JP2000063944A - Heat treating method for cold-warm plastic working stock and cold-warm plastic worked article - Google Patents

Heat treating method for cold-warm plastic working stock and cold-warm plastic worked article

Info

Publication number
JP2000063944A
JP2000063944A JP10228806A JP22880698A JP2000063944A JP 2000063944 A JP2000063944 A JP 2000063944A JP 10228806 A JP10228806 A JP 10228806A JP 22880698 A JP22880698 A JP 22880698A JP 2000063944 A JP2000063944 A JP 2000063944A
Authority
JP
Japan
Prior art keywords
cold
warm plastic
plastic working
warm
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10228806A
Other languages
Japanese (ja)
Inventor
Kunichika Kubota
邦親 久保田
Isao Tamura
庸 田村
Takeshi Ichihashi
健 市橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP10228806A priority Critical patent/JP2000063944A/en
Publication of JP2000063944A publication Critical patent/JP2000063944A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an effective means for recovering carbide. cracking caused at the time of cold-warm plastic working for tool steel stocks large in the quantity of carbide in the structure as the objects and to provide cold-warm plastic worked articles excellent in mechanical properties. SOLUTION: In the method for heat-treating cold-warm plastic worked stocks, a tool steel stock contg., by weight, 14.0 to 42.0% (Cr+13C) and moreover a tool steel stock contg. one or more kinds of Mo and W by <=15.0% (Mo+1/2W) and <=5.0% V is subjected to cold or warm plastic working in >=5% upsetting ratio at <=800 deg.C, is thereafter held at 700 to 950 deg.C and is subjected to cooling in which >=1 hr is secured for the time required for cooling in continuous cooling to 600 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、例えば自動車、家
電製品等の駆動系部品といった冷温間塑性加工によって
成形・製造される部品に加え、鍛造等の塑性加工用金型
自体をも含む冷温間塑性加工品およびその製造に供され
る冷温間塑性加工素材の熱処理方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold / warm type including a die itself for plastic working such as forging, in addition to parts formed / manufactured by cold / warm plastic working such as drive system parts of automobiles, home electric appliances and the like. The present invention relates to a plastically worked product and a heat treatment method for cold-warm plastically worked material used for its production.

【0002】[0002]

【従来の技術】従来より、冷間あるいは温間での鍛造や
引き抜き等によって成形・製造される冷温間塑性加工部
品は、比較的組織中の炭化物が少ない低合金を含む構造
用鋼系から成るものが主体であった。しかし、例えばエ
ンジン、エンジン周辺部に用いられる冷温間塑性加工部
品の場合、近年の環境問題の高まりと共に、高耐熱化、
高耐摩耗化の要求が高まってきつつあることから、構造
用鋼から耐摩耗性の高い工具鋼へその素材の転換が始ま
っている。これに係る技術としては、例えば、従来では
不可能とされていたJIS SKD11の冷間鍛造を工
業的に初めて可能にした技術報告等が発表されている。
2. Description of the Related Art Conventionally, cold-warm plastically worked parts which are formed and manufactured by cold or warm forging, drawing, etc., are made of structural steel containing a low alloy containing a relatively small amount of carbide in the structure. Things were the main subjects. However, for example, in the case of cold-warm plastically processed parts used in the engine and the engine peripheral part, with the recent increase in environmental problems, high heat resistance,
As the demand for high wear resistance is increasing, the material conversion from structural steel to tool steel with high wear resistance has begun. As a technique related to this, for example, a technical report has been announced that enables cold forging of JIS SKD11, which has been impossible in the past, for the first time industrially.

【0003】また、近年の部品加工業界では、世界のグ
ローバル化の波をうけ、国際コストに見合うことを目的
とした、生き残りをかけたコスト低減化が推し進められ
ている。コスト低減の課題で重要なのが“切削加工”か
ら鍛造や引き抜きといった“塑性加工”への転換であ
り、更には、その塑性加工に使用される金型自体の製造
においても、その素材となる工具鋼の切削・放電加工を
鍛造加工化する試みが検討され始めている。このよう
に、冷温間塑性加工品に供される素材が構造用鋼から工
具鋼へ転換され、更には、金型の製造手段が切削加工か
ら塑性加工へと転換される検討が行われている現在、工
具鋼、特に組織中の炭化物量が多い高合金の工具鋼の冷
温間塑性加工による加工技術の向上は、ますます重要な
課題になってきている。
In recent years, in the parts processing industry, in response to the globalization of the world, cost reduction for survival has been promoted in order to meet international costs. An important issue in cost reduction is the conversion from "cutting" to "plastic forming" such as forging and drawing, and also the tool used as the material in the manufacture of the mold itself used for plastic forming. Attempts to convert steel cutting and electrical discharge machining into forging have begun to be studied. In this way, it is considered that the material used for cold and warm plastic working products will be changed from structural steel to tool steel, and that the die manufacturing means will be changed from cutting to plastic working. At present, it is becoming an increasingly important task to improve the processing technology of tool steel, especially high-alloy tool steel having a large amount of carbide in the structure, by cold-warm plastic working.

【0004】[0004]

【発明が解決しようとする課題】上述のごとく、冷温間
塑性加工品の製造に係る工具鋼の冷間あるいは温間塑性
加工技術の向上は、部品の特性向上やコスト低減の上で
重要な課題である。しかし、切削加工から塑性加工への
転換に関し、強度的には構造用鋼レベルで言われていた
鍛流線(ファイバーフロー)形成による疲労強度の向上
のメリットが、組織中の炭化物量が多い高合金の工具鋼
では享受できないという事情がある。夏目らの「日本機
械学会 材料力学講演会講演論文集’90 P.32
3」の報告によると、合金工具鋼に冷間塑性加工を行う
と、鋼中に内在する炭化物が冷間塑性加工で割れて、疲
労強度のバラツキが多くなることが指摘されている。こ
のことは、上記自動車エンジン周辺部部品、金型では致
命的な弱点となるため、高加工率で材料強度が求められ
るアイテムに、高合金の工具鋼がなかなか普及していな
いのが現状である。
As described above, the improvement of cold or warm plastic working technology of tool steel for manufacturing cold-warm plastic worked products is an important subject for improving the characteristics of parts and reducing costs. Is. However, regarding the change from cutting to plastic working, the advantage of improving fatigue strength by forming grain flows (fiber flow), which was said at the structural steel level in terms of strength, is that the amount of carbides in the structure is high. There is a circumstance that alloy tool steel cannot be used. Natsume et al. "Proceedings of the Japan Society of Mechanical Engineers, Material Mechanics Conference '90 P. 32.
3 ”, it is pointed out that when cold plastic working is performed on the alloy tool steel, carbides existing in the steel are cracked by the cold plastic working, and variations in fatigue strength increase. This is a fatal weak point in the above-mentioned automobile engine peripheral parts and molds, so that the current situation is that high-alloy tool steels have not been widely used in items requiring high workability and material strength. .

【0005】そこで、本発明は、組織中の炭化物量が多
い工具鋼素材を対象として、その冷温間塑性加工の際に
生じる炭化物割れの有効な修復手段を提供し、機械的特
性に優れた冷温間塑性加工品を提供することを目的とす
る。
Therefore, the present invention is intended for a tool steel material having a large amount of carbides in the structure, provides an effective means for repairing carbide cracks generated during cold-warm plastic working, and has a cold temperature excellent in mechanical properties. The object is to provide an inter-plastic processed product.

【0006】[0006]

【課題を解決するための手段】本発明者は、冷間あるい
は温間塑性加工で発生する炭化物の割れにより形成され
た空隙を修復する手法を検討したところ、複数回の冷温
間塑性加工の合間に入る熱処理を含む冷温間塑性加工後
の熱処理条件を最適に調整することが、炭化物割れの少
ない冷温間塑性加工品を低コストにて得るに有効な手段
であることを見出した。
Means for Solving the Problems The present inventor has studied a method of repairing voids formed by cracking of carbides generated in cold or warm plastic working, and found that the cold warm plastic working was repeated several times. It has been found that optimally adjusting the heat treatment conditions after the cold-warm plastic working including the heat treatment to be performed is an effective means for obtaining a cold-warm plastic worked product with few carbide cracks at low cost.

【0007】すなわち、本発明は、重量%で、(Cr+
13C):14.0〜42.0%を含有する工具鋼素
材、更には、MoおよびWの1種以上を(Mo+1/2
W):15.0%以下、V:5.0%以下を含有する工
具鋼素材に、800℃以下で据え込み率が5%以上の冷
間あるいは温間塑性加工を行った後、700〜950℃
に保持し、600℃までの連続冷却の冷却所用時間を1
時間以上確保する連続冷却を行う熱処理方法にて、炭化
物割れの少ない冷温間塑性加工品を提供するものであ
る。本発明の熱処理方法であれば、600℃までの連続
冷却の冷却所用時間を長くとも10時間確保すること
で、優れた機械的特性を得るに充分な炭化物割れの修復
が可能である。
That is, according to the present invention, the content of (Cr +
13C): Tool steel material containing 14.0 to 42.0%, and one or more of Mo and W (Mo + 1/2).
W): A tool steel material containing 15.0% or less and V: 5.0% or less is subjected to cold or warm plastic working with an upsetting ratio of 5% or more at 800 ° C or less, and then 700 to 950 ° C
The time required for continuous cooling up to 600 ° C is maintained at 1
It is intended to provide a cold-warm plastically worked product having few carbide cracks by a heat treatment method of continuously cooling for securing time or more. According to the heat treatment method of the present invention, it is possible to repair carbide cracks sufficient to obtain excellent mechanical properties by securing a cooling time for continuous cooling up to 600 ° C. for at most 10 hours.

【0008】また、本発明の方法は、複数の冷温間塑性
加工にもその適用が可能である。すなわち、複数の冷温
間塑性加工の合間に所定の熱処理を行うものであり、上
記した本発明の冷間あるいは温間塑性加工から冷却まで
の処理を2回以上繰り返す方法である。そのうち、繰り
返される冷却の少なくとも1回は、その600℃までの
連続冷却の冷却所用時間を長くても10時間確保すれ
ば、優れた機械的特性を得るに充分な炭化物割れの修復
が可能である。
The method of the present invention can also be applied to a plurality of cold and warm plastic workings. That is, a predetermined heat treatment is carried out between a plurality of cold-warm plastic workings, and the above-mentioned cold or warm plastic workings to cooling is repeated twice or more. Among them, if at least one time of repeated cooling, the cooling time for continuous cooling up to 600 ° C. is secured for at least 10 hours, it is possible to repair carbide cracks sufficient to obtain excellent mechanical properties. .

【0009】本発明の方法であれば、組織中に存在する
炭化物割れによって形成される空隙が面積率で2%以
下、あるいは、組織中に存在する最大長さが5μm以上
の炭化物の割れによる空隙形成率が30%以下の冷温間
塑性加工品が提供できる。
According to the method of the present invention, the voids formed by the cracking of carbides existing in the structure have an area ratio of 2% or less, or the voids caused by the cracking of carbides having a maximum length of 5 μm or more existing in the structure. A cold-warm plastically worked product having a forming rate of 30% or less can be provided.

【0010】[0010]

【発明の実施の形態】本発明の最大の特徴は、組織中の
炭化物が多い工具鋼よりなる冷温間塑性加工品におい
て、その従来よりの達成が難しかった組織中の炭化物割
れを抑制すべく具体的な解決手段を見いだし、機械的特
性に優れた冷温間塑性加工品を達成したところにある。
BEST MODE FOR CARRYING OUT THE INVENTION The most important feature of the present invention is that in a cold-warm plastically worked product made of a tool steel containing a large amount of carbide in the structure, it is necessary to suppress carbide cracking in the structure, which was difficult to achieve in the past. We have found a solution to this problem, and achieved a cold-warm plastically processed product with excellent mechanical properties.

【0011】まず、本発明者は、本発明の効果を得るに
好ましい対象素材として、重量%で、(Cr+13
C):14.0〜42.0%を含有する工具鋼素材、更
には、MoおよびWの1種以上を(Mo+1/2W):
15.0%以下、V:5.0%以下を含有する工具鋼素
材を選定した。つまり、本発明の“炭化物割れの修復効
果”は、組織中に炭化物が多く存在する上記の工具鋼に
て顕著に達成されるものであって、特に最大長さで5μ
m以上の炭化物を含有する工具鋼においてその手段の有
効性がより明確になるものである。言い換えれば、炭化
物の少ない低合金鋼に本発明を行っても、通常の焼きな
まし程度の効果しか得られない。また、本発明の対象と
する工具鋼素材は、その素材の溶製工程や使用用途に応
じて様々な特性を付与させるべく、上記に加えて、S
i,Mn,Ni,Co,Nb,Tiの少なくとも1種以
上を含有してもよく、これは、本発明の効果に支障をき
たすものではない。
First, the inventor of the present invention prefers to obtain the effects of the present invention by using (Cr + 13
C): Tool steel material containing 14.0 to 42.0%, and one or more of Mo and W (Mo + 1 / 2W):
A tool steel material containing 15.0% or less and V: 5.0% or less was selected. That is, the "carbide crack repair effect" of the present invention is remarkably achieved in the above tool steel in which a large amount of carbide is present in the structure, and particularly, the maximum length is 5 μm.
In tool steel containing carbides of m or more, the effectiveness of the means becomes clearer. In other words, even if the present invention is applied to a low-alloy steel having a small amount of carbide, only the effect of ordinary annealing can be obtained. In addition to the above, the tool steel material to which the present invention is applied is S in addition to the above in order to impart various characteristics depending on the melting process and use of the material.
At least one of i, Mn, Ni, Co, Nb, and Ti may be contained, and this does not hinder the effects of the present invention.

【0012】そして、本発明者は、上記の工具鋼素材に
て、冷間あるいは温間塑性加工で発生する炭化物の割れ
により形成された空隙を修復する手法を熱処理で解決す
ることに想到し、冷温間塑性加工後の熱処理条件を適確
に調整することが、低コストにて機械的特性に優れた冷
温間塑性加工品を得るに有効な手段であることに到達し
たのである。
Then, the present inventor has conceived to solve by heat treatment a method of repairing voids formed by cracking of carbide generated in cold or warm plastic working in the above tool steel material, The inventors have reached the point that appropriately adjusting the heat treatment conditions after cold-warm plastic working is an effective means for obtaining a cold-warm plastic worked product having excellent mechanical properties at low cost.

【0013】すなわち、冷温間塑性加工後の熱処理にて
炭化物割れの空隙に金属相を流入させるべく、実験や各
種シミュレーションの実施を行って種々検討した。そし
て、なるべく低温域で上記の効果を得ることをも検討し
た結果、低応力でも金属の塑性流動が起こる現象、すな
わち、クリープ現象が発現する温度領域下で本発明の目
的達成に到達できることを確認した。熱処理時のクリー
プ現象を速やかに起こすために必要な基本的要件は、 (1)変形抵抗が低い (2)クリープの駆動力となる応力が高い (3)置換型元素が拡散しやすい 条件である。
That is, various tests were conducted by conducting experiments and various simulations so that the metal phase could flow into the voids of the carbide cracks in the heat treatment after the cold-warm plastic working. Then, as a result of studying to obtain the above effect in a temperature range as low as possible, it was confirmed that the object of the present invention can be achieved in a temperature range where a metal plastic flow occurs even at a low stress, that is, a creep phenomenon occurs. did. The basic requirements necessary for the rapid occurrence of the creep phenomenon during heat treatment are (1) low deformation resistance (2) high creep driving force stress (3) conditions under which substitutional elements are likely to diffuse .

【0014】上記の条件のうち、(1)は熱処理温度を
上げれば上げる程よい一方、条件(2)に見合った応力
を発生させるためには変態が必要となり、A変態点を
利用することになる。条件(3)は単一相では一般に温
度を上げれば上げる程、拡散速度が速くなるが、同一温
度の場合、オーステナイトよりも、フェライトのほうが
拡散速度が早くなるため、やはりA点近傍部を利用す
ることとなる。ただし、クリープ現象は、時間を保持し
ても顕著になる傾向があるため、冷却時間の制御も重要
である。以下、これらの条件を鑑みて、本発明の塑性加
工および熱処理条件について述べる。
Among the above conditions, (1) is better as the heat treatment temperature is raised, while transformation is required to generate stress commensurate with the condition (2), and the A 1 transformation point is used. Become. Condition (3) is higher the general temperature in a single phase, but the diffusion rate is increased, if the same temperature, than the austenite, since the more the ferrite diffusion rate faster, the still A 1 point vicinity It will be used. However, since the creep phenomenon tends to become remarkable even if the time is maintained, it is important to control the cooling time. The plastic working and heat treatment conditions of the present invention will be described below in view of these conditions.

【0015】まず、本発明では、所定の工具鋼素材に行
われる冷温間塑性加工温度を800℃以下に限定した。
従来よりスチールメーカーで行われている熱間塑性加工
では、炭化物割れの空隙に能率良く金属相が流入するこ
とは良く知られた現象である。つまり、元より塑性加工
中に空隙を解消する熱間塑性加工に対して、塑性加工後
に生じる炭化物割れの修復を目的とする本発明は、炭化
物割れの空隙に金属相が流入し難い800℃以下の“冷
温間塑性加工”を施される工具鋼素材にこそその効果を
発揮するのである。
First, in the present invention, the cold-warm plastic working temperature performed on a predetermined tool steel material is limited to 800 ° C. or lower.
It is a well-known phenomenon that in the hot plastic working conventionally performed by steel makers, the metal phase efficiently flows into the voids of carbide cracks. That is, according to the present invention, which is intended to repair carbide cracks that occur after plastic working, as opposed to hot plastic working that originally eliminates voids during plastic working, the metal phase is less likely to flow into the voids of carbide cracks at 800 ° C. or less. The effect is demonstrated by the tool steel material that is subjected to "cold warm plastic working".

【0016】次に、本発明では、所定の工具鋼素材に行
われる冷温間塑性加工の据え込み率を5%以上に限定し
た。据え込み率が5%未満では炭化物割れの発生が少な
いため、本発明の熱処理を実施してもほとんど効果は認
められない。つまり、塑性加工後に生じる炭化物割れの
修復を目的とする本発明は、冷温間塑性加工の据え込み
率を5%以上とすることでその効果を発揮するのであっ
て、5%以上の据え込み率による冷温間塑性加工を経て
得られる冷温間塑性加工品について、疲労強度のバラツ
キが少ないという効果を達成するものである。なお、本
発明の据え込み率は以下のように定義している。ここ
で、Sは冷温間塑性加工前の断面積、Seは冷温間塑
性加工後の断面積、eは据え込み率(%)である。
Next, in the present invention, the upsetting rate of cold-warm plastic working performed on a predetermined tool steel material is limited to 5% or more. If the upsetting ratio is less than 5%, the occurrence of carbide cracking is small, and therefore, even if the heat treatment of the present invention is carried out, almost no effect is recognized. That is, the present invention, which aims at repairing carbide cracks generated after plastic working, exerts its effect by setting the upsetting rate of cold-warm plastic working to 5% or more, and the upsetting rate of 5% or more. With regard to the cold-warm plastically worked product obtained through the cold-warm plastic working, the effect that the variation in fatigue strength is small is achieved. The upsetting ratio of the present invention is defined as follows. Here, S 0 is the cross-sectional area before cold-warm plastic working, Se is the cross-sectional area after cold-warm plastic working, and e is the upsetting rate (%).

【0017】[0017]

【数1】 [Equation 1]

【0018】そして、本発明において重要となるのが冷
温間塑性加工後の熱処理条件である。本発明では、冷温
間塑性加工後の熱処理に係り、その保持温度を700℃
〜950℃とした。つまり、本発明は、上述した変態が
生じクリープ効果が認められる温度として700℃以
上、好ましくは760℃以上を設定し、950℃以下と
したのは、保持温度が950℃を越えると実質的な冷却
速度が大きくなり、クリープ変形を起こさせるに充分な
時間が確保できないためである。
What is important in the present invention is the heat treatment condition after cold and warm plastic working. The present invention relates to the heat treatment after cold and warm plastic working, and the holding temperature is 700 ° C.
It was set to 950 ° C. That is, in the present invention, the temperature at which the above-mentioned transformation occurs and the creep effect is recognized is set to 700 ° C. or higher, preferably 760 ° C. or higher, and set to 950 ° C. or lower, when the holding temperature exceeds 950 ° C. This is because the cooling rate becomes high and sufficient time cannot be secured to cause creep deformation.

【0019】そして、本発明は、上記の保持温度より6
00℃までの連続冷却の冷却所用時間を1時間以上確保
する冷却を行うものである。まず、600℃までの冷却
を連続的に行うのは、変態で発生した応力が再結晶で緩
和されてしまうのを防ぎ、逐次、変態応力を発生させる
ためである。そして、その連続冷却の下限温度を600
℃としたのは、それ未満ではクリープ現象を引き起こす
基本メカニズムである“置換型元素の拡散”がほとんど
起こらないためである。
According to the present invention, the above holding temperature is 6
The cooling is performed so that the time required for continuous cooling up to 00 ° C. is 1 hour or more. First, the reason why cooling to 600 ° C. is continuously performed is to prevent the stress generated by the transformation from being relaxed by recrystallization and to generate the transformation stress successively. Then, the lower limit temperature of the continuous cooling is 600
The reason why the temperature is set to ° C is that "diffusion of substitutional element", which is a basic mechanism causing the creep phenomenon, hardly occurs below that.

【0020】また、連続冷却に要する時間を確保するこ
とは、時間依存性の大きいクリープ現象を利用する本発
明にとって重要であり、本発明の効果を得る上で1時間
以上とした。この場合、600℃までの連続冷却の冷却
所用時間を長くとも10時間確保することで、優れた機
械的特性を得るに充分な炭化物割れの修復が可能であ
る。
Securing the time required for continuous cooling is important for the present invention utilizing the creep phenomenon, which has a large time dependence, and is set to 1 hour or more in order to obtain the effect of the present invention. In this case, by ensuring the cooling time for continuous cooling up to 600 ° C. for at least 10 hours, it is possible to repair carbide cracks sufficient to obtain excellent mechanical properties.

【0021】また、上述した本発明の方法は、複数の冷
温間塑性加工にもその適用が可能であることは、先述の
通りであり、つまり、本発明の冷間あるいは温間塑性加
工から冷却までの処理を2回以上繰り返す方法である。
そのうち、繰り返される冷却の少なくとも1回は、その
600℃までの連続冷却の冷却所用時間を長くても10
時間確保すれば、優れた機械的特性を得るに充分な炭化
物割れの修復が可能である。
As described above, the above-described method of the present invention can be applied to a plurality of cold / warm plastic workings, that is, from the cold or warm plastic workings of the present invention. This is a method in which the processing up to is repeated twice or more.
At least one of the repeated coolings requires at least 10 hours of continuous cooling up to 600 ° C.
If sufficient time is secured, it is possible to repair carbide cracks sufficient to obtain excellent mechanical properties.

【0022】以上であれば、組織中に存在する炭化物割
れによって形成される空隙が、面積率で2%以下といっ
た冷温間塑性加工品、あるいは、組織中に存在する最大
長さが5μm以上の炭化物の割れによる空隙形成率が3
0%以下といった冷温間塑性加工品の達成が可能であ
り、優れた機械的特性の達成が可能となる。
According to the above conditions, the voids formed by the cracking of carbides existing in the structure have a cold-warm plastic processed product having an area ratio of 2% or less, or carbides having a maximum length of 5 μm or more existing in the structure. The void formation rate due to cracking is 3
It is possible to achieve a cold-warm plastically worked product of 0% or less, and it is possible to achieve excellent mechanical properties.

【0023】[0023]

【実施例】(実施例1)まず、冷温間の塑性加工にて炭
化物の割れが発生しやすい試料No.1〜4の工具鋼を
表1のごとく選定し、各々、室温から累積で50%の冷
間引き抜きを行った。
EXAMPLES (Example 1) First, sample No. 3 where carbide cracks are likely to occur during cold and hot plastic working. The tool steels 1 to 4 were selected as shown in Table 1, and 50% of them were cumulatively cold drawn from room temperature.

【0024】[0024]

【表1】 [Table 1]

【0025】次に、これら冷間引き抜きを行った工具鋼
試料に対し、850℃×1h保持後、“600℃まで5
00℃/hで冷却した(つまり、所用時間30分)後、
空冷するA処理”、“600℃まで250℃/hで冷却
した(つまり、所用時間1時間)後、空冷するB処
理”、そして、“600℃まで25℃/hで冷却した
(所用時間10時間)後、空冷するC処理”を行った
(図1にヒートパターンを示す)。以上の処理を行った
冷間引き抜き加工品について、素材中心部における熱処
理前後の空隙形成率と、その差である空隙減少率を調べ
た。表2は、その空隙減少率と熱処理後の空隙形成率を
表示したものである。
Next, the tool steel samples subjected to the cold drawing were held at 850 ° C. for 1 hour, and then “up to 600 ° C. for 5 hours”.
After cooling at 00 ° C / h (that is, the required time is 30 minutes),
Air-treatment A, “cooling to 600 ° C. at 250 ° C./h (that is, the required time is 1 hour), then air-cooling B treatment”, and cooling to 600 ° C. at 25 ° C./h (the required time 10 After that, the air-cooled C treatment was performed (the heat pattern is shown in FIG. 1). With respect to the cold drawn product subjected to the above treatment, the void formation ratio before and after the heat treatment in the center of the material and the difference A certain void reduction rate was investigated, and Table 2 shows the void reduction rate and the void formation rate after heat treatment.

【0026】[0026]

【表2】 [Table 2]

【0027】空隙形成率の測定方法は以下の通りであ
る。任意の視野を400倍の光学顕微鏡で観察し、視野
内に確認できる最大長さ5μm以上の炭化物数および、
最大長さ5μm以上の炭化物のうち、割れて空隙がある
炭化物数をそれぞれカウントする。そして、更に任意視
野に変え、同様に最大長さ5μm以上の炭化物数と空隙
形成炭化物数を積算して数えていく。このカウント数が
100に到達したところで測定をやめ、(最大長さ5μ
m以上の炭化物の空隙形成炭化物数)/(最大長さ5μ
m以上の炭化物数)×100より空隙形成率を算出し
た。そして、(熱処理前の空隙形成率)−(熱処理後の
空隙形成率)が空隙減少率である。
The method for measuring the void formation rate is as follows. Observing an arbitrary visual field with a 400x optical microscope, the number of carbides with a maximum length of 5 μm or more that can be confirmed in the visual field, and
Among the carbides having a maximum length of 5 μm or more, the number of carbides having cracks and voids is counted. Then, the number of carbides having a maximum length of 5 μm or more and the number of void-forming carbides are integrated and counted in the same manner while changing to an arbitrary visual field. When the count reaches 100, the measurement is stopped and the maximum length is 5μ.
Number of carbides forming voids of m or more) / (maximum length 5μ
The void formation rate was calculated from (the number of carbides of m or more) × 100. Then, (void formation rate before heat treatment)-(void formation rate after heat treatment) is the void reduction rate.

【0028】表2より、本発明の対象工具鋼である試料
No.1〜4については、本発明を満たす熱処理条件で
あるB,C処理にて空隙の減少効果が達成されており、
その熱処理後の空隙形成率も30%以下であることか
ら、対象鋼種と熱処理条件が同時に本発明を満たす場合
に、本発明の効果が発揮される。一方、本発明の成分規
定外である試料No.5(SKD61)においては、本
発明の空隙減少効果が生じていないことが分かる。図2
は、試料No.1(SKD11)のC処理前後のミクロ
組織写真であり、本発明の熱処理後の組織中に形成され
る空隙が面積%にて2%以下であると同時に、空隙の減
少している様子がわかる。
From Table 2, sample No. which is the object tool steel of the present invention. Regarding 1 to 4, the effect of reducing voids is achieved by the B and C treatments which are the heat treatment conditions satisfying the present invention.
Since the void formation rate after the heat treatment is also 30% or less, the effect of the present invention is exhibited when the target steel type and the heat treatment conditions simultaneously satisfy the present invention. On the other hand, sample No. which is out of the compositional regulation of the present invention. 5 (SKD61) does not show the void reduction effect of the present invention. Figure 2
Is the sample No. 1 is a microstructure photograph before and after C treatment of 1 (SKD11), showing that the voids formed in the texture after heat treatment of the present invention are 2% or less in area% and at the same time the voids are reduced. .

【0029】(実施例2)実施例1で用いたSKD11
の素材を用い、室温から累積50%の冷間引き抜きを行
った。次に、これら冷間引き抜きを行った各試料を66
0〜1000℃までの各保持温度で1時間保持した後、
600℃までの連続冷却が1時間になるように冷却速度
をコントロールした。その後の冷却は空冷を行い、特別
な冷却管理はしていない。表3は、各冷却条件による熱
処理前後での空隙減少率を示したものである。
(Example 2) SKD11 used in Example 1
Using the above material, a cumulative 50% cold drawing was performed from room temperature. Next, each of the cold-drawn samples was
After holding for 1 hour at each holding temperature from 0 to 1000 ° C,
The cooling rate was controlled so that continuous cooling up to 600 ° C. took 1 hour. Subsequent cooling is performed by air cooling, and no special cooling management is performed. Table 3 shows the void reduction rate before and after the heat treatment under each cooling condition.

【0030】[0030]

【表3】 [Table 3]

【0031】本発明の保持温度である700℃から95
0℃であれば、空隙の減少が認められる一方、本発明の
保持温度を満たさない場合、本発明の空隙減少効果が生
じていないことが分かる。また、保持温度が760℃か
ら950℃であれば、より良好な空隙減少効果の達成が
可能である。
The holding temperature of the present invention is from 700 ° C. to 95
It can be seen that when the temperature is 0 ° C., the reduction of voids is recognized, whereas when the holding temperature of the present invention is not satisfied, the void reducing effect of the present invention does not occur. Further, if the holding temperature is 760 ° C to 950 ° C, a better void reduction effect can be achieved.

【0032】次に、各熱処理を行ったそれぞれの試料を
冷間加工後、粗加工を行い、焼入れ1020℃×1時
間、焼戻し520℃×2時間を2回行った後、仕上げ加
工を行って疲労試験片形状とした。試験片形状は平行部
直径7mmφ、平行部長さ30mmであり、小野式回転
曲げ疲労試験を行った。疲労強度のバラツキの評価はJ
SME S002−1981にあるステアーケース法を
用いて行った。ステップ応力は50MPaでJSME規
定試験片本数6本の倍の試験片本数12本で行った。こ
の材料の10の7乗回疲労強度は一般的に非冷間塑性加
工材で700MPaであるので、出発応力振幅を700
MPaにし、10の7乗回未満で破断したら50MPa
低くした試験を行い、10の7乗回寿命が持ったら50
MPa上げていく方法を行った。この12本で得られた
応力振幅の標準偏差を疲労強度幅とした。
Next, each of the heat-treated samples was cold-worked, then rough-worked, quenched 1020 ° C. × 1 hour and tempered 520 ° C. × 2 hours twice, and then finished. The fatigue test piece shape was adopted. The test piece had a parallel part diameter of 7 mmφ and a parallel part length of 30 mm, and an Ono-type rotary bending fatigue test was performed. Evaluation of variation in fatigue strength is J
This was done using the Staircase method in SME S002-1981. The step stress was 50 MPa, and the number of test pieces was 12 times, which was twice the number of JSME specified test pieces. Since the 10 7th power fatigue strength of this material is generally 700 MPa for a non-cold plastic work material, the starting stress amplitude is 700
Set to MPa and rupture less than 10 7 times 50 MPa
If the life is 10 7 times, the lowering test is performed, then 50
The method of increasing the MPa was performed. The fatigue strength width was defined as the standard deviation of the stress amplitude obtained from the 12 pieces.

【0033】その結果も表3に併せて示しているが、本
発明の保持時間を適用しているものは、本発明の保持時
間を適用しないものに比して、疲労強度のバラツキ幅が
半分〜1/3に低下している。この材料の10の7乗回
疲労強度の標準偏差を非冷間塑性加工材として測定する
と53MPaであったので、800、850℃の保持時
間を適用した熱処理材の疲労強度のバラツキと比較する
と、非冷間塑性加工材とほぼ同等な疲労特性に改善され
ていることが分かる。
The results are also shown in Table 3. The variation of the fatigue strength is half when the retention time of the present invention is applied as compared with when the retention time of the present invention is not applied. It has fallen to ⅓. When the standard deviation of 10 7th power fatigue strength of this material was measured as a non-cold plastic working material, it was 53 MPa. Therefore, comparing with the variation in fatigue strength of the heat treated material to which the holding time of 800 and 850 ° C. was applied, It can be seen that the fatigue properties are improved to be almost the same as those of the non-cold plastically worked material.

【0034】[0034]

【発明の効果】本発明によれば、組織中の炭化物が多い
工具鋼の冷・温間塑性加工で生じた炭化物割れに起因す
る機械的特性のバラツキを、低コストにて解消すること
ができ、冷温間塑性加工品の品質を切削・放電加工品と
同等にすることができる。また、本発明の熱処理は、比
較的低温であるので熱的な変形・表面の変質が少なく、
冷温間塑性加工工程中に容易に挿入できるプロセスであ
る。
EFFECTS OF THE INVENTION According to the present invention, variations in mechanical properties due to carbide cracking caused by cold and warm plastic working of a tool steel containing a large amount of carbide in the structure can be eliminated at low cost. The quality of cold and warm plastic processed products can be made equal to that of cut and electrical discharge processed products. Further, since the heat treatment of the present invention is at a relatively low temperature, there is little thermal deformation and surface alteration,
It is a process that can be easily inserted during the cold-warm plastic working process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明および比較例のヒートパターンの一例を
示す図である。
FIG. 1 is a diagram showing an example of heat patterns of the present invention and a comparative example.

【図2】本発明の炭化物の一例を示す金属ミクロ組織写
真である。
FIG. 2 is a metal microstructure photograph showing an example of the carbide of the present invention.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K032 AA06 AA07 AA09 AA12 AA13 AA16 AA19 AA20 AA31 AA36 AA37 BA02 CG01 CH04 CH05 CJ01    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4K032 AA06 AA07 AA09 AA12 AA13                       AA16 AA19 AA20 AA31 AA36                       AA37 BA02 CG01 CH04 CH05                       CJ01

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、(Cr+13C):14.0
〜42.0%を含有する工具鋼素材に、800℃以下で
据え込み率が5%以上の冷間あるいは温間塑性加工を行
った後、700〜950℃に保持し、600℃までの連
続冷却の冷却所用時間を1時間以上確保する冷却を行う
ことを特徴とする冷温間塑性加工素材の熱処理方法。
1. In weight%, (Cr + 13C): 14.0
Tool steel material containing ~ 42.0%, cold or warm plastic working with an upset rate of 5% or more at 800 ° C or less, then held at 700 to 950 ° C and continuously up to 600 ° C. A method for heat treating a cold-warm plastic working material, which comprises performing cooling so as to secure a cooling time for one hour or more.
【請求項2】 600℃までの連続冷却の冷却所用時間
が1時間以上10時間以下であることを特徴とする請求
項1に記載の冷温間塑性加工素材の熱処理方法。
2. The heat treatment method for cold / warm plastic working material according to claim 1, wherein the cooling time for continuous cooling up to 600 ° C. is 1 hour or more and 10 hours or less.
【請求項3】 請求項1に記載の冷間あるいは温間塑性
加工から冷却までの処理を2回以上繰り返して行うこと
を特徴とする請求項1に記載の冷温間塑性加工素材の熱
処理方法。
3. The heat treatment method for cold / warm plastic working material according to claim 1, wherein the processing from cold or warm plastic working to cooling according to claim 1 is repeated twice or more.
【請求項4】 繰り返される冷却の少なくとも1回は、
その600℃までの連続冷却の冷却所用時間が1時間以
上10時間以下であることを特徴とする請求項3に記載
の冷温間塑性加工素材の熱処理方法。
4. At least one of the repeated coolings,
The heat treatment method for cold and warm plastic working material according to claim 3, wherein the cooling time for continuous cooling up to 600 ° C is 1 hour or more and 10 hours or less.
【請求項5】 重量%で、MoおよびWの1種以上を
(Mo+1/2W):15.0%以下、V:5.0%以
下を含有する工具鋼素材であることを特徴とする請求項
1ないし4に記載の冷温間塑性加工素材の熱処理方法。
5. A tool steel material containing at least one of Mo and W (Mo + 1 / 2W): 15.0% or less and V: 5.0% or less by weight. Item 5. A heat treatment method for cold and warm plastic working material according to any one of items 1 to 4.
【請求項6】 重量%で、(Cr+13C):14.0
〜42.0%を含有し、組織中に存在する炭化物割れに
よって形成される空隙が、面積率で2%以下であること
を特徴とする冷温間塑性加工品。
6. The weight percentage of (Cr + 13C): 14.0.
A cold-warm plastically worked product, characterized in that the void ratio formed by carbide cracking existing in the structure is 2% or less in an area ratio of 2% or less.
【請求項7】 重量%で、(Cr+13C):14.0
〜42.0%を含有し、組織中に存在する最大長さが5
μm以上の炭化物の割れによる空隙形成率が、30%以
下であることを特徴とする冷温間塑性加工品。
7. The weight percentage of (Cr + 13C): 14.0.
~ 42.0%, the maximum length present in the tissue is 5
A cold-warm plastically worked product having a void formation rate of 30% or less due to cracking of carbides of μm or more.
【請求項8】 重量%で、MoおよびWの1種以上を
(Mo+1/2W):15.0%以下、V:5.0%以
下を含有することを特徴とする請求項6ないし7に記載
の冷温間塑性加工品。
8. The method according to claim 6, wherein the content of at least one of Mo and W is (Mo + 1 / 2W): 15.0% or less and V: 5.0% or less by weight. Cold and warm plastic processed products.
JP10228806A 1998-08-13 1998-08-13 Heat treating method for cold-warm plastic working stock and cold-warm plastic worked article Pending JP2000063944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10228806A JP2000063944A (en) 1998-08-13 1998-08-13 Heat treating method for cold-warm plastic working stock and cold-warm plastic worked article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10228806A JP2000063944A (en) 1998-08-13 1998-08-13 Heat treating method for cold-warm plastic working stock and cold-warm plastic worked article

Publications (1)

Publication Number Publication Date
JP2000063944A true JP2000063944A (en) 2000-02-29

Family

ID=16882155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10228806A Pending JP2000063944A (en) 1998-08-13 1998-08-13 Heat treating method for cold-warm plastic working stock and cold-warm plastic worked article

Country Status (1)

Country Link
JP (1) JP2000063944A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113523175A (en) * 2021-06-24 2021-10-22 河南中原特钢装备制造有限公司 Heating process for preheating cold ingot by using waste heat of heating furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113523175A (en) * 2021-06-24 2021-10-22 河南中原特钢装备制造有限公司 Heating process for preheating cold ingot by using waste heat of heating furnace
CN113523175B (en) * 2021-06-24 2022-08-02 河南中原特钢装备制造有限公司 Heating process for preheating cold ingot by using waste heat of heating furnace

Similar Documents

Publication Publication Date Title
KR0148414B1 (en) Titanium alloy bar suitable for producing engine valve
EP1521860B1 (en) Quenched and tempered steel wire with superior characteristics of cold forging
JP2010065280A (en) Mold for hot working
JP4340754B2 (en) Steel having high strength and excellent cold forgeability, and excellent molded parts such as screws and bolts or shafts having excellent strength, and methods for producing the same.
JP4915763B2 (en) High-strength steel wire or steel bar excellent in cold workability, high-strength molded article, and production method thereof
JP4974285B2 (en) Medium and high carbon steel sheet with excellent workability and manufacturing method thereof
JP2001294974A (en) Tool steel excellent in machinability and small in dimensional change cause by heat treatment and its producing method
JP2007146233A (en) Method for manufacturing structural parts for automobile made from steel
JP4915762B2 (en) High-strength steel wire or steel bar excellent in cold workability, high-strength molded article, and production method thereof
JP2000063944A (en) Heat treating method for cold-warm plastic working stock and cold-warm plastic worked article
JPH07305139A (en) Non-heat treated machine parts and production thereof
JP2795799B2 (en) Manufacturing method of high strength bolts with excellent delayed fracture resistance
JP5150978B2 (en) High-strength steel with excellent cold forgeability, and excellent strength parts such as screws and bolts or molded parts such as shafts
JP2001335833A (en) High fatigue strength steel material and its production method
JP3716454B2 (en) Manufacturing method of high strength and toughness mold by warm hobbing
JP2795800B2 (en) Manufacturing method of high strength bolts with excellent delayed fracture resistance
EP3214189A1 (en) Method for manufacturing steel for high-strength hollow spring
JPH0775846A (en) Production of high strength bolt excellent in delayed fracture resistance
RU2227811C1 (en) Method of heat treatment of rolled stock
JP3314830B2 (en) Manufacturing method of high strength bolts with excellent delayed fracture resistance
CA2589006A1 (en) Steel wire for cold forging
JP3339795B2 (en) Method for manufacturing linear motion bearing member
JPH08104919A (en) Part made of precipitation hardening type stainless steel and its production
JPH11158545A (en) Method for forming exhaust valve for engine
JPH11106864A (en) Steel for machine structure excellent cold-workability and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071102