projected and the appearance was poor. There is also a problem that the center thickness is also increased.

これに対して、近用部に凸面領域を設けると、近用部面屈折力D2nはマイナスとなり、その結果、物体側(外面)の面屈折力(ベースカーブ)D1を浅くすることができる。   On the other hand, when the convex portion is provided in the near portion, the near portion surface refractive power D2n becomes negative, and as a result, the object side (outer surface) surface refractive power (base curve) D1 can be made shallow.

図2を参照して実際に数字で説明する。図2(a)に本発明の内面累進屈折力レンズ、図2(b)に従来の眼球側の屈折面が全面的に凹面である内面累進屈折力レンズを示す。両レンズは、処方度数の遠用度数Sは3.50D、加入度数Adは2.00Dと共通である。図2(b)に示す従来の内面累進屈折力レンズでは、近用部面屈折力D2nを例えば平面に近い+0.50D(凹面)と設定する。これにより、遠用部面屈折力D2fは加入度数Ad2.00Dを加算して2.50Dとなり、物体側面屈折力(ベースカーブ)D1は、遠用部面屈折力D2fに遠用度数S3.50Dを加算して6.00Dとなり、深いベースカーブとなる。   With reference to FIG. 2, it demonstrates actually with a number. FIG. 2A shows an internal progressive-power lens according to the present invention, and FIG. 2B shows a conventional internal progressive-power lens in which the refractive surface on the eyeball side is entirely concave. Both lenses have the same prescription power of distance use S of 3.50D and addition power Ad of 2.00D. In the conventional inner surface progressive addition lens shown in FIG. 2B, the near portion surface refractive power D2n is set, for example, to +0.50 D (concave surface) close to a plane. Thereby, the distance portion surface refractive power D2f is 2.50D by adding the addition power Ad2.00D, and the object side surface refractive power (base curve) D1 is added to the distance portion surface refractive power D2f and the distance power S3.50D. Is added to 6.00D, resulting in a deep base curve.

図2(a)に示す本発明の内面累進屈折力レンズにおいては、近用部の凸面領域の近用部面屈折力D2nは、物体側に凹となっているため、例えば−1.50D(眼球側に凸)と設定できる。遠用部面屈折力D2fは加入度数Ad2.00Dを加算して0.50Dとなり、物体側面屈折力(ベースカーブ)D1は、遠用部面屈折力D2fに遠用度数S3.50Dを加算して4.00Dとなり、浅いベースカーブとなる。   In the inner surface progressive addition lens of the present invention shown in FIG. 2A, the near-surface refractive power D2n of the near-surface convex surface area is concave on the object side, and thus, for example, -1.50D ( Convex to eyeball side). The distance portion surface power D2f is 0.50D by adding the addition power Ad2.00D, and the object side surface power (base curve) D1 is obtained by adding the distance power S3.50D to the distance portion surface power D2f. 4.00D, a shallow base curve.

このように、本発明の内面累進屈折力レンズは、近用部に凸面領域を設け、ベースカーブを浅くすることができるため、レンズ外観の向上、薄型化が可能となった。ところが、その反面、ベースカーブを浅くすると、非点収差が増加し、眼球側の屈折面全体が凹面の従来の内面累進屈折力レンズと比較して光学性能が劣ることが認められる。また、凹面で構成される眼球側の屈折面に眼球側に凸の凸面領域を設けると、遠用部では加入度分だけ凹になるため、眼球側の屈折面が凹凸の入り交じった複雑な面となり、面形状創成加工、鏡面研磨加工が困難になるという問題点が発生する。   As described above, the inner surface progressive addition lens according to the present invention can be provided with a convex surface region in the near portion and the base curve can be made shallow, so that the lens appearance can be improved and the thickness can be reduced. However, when the base curve is made shallower, astigmatism increases, and it is recognized that the optical performance is inferior compared with a conventional inner surface progressive-power lens in which the entire refractive surface on the eyeball side is concave. In addition, if a convex surface area convex to the eyeball side is provided on the refractive surface on the eyeball side constituted by a concave surface, the distance portion becomes concave by the addition, so that the refractive surface on the eyeball side is complicated with unevenness. There arises a problem that the surface shape creation processing and mirror polishing processing become difficult.

加工が困難になるという問題点に関しては、近年の著しい製造技術の進歩により克服された。また、非点収差が増大するという問題点に関しては、近年のコンピュータの発達により設計技術が向上し、非点収差を補正する非球面の付加が適切にできるようになり、克服されている。   The problem of difficulty in processing has been overcome by recent significant advances in manufacturing technology. Further, the problem of increasing astigmatism has been overcome by the recent development of computers, which has improved the design technology and can appropriately add an aspheric surface to correct astigmatism.

また、光学性能を向上させるために凸面領域の凸の程度について検討した結果、凸面領域における眼球側に凸形状の主経線の最大面屈折力が絶対値で2ディオプトリーを超えないこと、特に、1.5ディオプトリーを超えないことが望ましいことが判明した。凸面領域の凸の程度が大きすぎると、光学性能が劣化し、非球面の付加による非点収差の補正が困難になるおそれがある。また、凸になっている凸面領域での光の反射が強くなり、反射光が煩わしくなる。更に、凸の程度が大きくなると、凸面領域の屈折面が眼球に接近し、睫毛と接触してしまうおそれが生じる。   Further, as a result of examining the degree of convexity of the convex region in order to improve the optical performance, the maximum surface refractive power of the convex main meridian on the eyeball side in the convex region does not exceed 2 diopters in absolute value. It has been found desirable not to exceed 5 diopters. If the degree of convexity in the convex surface area is too large, the optical performance deteriorates, and it may be difficult to correct astigmatism by adding an aspherical surface. Further, the reflection of light at the convex surface area that is convex becomes strong, and the reflected light becomes troublesome. Furthermore, when the degree of convexity increases, the refractive surface of the convex surface area may approach the eyeball and come into contact with the eyelashes.

更に、凸面領域の面積も光学性能に影響があることが判明した。具体的には、玉型加工前の円形のレンズの幾何学中心から半径25mmの内側における凸面領域の占める面積割合は、30%以下、特に20%以下、とりわけ15%以下とすることが望ましい。凸面領域の占める面積割合がこの範囲より広くなると、光学性能が劣化し、非球面の付加による非点収差の補正が困難になるおそれがあると共に、凸面領域での反射が増加し、煩わしくなるおそれがある。   Furthermore, it has been found that the area of the convex area also affects the optical performance. Specifically, it is desirable that the area ratio occupied by the convex surface area within the radius 25 mm from the geometric center of the circular lens before processing the target lens is 30% or less, particularly 20% or less, and particularly 15% or less. If the area ratio occupied by the convex surface area is larger than this range, the optical performance may be deteriorated, and it may be difficult to correct astigmatism by adding an aspheric surface, and reflection on the convex surface area may increase, which may be bothersome. There is.

本発明の内面累進屈折力レンズには、種々の設計のタイプが含まれる。例えば、用途別の設計では、遠用視野と近用視野の両方をバランスよく配置し、累進帯長を10〜16mm程度にして近方視時の目の回旋がし易いように設計されたいわゆる遠近タイプがある。また、1m前後の中間領域から手元までの視野を重視したいわゆる中近タイプ、特に手元での視野を重視したいわゆる近近タイプとがあり、これらの中近タイプや近近タイプでは中間視での広い視野を実現するために累進帯長が19〜25mm程度と長く設計されている。前述した凸面領域の面積割合は、このような中近タイプや近近タイプのように主要部が近用部の場合にも当てはまる。また、歪曲収差と非点収差の分布の設計では、遠用部と近用部を広くし、狭い累進部に収差を集中させた収差集中型と、遠用部と近用部を狭くし、累進部を広くして中間部における収差を拡散させた収差分散型とに大別することができる。本発明はそのようなタイプが異なる設計にも対応可能である。   The internal progressive addition lens of the present invention includes various design types. For example, in the design for each application, both the far vision and the near vision are arranged in a well-balanced manner, and the progressive zone length is set to about 10 to 16 mm so that the eye can be easily rotated during near vision. There is a perspective type. In addition, there are so-called near and near types that emphasize the field of view from the middle region of about 1 m to the hand, especially the so-called near type that emphasizes the field of view at hand. In order to realize a wide field of view, the progressive zone length is designed as long as about 19 to 25 mm. The above-described area ratio of the convex surface area is also applicable to the case where the main part is the near-use part, such as the middle and near type. Also, in the design of distortion and astigmatism distribution, the distance-use and near-use parts are widened, the aberration-concentrated type in which aberrations are concentrated in a narrow progressive part, and the distance-use and near-use parts are narrowed, It can be roughly classified into an aberration dispersion type in which the progressive portion is widened and the aberration in the intermediate portion is diffused. The present invention can accommodate such different types of designs.

なお、従来より、二重焦点レンズとして眼球側の屈折面に小玉を設けたものが知られている。図4に眼球側の屈折面に小玉を設けた二重焦点レンズの一例を示す。図4(a)は正面図、図4(b)は縦方向の断面図である。二重焦点レンズ200は遠用部210と近用部220に区分けされている。一般的に、遠用部210を台玉、近用部220を小玉と呼ぶ。図4に示した二重焦点レンズ200は、小玉220を眼球側屈折面230に貼り付けにより形成したもので、物体側屈折面240は凸面、台玉210の眼球側屈折面230は凹面、小玉220の眼球側屈折面221は眼球側に凸面である。   Conventionally, a bifocal lens is known in which small balls are provided on the refractive surface on the eyeball side. FIG. 4 shows an example of a bifocal lens in which small balls are provided on the refractive surface on the eyeball side. 4A is a front view, and FIG. 4B is a longitudinal sectional view. The bifocal lens 200 is divided into a distance portion 210 and a near portion 220. Generally, the distance portion 210 is referred to as a ball and the near portion 220 is referred to as a small ball. The bifocal lens 200 shown in FIG. 4 is formed by adhering a small ball 220 to an eyeball-side refractive surface 230. The object-side refractive surface 240 is a convex surface, and the eyeball-side refractive surface 230 of the table ball 210 is a concave surface. An eyeball side refractive surface 221 of 220 is convex on the eyeball side.

眼球側の屈折面230に小玉220を設けた二重焦点レンズ200は、本発明の眼球側の屈折面に凸面領域を設けた内面累進屈折力レンズ1と、凹面の眼球側の屈折面の下方に突出面が存在する共通点があるため、外観的に近似している。   The bifocal lens 200 in which the small balls 220 are provided on the refractive surface 230 on the eyeball side includes an inner surface progressive addition lens 1 having a convex surface area on the refractive surface on the eyeball side of the present invention, and a lower refractive surface on the concave eyeball side. Since there is a common point in which there is a protruding surface, it is approximate in appearance.

しかし、二重焦点レンズ200は、台玉210の眼球側の屈折面230と小玉の屈折面221に境界線が形成される。二重焦点レンズ200は、いわゆる境目のある多焦点レンズであり、その境界線で像が不連続となる欠点がある。また、外観的に老眼であることが分かってしまうという問題もある。境目の境界線を滑らかにして分からなくしたシームレスタイプと呼ばれるものもある。しかし、このシームレスタイプは、滑らかにした幅に沿ってぼやけてしまい光学的に使用できなくなってしまう問題を有する。いずれにしても、小玉を有する二重焦点レンズは、遠方と近方の中間距離の物を見るために連続的に変化する屈折力を備えた視野部分である中間部(累進部)を有さず、累進屈折力レンズと全く異なる眼鏡レンズである。   However, in the double focus lens 200, a boundary line is formed between the refractive surface 230 on the eyeball side of the pedestal 210 and the refractive surface 221 of the small ball. The bifocal lens 200 is a so-called multifocal lens with a boundary, and has a drawback that an image becomes discontinuous at the boundary line. There is also a problem that it is known that the appearance is presbyopia. There is also a so-called seamless type in which the boundary line of the boundary is smoothed and not understood. However, this seamless type has a problem that it becomes blurred along the smoothed width and cannot be used optically. In any case, a bifocal lens having a small ball has an intermediate portion (progressive portion) that is a visual field portion having a refractive power that continuously changes in order to see an object at an intermediate distance between far and near. It is a spectacle lens that is completely different from the progressive power lens.

(実施例1)
遠用部面屈折力D2fが1.00D、近用部面屈折力D2nが−1.00D、加入度数Adが2.00D、遠用度数Sが3.50D、物体側の屈折面の屈折力(ベースカーブ)D1が4.50Dで、眼球側の屈折面の近用部に眼球側に凸の凸面領域を有する内面累進屈折力レンズを設計した。レンズ素材の屈折率は1.66であり、以下の実施例及び比較例は全て同じ屈折率のレンズ素材を用いた。この設計では、従来の全面凹面の内面累進屈折力レンズの近用部に単に凸面領域を設け、ベースカーブが浅くなったことによる非点収差の増加を補正することは行わなかった。
Example 1
The distance portion refractive power D2f is 1.00D, the near portion refractive power D2n is -1.00D, the addition power Ad is 2.00D, the distance power S is 3.50D, and the refractive power of the object side refractive surface is (Base curve) An inner surface progressive addition lens having D1 of 4.50D and having a convex region convex toward the eyeball side in the near portion of the refractive surface on the eyeball side was designed. The refractive index of the lens material is 1.66, and the following examples and comparative examples all use a lens material having the same refractive index. In this design, a convex surface area is simply provided in the near portion of the conventional inner surface progressive-power lens having a full concave surface, and the increase in astigmatism due to the shallow base curve is not corrected.

このような設計では、レンズが直径70mmの円形であり、物体側屈折面の幾何学中心と眼球側屈折面の幾何学中心とを結ぶ線を中心線とすると、物体側屈折面の幾何学中心と物体側屈折面の外縁との中心線方向の距離である出っ張りh(図1(b)参照)は4.2mm、中心線間の距離である中心厚t(図1(b)参照)は4.4mmとなった。   In such a design, if the lens is circular with a diameter of 70 mm, and the line connecting the geometric center of the object side refractive surface and the geometric center of the eyeball side refractive surface is a center line, the geometric center of the object side refractive surface is The bulge h (see FIG. 1B), which is the distance in the center line direction between the refracting surface and the outer edge of the object side refractive surface, is 4.2 mm, and the center thickness t (see FIG. 1B), which is the distance between the center lines, is It became 4.4 mm.

この設計の右目用(近用部が輻輳を加味して鼻側へ変位している)の内面累進屈折力レンズの眼球側の屈折面の面屈折力分布を図5に示す。図5には、一点鎖線で示す水平垂直線の交点の幾何学中心から半径25mmの円が示されている。この円の内側における凸面領域の占める面積割合は、21%である。   FIG. 5 shows the surface refractive power distribution of the refractive surface on the eyeball side of the inner surface progressive-power lens for the right eye (the near portion is displaced toward the nose in consideration of convergence) of this design. FIG. 5 shows a circle having a radius of 25 mm from the geometric center of the intersection of the horizontal and vertical lines indicated by the alternate long and short dash line. The area ratio occupied by the convex area inside the circle is 21%.

また、眼球側の屈折面の非点収差分布を図6に示す。さらにこのレンズを装用し遠用部、中間部、近用部のそれぞれの目的距離のものを見たときの眼に作用する実際の非点収差分布(以下、目視収差分布と称す)を図7に、レンズの幾何学中心点を原点とした眼球側の屈折面の座標値を図8にそれぞれ示す。   FIG. 6 shows the astigmatism distribution on the refractive surface on the eyeball side. Further, FIG. 7 shows actual astigmatism distributions (hereinafter referred to as visual aberration distributions) acting on the eyes when the lens is worn and the objects at the target distances of the distance portion, the intermediate portion, and the near portion are viewed. FIG. 8 shows the coordinate values of the refractive surface on the eyeball side with the geometrical center point of the lens as the origin.

(実施例2)
遠用部面屈折力D2fが1.00D、近用部面屈折力D2nが−1.00D、加入度数Adが2.00D、遠用度数Sが3.50D、物体側の屈折面の屈折力(ベースカーブ)D1が4.50Dで、眼球側の屈折面の近用部に眼球側に凸の凸面領域を有する内面累進屈折力レンズを設計した。この設計では、ベースカーブが浅くなったことによる非点収差の増加を補正する非球面を付加する設計を行った。
(Example 2)
The distance portion refractive power D2f is 1.00D, the near portion refractive power D2n is -1.00D, the addition power Ad is 2.00D, the distance power S is 3.50D, and the refractive power of the object side refractive surface is (Base curve) An inner surface progressive addition lens having a convex surface area convex on the eyeball side at the near portion of the refractive surface on the eyeball side with a D1 of 4.50D was designed. In this design, an aspheric surface for correcting an increase in astigmatism due to the shallow base curve was added.

このような設計では、レンズが直径70mmの円形であるとすると、物体側屈折面の幾何学中心と物体側屈折面の外縁との中心線方向の距離の出っ張りhは4.2mm、中心厚tは4.1mmとなった。非球面を付加したことにより、中心厚tが実施例1より0.3mm薄くなった。   In such a design, assuming that the lens is circular with a diameter of 70 mm, the protrusion h in the center line direction between the geometric center of the object side refractive surface and the outer edge of the object side refractive surface is 4.2 mm, and the center thickness t. Was 4.1 mm. By adding an aspherical surface, the center thickness t was 0.3 mm thinner than that of Example 1.

この設計の右目用の内面累進屈折力レンズの眼球側の屈折面の面屈折力分布を図9に示す。図9には、一点鎖線で示す水平垂直線の交点の幾何学中心から半径25mmの円が示されている。この円の内側における凸面領域の占める面積割合は、17%である。また、眼球側の屈折面の非点収差分布を図10に、目視収差分布を図11に、レンズの幾何学中心点を原点とした眼球側の屈折面の座標値を図12にそれぞれ示す。   FIG. 9 shows the surface refractive power distribution of the refractive surface on the eyeball side of the inner surface progressive addition lens for the right eye of this design. FIG. 9 shows a circle having a radius of 25 mm from the geometric center of the intersection of the horizontal and vertical lines indicated by the alternate long and short dash line. The area ratio occupied by the convex area inside the circle is 17%. FIG. 10 shows the astigmatism distribution of the eyeball side refractive surface, FIG. 11 shows the visual aberration distribution, and FIG. 12 shows the coordinate values of the eyeball side refractive surface with the geometric center point of the lens as the origin.

実施例1の眼球側の屈折面の非点収差分布を示す図6と、実施例2の眼球側の屈折面の非点収差分布を示す図10とを比較すると、実施例2では眼球側の屈折面にベースカーブが浅くなったことによる非点収差の増加を補正する非球面を付加しているため、実施例2の方が非点収差が増加している。しかし、実施例1の目視収差を示す図7と実施例2の目視収差を示す図11とを比較すると、実施例2の方が全体の非点収差が良く補正されていることが認められる。   FIG. 6 showing the astigmatism distribution on the refractive surface on the eyeball side in Example 1 is compared with FIG. 10 showing the astigmatism distribution on the refractive surface on the eyeball side in Example 2, and in FIG. Since an aspherical surface that corrects an increase in astigmatism due to a shallow base curve is added to the refracting surface, astigmatism is increased in Example 2. However, comparing FIG. 7 showing the visual aberration of Example 1 with FIG. 11 showing the visual aberration of Example 2, it can be seen that Example 2 has a better correction of the overall astigmatism.

(比較例)
近用部に凸面領域を設けない眼球側の屈折面が全て凹の従来の内面累進屈折力レンズを設計した。遠用部面屈折力D2fが3.00D、近用部面屈折力D2nが1.00D、加入度数Adが2.00D、遠用度数Sが3.50D、物体側の屈折面の屈折力(ベースカーブ)D1が6.50Dである。
(Comparative example)
A conventional inner surface progressive-power lens was designed in which the refractive surface on the eyeball side without any convex surface area in the near portion was all concave. The distance surface power D2f is 3.00D, the near surface power D2n is 1.00D, the addition power Ad is 2.00D, the distance power S is 3.50D, and the refractive power of the object side refractive surface ( Base curve) D1 is 6.50D.

このような設計では、レンズが直径70mmの円形であるとすると、物体側屈折面の幾何学中心と物体側屈折面の外縁との中心線方向の距離の出っ張りhは6.2mm、中心厚tは4.4mmとなった。この比較例の設計では、物体側屈折面の出っ張りhが本発明の実施例1及び2に対し2.0mmも大きい。中心厚tは実施例1のように非点収差を補正するために非球面を付加しない場合とほぼ同じであるが、実施例2のように非球面を付加したものと比較すると0.3mm厚くなった。   In such a design, assuming that the lens is circular with a diameter of 70 mm, the protrusion h in the center line direction between the geometric center of the object side refractive surface and the outer edge of the object side refractive surface is 6.2 mm, and the center thickness t. Was 4.4 mm. In the design of this comparative example, the protrusion h of the object-side refracting surface is 2.0 mm larger than those of Examples 1 and 2 of the present invention. The center thickness t is almost the same as when no aspheric surface is added to correct astigmatism as in the first embodiment, but is 0.3 mm thicker than that when an aspheric surface is added as in the second embodiment. became.

この設計の右目用の内面累進屈折力レンズの眼球側の屈折面の面屈折力分布を図13に、眼球側の屈折面の非点収差分布を図14に、目視収差分布を図15に、レンズの幾何学中心点を原点とした眼球側の屈折面の座標値を図16にそれぞれ示す。   FIG. 13 shows the surface power distribution of the refractive surface on the eyeball side of the inner surface progressive-power lens for the right eye of this design, FIG. 14 shows the astigmatism distribution of the refractive surface on the eyeball side, and FIG. 15 shows the visual aberration distribution. The coordinate values of the refractive surface on the eyeball side with the geometrical center point of the lens as the origin are shown in FIG.

実施例1、実施例2、比較例の処方度数は同一であり、遠用度数Sが3.50D、加入度数Adが2.00Dである。実施例1の目視収差を示す図7と、実施例2の目視収差を示す図11と、比較例の目視収差を示す図15とを比較して説明する。単に凸面領域を設けてベースカーブを浅くしただけの実施例1の図7では、従来の内面累進屈折力レンズの図15と比較して目視収差が大きく劣化している。これに対して、眼球側の屈折面にベースカーブが浅くなったことによる非点収差の増加を補正する非球面を付加している実施例2の図11では、従来の内面累進屈折力レンズの図15と同程度の目視収差を有し、光学性能が大幅に向上していることが認められる。   The prescription powers of Example 1, Example 2, and Comparative Example are the same, the distance power S is 3.50D, and the addition power Ad is 2.00D. FIG. 7 showing the visual aberration of Example 1 is compared with FIG. 11 showing the visual aberration of Example 2, and FIG. 15 showing the visual aberration of the comparative example. In FIG. 7 of Example 1 in which a convex surface region is simply provided and the base curve is shallow, the visual aberration is greatly deteriorated as compared with FIG. 15 of the conventional inner surface progressive addition lens. On the other hand, in FIG. 11 of Example 2 in which an aspherical surface that corrects an increase in astigmatism due to the shallow base curve is added to the refractive surface on the eyeball side, in FIG. It can be seen that the optical performance is significantly improved with the same visual aberration as in FIG.

本発明の累進屈折力レンズは、主として老視を補正するための眼鏡に利用することができる。   The progressive-power lens of the present invention can be used mainly for spectacles for correcting presbyopia.

1:累進屈折力レンズ、2:遠用部、3:近用部、4:中間部、31:凸面領域、11:眼球側屈折面、12:物体側屈折面。   1: progressive power lens, 2: distance portion, 3: near portion, 4: intermediate portion, 31: convex surface region, 11: eyeball side refractive surface, 12: object side refractive surface.

Claims (3)

物体側と眼球側の2つの屈折面を有し、前記眼球側の屈折面が、相対的に遠方を見るための屈折力をもつ遠用部と、相対的に近方を見るための屈折力をもつ近用部と、これらの中間の距離を連続的に見るための屈折力をもつ中間部とを有する累進屈折力レンズにおいて、
前記遠用部の眼球側の屈折面が凹形状を有し、前記近用部の眼球側の屈折面の少なくとも一部において、面の主経線の一方又は両方が凸形状である凸面領域を有することを特徴とする累進屈折力レンズ。
A refracting power having two refractive surfaces on the object side and an eyeball side, the refracting surface on the eyeball side having a refractive power for relatively looking at the far side, and a refractive power for viewing the relatively near side In a progressive-power lens having a near portion having a refractive index and an intermediate portion having a refractive power for continuously seeing an intermediate distance between them,
An eyeball side refracting surface of the distance portion has a concave shape, and at least a part of the eyeball side refracting surface of the near portion has a convex region where one or both of the principal meridians of the surface are convex. A progressive power lens characterized by that.
請求項1に記載の累進屈折力レンズにおいて、
前記凸面領域の主経線の最大面屈折力が絶対値で2ディオプトリーを超えないことを特徴とする累進屈折力レンズ。
The progressive-power lens according to claim 1,
A progressive power lens, wherein the maximum surface refractive power of the principal meridian of the convex surface area does not exceed 2 diopters in absolute value.
請求項1又は2記載の累進屈折力レンズにおいて、
前記累進屈折力レンズの幾何学中心から半径25mmの内側における前記凸面領域の占める面積割合は、30%以下であることを特徴とする累進屈折力レンズ。
The progressive-power lens according to claim 1 or 2,
The progressive-power lens, wherein an area ratio occupied by the convex surface area within a radius of 25 mm from the geometric center of the progressive-power lens is 30% or less.
JP2011005602A 2005-08-22 2011-01-14 Progressive-power lens Withdrawn JP2011070234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011005602A JP2011070234A (en) 2005-08-22 2011-01-14 Progressive-power lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005239407 2005-08-22
JP2011005602A JP2011070234A (en) 2005-08-22 2011-01-14 Progressive-power lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006176275A Division JP4973027B2 (en) 2005-08-22 2006-06-27 Progressive power lens

Publications (2)

Publication Number Publication Date
JP2011070234A true JP2011070234A (en) 2011-04-07
JP2011070234A5 JP2011070234A5 (en) 2011-12-08

Family

ID=44015494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011005602A Withdrawn JP2011070234A (en) 2005-08-22 2011-01-14 Progressive-power lens

Country Status (1)

Country Link
JP (1) JP2011070234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018112633A (en) * 2017-01-10 2018-07-19 伊藤光学工業株式会社 Progressive refractive power lens

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139718A (en) * 1981-02-09 1982-08-28 American Optical Corp Glasses lens with progressive refraction force
JPH06118353A (en) * 1992-10-02 1994-04-28 Kiyoshi Yamaguchi Multi-focus lens
JP2000066148A (en) * 1998-06-12 2000-03-03 Seiko Epson Corp Progressive refracting power lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139718A (en) * 1981-02-09 1982-08-28 American Optical Corp Glasses lens with progressive refraction force
JPH06118353A (en) * 1992-10-02 1994-04-28 Kiyoshi Yamaguchi Multi-focus lens
JP2000066148A (en) * 1998-06-12 2000-03-03 Seiko Epson Corp Progressive refracting power lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018112633A (en) * 2017-01-10 2018-07-19 伊藤光学工業株式会社 Progressive refractive power lens

Similar Documents

Publication Publication Date Title
JP4973027B2 (en) Progressive power lens
US6019470A (en) Progressive multifocal lens and manufacturing method of eyeglass lens and progressive multifocal lens
JP4408112B2 (en) Double-sided aspherical progressive-power lens and design method thereof
EP2881779B1 (en) Method for designing lenses for spectacles, method for manufacturing lenses for spectacles, and program
WO2004074907A1 (en) Progressive refractive power lens
JP3617004B2 (en) Double-sided aspherical progressive-power lens
JP2006350381A (en) Both-sided aspherical varifocal refractive lens and method of designing in
JP4380887B2 (en) Progressive multifocal lens
JPH1078566A (en) Spectacle lens
JP2016026324A (en) Lens for spectacle, spectacle, design method of spectacle lens, and design device
JP2012233959A (en) Spectacle lens, spectacle, method for designing spectacle lens, and design device
WO2013046677A1 (en) Progressive refractive power lens
JP2002372689A (en) Progressive power lens and eyeglass lens
JP2011070234A (en) Progressive-power lens
JP4219148B2 (en) Double-sided aspherical progressive-power lens
JP2002323681A (en) Method of manufacturing progressive multifocal lens
JP4195663B2 (en) Manufacturing method of lens for correcting astigmatism
JP2019174647A (en) Spectacle lenses
JP3582527B1 (en) Progressive power lens and manufacturing method
JP2012083482A (en) Progressive refractive power lens
JP2006350380A (en) Both-sided aspherical varifocal refractive lens and method of designing it
JP2004109813A (en) Progressive multifocal lens and method for designing the same
JP2001318344A (en) Progressive power lens
JP2001027744A (en) Aspherical spectacle lens
JP2004309589A (en) Progressive power lens and its design method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111026

A977 Report on retrieval

Effective date: 20120321

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120327

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20120522

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130201