JP2000061297A - Carbon dioxide discharger - Google Patents

Carbon dioxide discharger

Info

Publication number
JP2000061297A
JP2000061297A JP10231528A JP23152898A JP2000061297A JP 2000061297 A JP2000061297 A JP 2000061297A JP 10231528 A JP10231528 A JP 10231528A JP 23152898 A JP23152898 A JP 23152898A JP 2000061297 A JP2000061297 A JP 2000061297A
Authority
JP
Japan
Prior art keywords
carbon dioxide
discharge
liquid carbon
discharge pipe
discharged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10231528A
Other languages
Japanese (ja)
Other versions
JP3552920B2 (en
Inventor
Masahiko Ozaki
雅彦 尾崎
Muneji Mizogami
宗二 溝上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for the Earth RITE
Original Assignee
Research Institute of Innovative Technology for the Earth RITE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for the Earth RITE filed Critical Research Institute of Innovative Technology for the Earth RITE
Priority to JP23152898A priority Critical patent/JP3552920B2/en
Publication of JP2000061297A publication Critical patent/JP2000061297A/en
Application granted granted Critical
Publication of JP3552920B2 publication Critical patent/JP3552920B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon dioxide discharger by which liq. carbon dioxide is discharged from plural holes provided in a discharge pipe under an appropriate pressure corresponding to the position of the holes. SOLUTION: In the carbon dioxide discharger in which liq. carbon dioxide is introduced into a discharge pipe 4 hung from a ship sailing on the sea and discharged from the discharge pipe 4, an opening 11 for discharging liq. carbon dioxide flowing in the discharge pipe 4 is formed at the lower end of the discharge pipe 4, an outer cylinder 12 forming a storage chamber 13 to store the liq. carbon dioxide discharged from the opening 11 of the discharge pipe 4 is formed at the lower end of the discharge pipe 4 to surround it, and plural discharge holes 14 are vertically formed in a line in the peripheral wall of the outer cylinder 12 to discharge the liq. carbon dioxide stored in the chamber 13 into the sea.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は回収した二酸化炭素
を海中に放流して海水に溶し込む二酸化炭素の放流装置
に関する。 【0002】 【従来の技術】近時、地球温暖化が大きな問題となって
おり、これに伴い地球規模での気候変動を引き起こす可
能性があると指摘される温室効果をもった二酸化炭素
(CO2)の大気中における濃度の上昇を抑えることが
特に重要となってきている。そして、この対策のひとつ
として火力発電所などで排出される燃焼排ガス中の二酸
化炭素を回収して海洋へ送り込むことによって、長期に
亘って二酸化炭素を大気から隔離する構想が提案されて
いるが、その成立にあたっては二酸化炭素を送り込む海
洋において新たな環境影響が引き起こされないようにす
ることが必要となっている。 【0003】二酸化炭素送り込みによる海洋環境への影
響を小さくするシステムとして、次に述べる2種類のシ
ステムが提案されている。その一つは貯蓄型と称される
もので、二酸化炭素を深海底のくぼみのような場所に集
中して溜めることにより影響範囲を特定の場所に限定し
て局所化しようとする方法である。 【0004】もう一つのシステムは、溶解拡散型と称さ
れるもので、二酸化炭素を海水中に溶し込んで薄く希釈
し広く拡散させて海水中の二酸化炭素の濃度の上昇を抑
制しようとする方法であり、本来海水中に溶解している
二酸化炭素の濃度がある程度上昇するにとどまるという
考え方に基くものである。 【0005】この溶解拡散型における具体的な方法とし
て、船舶により二酸化炭素の放流点を移動させて海中の
中層にて二酸化炭素を放流する中層希釈放流方式が挙げ
られている。この方式について図3ないし図5を参照し
て説明する。図3は中層希釈放流方式放流のシステムを
模式的に示す説明図、図4(a)は同方式において放流
管から二酸化炭素を海中へ放流拡散する状態を模式的に
示す説明図、図4(b)は図4(a)のZ部を拡大して
示す図、図5は二酸化炭素を放流管から放流して形成さ
れた液滴の状態を示す説明図である。 【0006】この中層希釈放流方式は、陸上プラント1
で燃焼排ガスから分離、回収した二酸化炭素を液化し、
その液化ガスを貯溜タンク2aに充填して液化ガス運搬
船2にて所定の海域まで海上輸送し、そこで貯溜タンク
2aの内部の液体二酸化炭素を作業船3に搭載した貯溜
タンク3aに移し替える。液体二酸化炭素は例えば圧力
が6atm、温度が−55℃とする。図6は二酸化炭素
の相状態を示す線図であるが、この線図で判るように前
記6atm、温度を−55℃は液体二酸化炭素を経済的
に得ることができる条件である。作業船3は深さ200
0mないし2500mの海中に吊り下げる大変長い鋼管
などからなる放流管4を備え、この放流管4は下端面が
閉塞されるとともに下端部の周壁には複数の放流孔5が
上下方向に間隔を存して一列に並べて形成されている。
そして、液体二酸化炭素を貯溜タンク3aから放流管4
に送り込んで放流管4の下端部に上下方向に並んで形成
した複数個の放流孔5から海中に放流する。作業船3は
放流管4の孔5から液体二酸化炭素を海中に放流しつつ
前進することにより、液体二酸化炭素の放流点を局所に
限定せず移動させて液体二酸化炭素の希釈を増進させて
いる。なお、運搬船2と作業船3とは別なものであって
も、また両者が兼用するものであっても良い。SLは海
面である。 【0007】放流管4から放流された液来二酸化炭素の
状態は、現状の知見から次のように想定される。放流管
4の孔5から海中へ放流された液体二酸化炭素6はすぐ
に海水に溶け込んでしまわないで、放流管4が後流に生
成して残して行く渦8による変動流場9の中で多数の液
滴7となって分散してほぼ均一に海水と混合される。放
流管4は対向する海流に対する相対的な流速によって船
舶進行方向に向かって後側へ傾斜し、その背後に管軸線
とほぼ平行な回転軸4をもつ後流渦を連続的に生成しな
がら進んでいく。渦8のパターンは放流管の形状、表面
の状態および寸法や移動速度などの条件によって異なる
が、外径数10cmの管が数ノットの速度で進む場合に
は、通常進行方向に向かって管左右両側から入れ替わり
渦が発生して変動流場9を後に残していき、その中で液
体二酸化炭素と海水とが混合すると考えられる。 【0008】そして、二酸化炭素の液滴7は放流管4の
後流からさらに周辺の海水に溶け込みながら緩やかに海
水中を上昇していく。すなわち、液体二酸化炭素の液滴
7は海水中を上昇しながら海水に溶け込んでいくことに
よって直径が小さくなっていく。そして、液滴7がある
高さまで上昇する過程で液体二酸化炭素は全て海水中に
溶け込んでしまい液滴7が消滅する。 【0009】中層希釈放流方式は、海面から約2000
mないし2500mの深さ(中層)の海中で液体二酸化
炭素の放流を行うものである。すなわち、2000mよ
り上層の海中で液体二酸化炭素の放流を行うと、放流さ
れた液体二酸化炭素が全て海水に溶け込まない内に液滴
が海面に達する可能性があり、約2000mないし25
00mの深さの海中で液体二酸化炭素の放流を行なうと
液滴が海面に達する前に全ての二酸化炭素を海水に溶け
込ませることができる。 【0010】 【発明が解決しようとする課題】このように中層希釈放
流方式を採用した放流装置は、二酸化炭素を海洋へ放流
して隔離する上で大変有望な装置と考えられているが、
この放流装置には次に述べる問題がある。 【0011】放流管4の内部を流れ降りてきた液体二酸
化炭素は放流管の下端部に上下方向に並んで形成された
複数の放流孔5の夫々から海中へ放流される、すなわ
ち、放流管4の内部を流れ降りてきた液体二酸化炭素は
まず一部が一番上に位置する放流孔5から放流され、次
いで残りの一部が上から2番目に位置する放流孔5から
放流される。このようにして液体二酸化炭素は上に位置
する放流孔5から下に位置する放流孔5にかけて順次放
流されてゆき、最後に残った液体二酸化炭素が一番下の
放流孔5から放流される。 【0012】このように液体二酸化炭素は上から下にか
けて並ぶ各放流孔5から順次海中へ放流されていく過程
で、各放流孔5から放流されるに毎に圧力損失が発生す
る。すなわち、液体二酸化炭素は上から下にかけて並ぶ
各放流孔5にかけて順次放流されてゆくに従い放流され
る圧力が低下してゆく。 【0013】ところで、上下方向に並ぶ放流孔5の位置
が下側へ移るに従い各放流孔5に対応する海中の深度が
順次増大してゆき(深くなる)、この深度の増大に伴い
複数の放流孔5の位置が上側から下側へゆくに従い各放
流孔5毎に放流する液体二酸化炭素に加わる圧力が順次
増大してゆく。各放流孔5毎に夫々放流した液体二酸化
炭素が海中に液滴を生成させるためには、各放流孔5の
位置に応じてその放流孔5から放流される液体二酸化炭
素に加わる圧力に対応した適切な大きさの範囲の圧力で
液体二酸化炭素を放流する必要がある。このため、放流
孔5の位置が上側から下側に移るに従い放流する液体二
酸化炭素に加わる圧力の増大に応じて、各放流孔5毎に
液体二酸化炭素を放流する圧力を順次増大してゆく必要
がある。 【0014】ところが、前述したように実際には液体二
酸化炭素は各放流孔5からの放流に伴う圧力損失と水深
による圧力変化とが均衡しない向きに流れ、放流孔5が
下側に位置するに従い液体二酸化炭素の放流圧力が低下
してゆくために、各放流孔5毎にその位置に応じた適切
な大きさの範囲は液体二酸化炭素の放流圧力が得られず
に、各放流孔5から海中に放流された液体二酸化炭素に
より液滴が適切且つ均一に形成されないことがある。例
えば、上側に位置する放流孔から液体二酸化炭素を放流
すると圧力が高すぎて液滴がスプレー状になり、また下
側に位置する放流孔では圧力が低すぎて液体二酸化炭素
が放流されず液滴が生成されないことがある。 【0015】本発明は前記事情に基いてなされたもの
で、放流管に設けた複数の放流孔からその位置に応じた
適切な圧力で液体二酸化炭素を放流して液滴を形成でき
る二酸化炭素の放流装置を提供することを課題とする。 【0016】 【課題を解決するための手段】本発明の二酸化炭素の放
流装置は、海上を航走する船から海中に吊り下げた放流
管の内部に液体二酸化炭素を送り込んで放流管から海中
へ放流する放流装置において、前記放流管の下端に前記
放流管内部を流れてきた液体二酸化炭素が流出する開口
を形成し、且つ前記放流管の下端部にその外側周囲を囲
んで前記放流管の下端開口から流出した液体二酸化炭素
を収容して前記下端開口から流出する向きとは逆向きに
流す収容室を形成する外筒を設け、この外筒の周壁に前
記収容室に収容された液体二酸化炭素を海中へ放流する
複数の放流孔を上下方向に並べて形成したことを特徴と
する。 【0017】 【発明の実施の形態】本発明の実施の形態について図1
および図2を参照して説明する。 【0018】図1はこの実施の形態にかかわる放流装置
を模式的に示す図、図2はこの放流装置における放流管
の液体二酸化炭素放流部を模式的に示す拡大断面図であ
る。本発明は、前述した図3ないし図5にて示す液体二
酸化炭素を中層希釈放流方式により海洋へ放流する装置
を対象としており、図1において図3と同じ部分は同じ
符号を付して示している。図中3は作業船、3aは作業
船3に搭載された液体二酸化炭素を貯溜するタンク、4
は作業船3に取付けられて海中に吊り下げられタンク3
aに貯溜された液体二酸化炭素を上端から送り込んで流
して海中へ放出する放流管である。 【0019】本発明では放流管4の下端部に液体二酸化
炭素を放出するために次に述べる構成が採用している。
放流管4は断面円形をなすとともに、作業船3から深さ
2000mないし2500mの海中に吊り下げられて作
業船3の航走により曳航されることが可能な長さを有し
ている。この放流管4の下端部の周壁には放流孔が形成
されておらず、下端部には放流管4内部を流れてきた液
体二酸化炭素が流出する開口11が形成されている。放
流管4の下端部にはその外側周囲を囲む外筒12が設け
られている。この外筒12は両端を閉塞した円筒体をな
すもので、その長さおよび直径は放流孔4を囲んで所定
量の大きさの収容室13を形成し、且つ所定の数の放流
孔14を上下方向に並べて形成することが可能な大きさ
に設定する。例えば外筒12の直径は1m前後、長さは
数10mである。 【0020】外筒12は放流管4の下端部を囲むように
放流管4と同一中心軸線上に配置され、放流管4に対し
て適宜な手段により固定されている。放流管4は外筒1
2の上端壁12aの中心を貫通して外筒12の内部に挿
入され、その下端開口11は外筒12の下端壁12bか
ら離間した位置にあり液体二酸化炭素を放流管4の下端
壁12aに向けて流出させるようにしてある。 【0021】このようにして設けた外筒12の内部の空
間には放流管4の下端部の周囲に同心円をなす収容室1
3が形成され、この収容室13で放流管4の下端開口1
1から流出された液体二酸化炭素を収容して下端開口1
1から流出する向き(下向き)とは逆向き(上向き)に
流すように形成されている。この外筒12の周壁部12
cには、円周方向の複数箇所に夫々複数個の放流孔14
を上下方向に間隔を存して一列,千鳥状、その他の形態
に並べて形成する。この放流孔14の大きさ、数は液体
二酸化炭素の放流量などの条件を考慮して設定する。例
えば、外筒12の上端壁部12aの付近から下端壁部1
2bの付近まで上下方向に放流孔14を形成する。 【0022】このように構成した放流装置は、作業船3
を航走させて放流管4を曳航して船進行方向後側へ向け
て傾斜させながら、作業船3に搭載した貯溜タンク3a
に貯溜された液体二酸化炭素を放流管4を通して海中に
放流する。この場合、液体二酸化炭素を放流管4の上端
からその内部へ送り込むと、液体二酸化炭素は放流管4
の内部を下降して流れて放流管4の下端部に到達する。
図2の矢印で示すように放流管4の下端部に到達した液
体二酸化炭素は放流管4の下端開口11から外筒12で
囲まれた収容室13の内部に下向きに流出し、外筒12
の下端壁12bに当って放射状に広がりながら外筒12
の下端壁12bに沿って外筒12の外周側へ向けて流
れ、さらに外筒12の周壁部12cに当って上向きに向
きを変え、周壁部12cに沿って上側に向けて流れて外
筒12の上端壁12aに達する。 【0023】このように流れる過程で液体二酸化炭素
は、外筒12の周壁部12cに上下方向に沿って並べて
形成した各放流孔列のなかで下側に位置する放流孔14
から上側に位置する放流孔14へと位置を移して順次海
中へ放流される。すなわち、まず放流管4の下端開口1
1から下向きに流出して外筒12の下端壁12bに沿っ
て外筒12の外周側へ向けて流れた液体二酸化炭素は、
一部が一番下に位置する放流孔5から海中へ放流され
る。次いで、液体二酸化炭素は筒12の外周壁12cに
沿って上昇して一部が下から2番目に位置する放流孔1
4から海中へ放流される。このようにして液体二酸化炭
素は収容室13の下端から上端へ向けて流れる過程で、
下側に位置する放流孔5から上側に位置する放流孔5に
かけて順次海中へ放流されてゆき、最後に残った液体二
酸化炭素は一番上側に位置する放流孔5から海中へ放流
される。 【0024】ここで、液体二酸化炭素は一番下側に位置
する放流孔14から最大の圧力で放流される。そして、
それ以降液体二酸化炭素は、上昇しながら下側から上側
にかけて並ぶ各放流孔14から順次海中へ放流されてい
く過程で各放流孔5で放流される毎に順次圧力損失が生
じて、これに伴い各放流孔5毎に液体二酸化炭素を放流
する圧力が順次低下してゆく。また、一番下側に位置す
る放流孔14に対応する海中の深度が一番深く、それ以
降放流孔14が下側から上側へ位置を移すに従い、各放
流孔14毎にその放流孔14に対応する海中の深度が順
次減少して浅くなってゆく。これにより一番下側に位置
する放流孔14から放流する液体二酸化炭素に加わる圧
力が一番大きく、放流孔5が下側から上側へ位置を移す
のに伴って深度が順次減少してゆくのに従い、各放流孔
14毎に放流する液体二酸化炭素に加わる圧力が順次減
少してゆく。 【0025】このため、一番大きな圧力が加わる一番下
側に位置する放流孔14から一番大きな圧力で液体二酸
化炭素を海中へ放流する。すなわち、一番下側の放流孔
14の位置に応じて液体二酸化炭素に加わる圧力に対応
した適切な範囲の大きな圧力で液体二酸化炭素を海中に
放流する。これにより一番下側の放流孔14から放出さ
れた液体二酸化炭素は適切な状態で液滴を生成する。次
いで、一番下側に位置する放流孔14より低い圧力が作
用する下から2番目に位置する放流孔14からは、一番
下側の放流孔14より小さい圧力で液体二酸化炭素を放
流して液滴を生成させる。このように放流孔5が下側か
ら上側へ位置を移すのに伴って液体二酸化炭素に加わる
圧力が減少してゆくのに従って、各放流孔14毎に放流
する圧力を順次減少して液体二酸化炭素を海中に放流し
て液滴を生成してゆく。そして、一番小さな圧力が加わ
る一番上側に位置する放流孔14から一番小さな圧力で
液体二酸化炭素を放流して液滴を生成する。 【0026】このようにして放流管4の下端開口11か
ら外筒12内部へ流出した液体二酸化炭素は、外筒12
に形成した各放流孔14からの放流に伴う圧力損失と、
水深による圧力変化とを均衡させる向きに流れる。従っ
て、各放流孔14の位置に応じて、その放流孔14から
放流される液体二酸化炭素に加わる圧力に対応した適切
な範囲の大きさの圧力で液体二酸化炭素を放流して、各
放流孔14毎に夫々放流した液体二酸化炭素で液滴を生
成させることができる。このため、各各放流孔14毎に
夫々適切で均一な液滴を生成することができる。 【0027】なお、本発明は前述した実施の形態に限定
されずに、種々変形して実施することができる。 【0028】 【発明の効果】以上説明したように本発明の二酸化炭素
の放流装置によれば、放流管の下端開口から外筒内部へ
流出した液体二酸化炭素が、外筒に形成した各放流孔か
らの放流に伴う圧力損失と水深による圧力変化とを均衡
させる向きに流れる。従って、本発明は、各放流孔の位
置に応じてその放流孔から放流される液体二酸化炭素に
加わる圧力に対応した、適切な範囲の圧力で液体二酸化
炭素を放流して、各放流管毎に夫々放流した液体二酸化
炭素で液滴を適切且つ均一に生成させることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for discharging carbon dioxide, which releases recovered carbon dioxide into the sea and dissolves it in seawater. 2. Description of the Related Art Recently, global warming has become a major problem, and carbon dioxide (CO) having a greenhouse effect, which has been pointed out as a possibility of causing climate change on a global scale, has been pointed out. 2 ) It has become particularly important to suppress the rise in concentration in the atmosphere. As one of the measures, a concept has been proposed to sequester carbon dioxide from the atmosphere for a long time by collecting and sending carbon dioxide in flue gas discharged from thermal power plants etc. to the ocean, In order to achieve this, it is necessary to ensure that no new environmental impact is caused in the ocean that sends carbon dioxide. The following two types of systems have been proposed as systems for reducing the influence on the marine environment due to carbon dioxide feeding. One of them is a storage type, in which carbon dioxide is concentrated and stored in places such as pits on the deep sea floor to limit the affected area to a specific place and localize it. [0004] Another system is called a dissolution-diffusion type in which carbon dioxide is dissolved in seawater, diluted dilutely and diffused widely to suppress an increase in the concentration of carbon dioxide in seawater. This method is based on the idea that the concentration of carbon dioxide originally dissolved in seawater only increases to some extent. [0005] As a specific method in the dissolution-diffusion type, there is a middle-layer dilution discharge system in which a discharge point of carbon dioxide is moved by a ship to discharge carbon dioxide in a middle layer in the sea. This method will be described with reference to FIGS. FIG. 3 is an explanatory view schematically showing a system of a middle-layer dilution discharge method, and FIG. 4 (a) is an explanatory view schematically showing a state in which carbon dioxide is discharged and diffused from a discharge pipe into the sea in the same method. 4B is an enlarged view of a portion Z in FIG. 4A, and FIG. 5 is an explanatory view showing a state of a droplet formed by discharging carbon dioxide from a discharge pipe. [0006] This mid-level dilution discharge system is based on the land plant 1
Liquefies the carbon dioxide separated and recovered from the combustion exhaust gas by
The liquefied gas is filled in a storage tank 2a and transported by sea to a predetermined sea area on the liquefied gas carrier 2 where the liquid carbon dioxide in the storage tank 2a is transferred to the storage tank 3a mounted on the work boat 3. The liquid carbon dioxide has, for example, a pressure of 6 atm and a temperature of -55 ° C. FIG. 6 is a diagram showing the phase state of carbon dioxide. As can be seen from this diagram, the condition of 6 atm and a temperature of -55 ° C. are conditions under which liquid carbon dioxide can be obtained economically. Work boat 3 has a depth of 200
A discharge pipe 4 made of a very long steel pipe or the like suspended from the sea of 0 m to 2500 m is provided. The discharge pipe 4 has a lower end face closed, and a plurality of discharge holes 5 are vertically spaced in the peripheral wall at the lower end. And are formed in a line.
Then, the liquid carbon dioxide is discharged from the storage tank 3a to the discharge pipe 4
And discharged into the sea from a plurality of discharge holes 5 formed at the lower end of the discharge pipe 4 and arranged vertically. The work boat 3 advances while discharging the liquid carbon dioxide from the hole 5 of the discharge pipe 4 into the sea, thereby moving the discharge point of the liquid carbon dioxide without being limited to a local area, thereby increasing the dilution of the liquid carbon dioxide. . Note that the carrier 2 and the work boat 3 may be different from each other, or may be shared by both. SL is the sea surface. The state of the liquid carbon dioxide discharged from the discharge pipe 4 is assumed as follows from the current knowledge. The liquid carbon dioxide 6 discharged into the sea from the hole 5 of the discharge pipe 4 does not immediately dissolve in the seawater, but in the fluctuating flow field 9 due to the vortex 8 generated and left behind by the discharge pipe 4. Many droplets 7 are dispersed and almost uniformly mixed with seawater. The discharge pipe 4 is inclined rearward in the direction of travel of the ship according to the flow velocity relative to the opposing ocean current, and proceeds while continuously generating a wake vortex having a rotation axis 4 substantially parallel to the pipe axis behind the discharge pipe. Go out. The pattern of the vortex 8 varies depending on conditions such as the shape, surface condition, dimensions and moving speed of the discharge pipe. It is considered that a swirl is generated from both sides and the fluctuating flow field 9 is left behind, in which liquid carbon dioxide and seawater mix. [0008] Then, the carbon dioxide droplet 7 gradually rises in the seawater while being further dissolved in the surrounding seawater from the downstream of the discharge pipe 4. That is, the diameter of the droplet 7 of the liquid carbon dioxide is reduced by being dissolved in the seawater while rising in the seawater. Then, in the process of ascending the droplet 7 to a certain height, all of the liquid carbon dioxide is dissolved into the seawater, and the droplet 7 disappears. [0009] The middle-layer dilution discharge method is approximately 2,000 from the sea surface.
It discharges liquid carbon dioxide in the sea at a depth of from m to 2500 m (middle layer). In other words, when liquid carbon dioxide is discharged in the sea above 2000 m, droplets may reach the sea surface before all of the discharged liquid carbon dioxide does not dissolve in the seawater, and about 2000 m to 25 m
When the liquid carbon dioxide is discharged in the sea at a depth of 00 m, all the carbon dioxide can be dissolved in the seawater before the droplet reaches the sea surface. [0010] As described above, the discharge device employing the middle dilution discharge method is considered to be a very promising device for discharging carbon dioxide to the ocean and isolating it.
This discharge device has the following problems. The liquid carbon dioxide that has flowed down the discharge pipe 4 is discharged into the sea from each of a plurality of discharge holes 5 formed vertically at the lower end of the discharge pipe. Part of the liquid carbon dioxide that has flowed down the inside is first discharged from the discharge hole 5 located at the top, and then the remaining part is discharged from the discharge hole 5 located second from the top. In this way, the liquid carbon dioxide is discharged sequentially from the upper discharge hole 5 to the lower discharge hole 5, and the last remaining liquid carbon dioxide is discharged from the lowermost discharge hole 5. As described above, in the process in which the liquid carbon dioxide is sequentially discharged into the sea from each of the discharge holes 5 arranged from the top to the bottom, a pressure loss is generated every time the liquid carbon dioxide is discharged from each of the discharge holes 5. That is, as the liquid carbon dioxide is sequentially discharged from the discharge holes 5 arranged from the top to the bottom, the pressure to be discharged decreases. By the way, as the position of the vertically arranged discharge holes 5 shifts downward, the depth of the sea corresponding to each discharge hole 5 gradually increases (becomes deeper). As the position of the holes 5 moves from the upper side to the lower side, the pressure applied to the liquid carbon dioxide discharged from each discharge hole 5 gradually increases. In order for the liquid carbon dioxide discharged from each discharge hole 5 to generate droplets in the sea, the pressure corresponding to the pressure applied to the liquid carbon dioxide discharged from the discharge hole 5 according to the position of each discharge hole 5 was determined. The liquid carbon dioxide needs to be released at a pressure in the appropriate range. Therefore, as the position of the discharge hole 5 moves from the upper side to the lower side, the pressure at which the liquid carbon dioxide is discharged from each discharge hole 5 needs to be sequentially increased in accordance with the increase in the pressure applied to the liquid carbon dioxide discharged. There is. However, as described above, the liquid carbon dioxide actually flows in a direction in which the pressure loss due to the discharge from each discharge hole 5 and the pressure change due to the water depth are not balanced, and as the discharge hole 5 is located on the lower side. Since the discharge pressure of the liquid carbon dioxide decreases, the range of the appropriate size corresponding to the position of each discharge hole 5 does not allow the discharge pressure of the liquid carbon dioxide to be obtained. Droplets may not be formed properly and uniformly due to the liquid carbon dioxide discharged into the container. For example, when liquid carbon dioxide is discharged from the discharge hole located on the upper side, the pressure is too high and droplets are sprayed, and in the discharge hole located on the lower side, the pressure is too low and the liquid carbon dioxide is not discharged and the liquid is discharged. Drops may not be formed. The present invention has been made in view of the above circumstances, and a liquid carbon dioxide capable of forming liquid droplets by discharging liquid carbon dioxide from a plurality of discharge holes provided in a discharge pipe at an appropriate pressure corresponding to its position. It is an object to provide a discharge device. According to the present invention, there is provided a carbon dioxide discharging apparatus for sending liquid carbon dioxide into a discharging pipe suspended from a ship sailing at sea into the sea, and from the discharging pipe to the sea. In the discharge device for discharging, an opening is formed at the lower end of the discharge pipe to allow the liquid carbon dioxide flowing inside the discharge pipe to flow out, and the lower end of the discharge pipe surrounds the outer periphery at the lower end of the discharge pipe. An outer cylinder is provided that forms a storage chamber that stores the liquid carbon dioxide flowing out of the opening and flows in a direction opposite to the direction in which the liquid carbon dioxide flows out of the lower end opening, and the liquid carbon dioxide stored in the storage chamber on a peripheral wall of the outer cylinder. A plurality of discharge holes for discharging water into the sea are vertically arranged. FIG. 1 shows an embodiment of the present invention.
This will be described with reference to FIG. FIG. 1 schematically shows a discharge device according to this embodiment, and FIG. 2 is an enlarged sectional view schematically showing a liquid carbon dioxide discharge portion of a discharge pipe in the discharge device. The present invention is directed to an apparatus for discharging the liquid carbon dioxide shown in FIGS. 3 to 5 to the ocean by a middle-layer dilution discharge method described above. In FIG. 1, the same parts as those in FIG. 3 are denoted by the same reference numerals. I have. In the figure, 3 is a work boat, 3a is a tank mounted on the work boat 3 for storing liquid carbon dioxide, 4
Is attached to the work boat 3 and suspended under the sea.
This is a discharge pipe that sends the liquid carbon dioxide stored in a from the upper end, flows it, and discharges it into the sea. In the present invention, the following configuration is employed to discharge liquid carbon dioxide to the lower end of the discharge pipe 4.
The discharge pipe 4 has a circular cross section, and has a length that allows it to be suspended from the work boat 3 in the sea at a depth of 2000 m to 2500 m and towed by the work boat 3. No discharge hole is formed in the peripheral wall at the lower end of the discharge pipe 4, and an opening 11 through which the liquid carbon dioxide flowing inside the discharge pipe 4 flows out is formed at the lower end. At the lower end of the discharge pipe 4, an outer cylinder 12 surrounding the outer periphery thereof is provided. The outer cylinder 12 forms a cylindrical body having both ends closed, and its length and diameter surround the discharge hole 4 to form a storage chamber 13 of a predetermined amount, and a predetermined number of discharge holes 14 are formed. The size is set so that it can be formed vertically. For example, the outer cylinder 12 has a diameter of about 1 m and a length of several tens of meters. The outer cylinder 12 is disposed on the same central axis as the discharge pipe 4 so as to surround the lower end of the discharge pipe 4 and is fixed to the discharge pipe 4 by an appropriate means. Discharge pipe 4 is outer cylinder 1
2 is inserted into the outer cylinder 12 through the center of the upper end wall 12a, and the lower end opening 11 thereof is located at a position separated from the lower end wall 12b of the outer cylinder 12 so that the liquid carbon dioxide flows into the lower end wall 12a of the discharge pipe 4. It is made to flow toward. In the space inside the outer cylinder 12 provided in this manner, the accommodating chamber 1 forming a concentric circle around the lower end of the discharge pipe 4 is provided.
The lower end opening 1 of the discharge pipe 4 is formed in the accommodation chamber 13.
1 containing the liquid carbon dioxide flowing out from the lower end 1
It is formed so as to flow in the direction (upward) opposite to the direction (downward) flowing out of the device 1. The peripheral wall portion 12 of the outer cylinder 12
c, a plurality of discharge holes 14 at a plurality of locations in the circumferential direction.
Are formed in a line, in a staggered manner, or in other forms at intervals in the vertical direction. The size and number of the discharge holes 14 are set in consideration of conditions such as the discharge flow rate of liquid carbon dioxide. For example, from the vicinity of the upper end wall 12 a of the outer cylinder 12 to the lower end wall 1
The discharge holes 14 are formed vertically in the vicinity of 2b. The discharge device having the above-described structure is used for the work boat 3
The storage tank 3a mounted on the work boat 3 while towing the discharge pipe 4 and inclining it toward the rear in the ship traveling direction.
The liquid carbon dioxide stored in the tank is discharged through the discharge pipe 4 into the sea. In this case, when liquid carbon dioxide is sent from the upper end of the discharge pipe 4 into the inside thereof, the liquid carbon dioxide is discharged from the discharge pipe 4
And flows down to reach the lower end of the discharge pipe 4.
As shown by the arrow in FIG. 2, the liquid carbon dioxide that has reached the lower end of the discharge pipe 4 flows downward from the lower end opening 11 of the discharge pipe 4 into the storage chamber 13 surrounded by the outer cylinder 12, and
The outer cylinder 12 while spreading radially against the lower end wall 12b of the outer cylinder 12
Flows toward the outer peripheral side of the outer cylinder 12 along the lower end wall 12b of the outer cylinder 12, and further turns upward by contacting the peripheral wall portion 12c of the outer cylinder 12, flows upward along the peripheral wall portion 12c, and To the upper end wall 12a. In the course of such a flow, the liquid carbon dioxide is discharged from the discharge holes 14 located on the lower side in each of the discharge hole rows formed vertically on the peripheral wall portion 12c of the outer cylinder 12.
From the water to the discharge hole 14 located on the upper side, and are sequentially discharged into the sea. That is, first, the lower end opening 1 of the discharge pipe 4
The liquid carbon dioxide flowing downward from 1 and flowing toward the outer peripheral side of the outer cylinder 12 along the lower end wall 12b of the outer cylinder 12 is:
A part is discharged into the sea from the discharge hole 5 located at the bottom. Next, the liquid carbon dioxide rises along the outer peripheral wall 12c of the cylinder 12 and a part of the discharge hole 1 is located second from the bottom.
4 to be released into the sea. In this way, the liquid carbon dioxide flows from the lower end to the upper end of the storage chamber 13,
The liquid carbon dioxide is sequentially discharged into the sea from the discharge hole 5 located on the lower side to the discharge hole 5 located on the upper side, and the remaining liquid carbon dioxide is finally discharged into the sea from the discharge hole 5 located on the uppermost side. Here, the liquid carbon dioxide is discharged at the maximum pressure from the discharge hole 14 located at the lowermost side. And
Thereafter, the liquid carbon dioxide is sequentially discharged from each of the discharge holes 14 arranged from the lower side to the upper side while rising, and into the sea, a pressure loss is sequentially generated each time the liquid carbon dioxide is discharged at each of the discharge holes 5, and accordingly, The pressure at which the liquid carbon dioxide is discharged from each discharge hole 5 gradually decreases. Further, as the depth in the sea corresponding to the discharge hole 14 located at the bottom is the deepest, and thereafter the position of the discharge hole 14 shifts from the lower side to the upper side, the discharge hole 14 The corresponding underwater depth gradually decreases and becomes shallower. As a result, the pressure applied to the liquid carbon dioxide discharged from the discharge hole 14 located at the lowermost position is the highest, and the depth gradually decreases as the position of the discharge hole 5 moves from the lower side to the upper side. Accordingly, the pressure applied to the liquid carbon dioxide discharged from each discharge hole 14 gradually decreases. For this reason, liquid carbon dioxide is discharged into the sea at the highest pressure from the discharge hole 14 located at the lowest side where the highest pressure is applied. That is, the liquid carbon dioxide is discharged into the sea at a large pressure in an appropriate range corresponding to the pressure applied to the liquid carbon dioxide according to the position of the lowermost discharge hole 14. As a result, the liquid carbon dioxide discharged from the lowermost discharge hole 14 generates droplets in an appropriate state. Next, liquid carbon dioxide is discharged from the discharge hole 14 located at the second position from the bottom where a pressure lower than the discharge hole 14 located at the lowermost position acts, at a pressure smaller than the discharge hole 14 at the lowermost position. Generate droplets. As the pressure applied to the liquid carbon dioxide decreases as the position of the discharge hole 5 moves from the lower side to the upper side in this way, the pressure discharged to each discharge hole 14 is sequentially reduced, and the liquid carbon dioxide is reduced. Is released into the sea to form droplets. Then, liquid carbon dioxide is discharged at the lowest pressure from the uppermost discharge hole 14 to which the lowest pressure is applied to generate droplets. The liquid carbon dioxide flowing into the outer cylinder 12 from the lower end opening 11 of the discharge pipe 4 in this manner is
Pressure loss due to discharge from each discharge hole 14 formed in
It flows in a direction that balances pressure changes due to water depth. Therefore, depending on the position of each discharge hole 14, the liquid carbon dioxide is discharged at a pressure in an appropriate range corresponding to the pressure applied to the liquid carbon dioxide discharged from the discharge hole 14, and each discharge hole 14 is discharged. Droplets can be generated with the liquid carbon dioxide discharged each time. Therefore, appropriate and uniform droplets can be generated for each discharge hole 14. The present invention is not limited to the above-described embodiment, but can be implemented with various modifications. As described above, according to the carbon dioxide discharge device of the present invention, the liquid carbon dioxide flowing out from the lower end opening of the discharge pipe into the outer cylinder is supplied to each discharge hole formed in the outer cylinder. It flows in a direction that balances the pressure loss due to the discharge from the water and the pressure change due to water depth. Therefore, the present invention discharges liquid carbon dioxide at an appropriate range of pressure corresponding to the pressure applied to the liquid carbon dioxide discharged from the discharge hole according to the position of each discharge hole, and for each discharge pipe Droplets can be appropriately and uniformly generated with the liquid carbon dioxide discharged respectively.

【図面の簡単な説明】 【図1】本発明の一実施の形態にかかわる二酸化炭素の
放流装置を模式的に示す図。 【図2】同実施の形態における放流装置に設ける放流管
の放流部を拡大して示す断面図。 【図3】二酸化二酸化炭素の放流システムを模式的に示
す図。 【図4】二酸化二酸化炭素の放流装置を模式的に示す
図。 【図5】放流装置により海中に放流された液体二酸化炭
素の状態を模式的に示す図。 【図6】二酸化炭素の相状態を示す線図。 【符号の説明】 3…作業船、 4…放流管、 11…下端開口、 12…外筒、 13…収容室、 14…放流孔。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram schematically showing a carbon dioxide discharge device according to an embodiment of the present invention. FIG. 2 is an enlarged cross-sectional view showing a discharge portion of a discharge pipe provided in the discharge device according to the embodiment. FIG. 3 is a diagram schematically showing a system for discharging carbon dioxide. FIG. 4 is a diagram schematically showing an apparatus for discharging carbon dioxide. FIG. 5 is a diagram schematically showing a state of liquid carbon dioxide discharged into the sea by the discharge device. FIG. 6 is a diagram showing a phase state of carbon dioxide. [Description of Signs] 3 ... Work boat, 4 ... Discharge pipe, 11 ... Lower end opening, 12 ... Outer cylinder, 13 ... Accommodation chamber, 14 ... Discharge hole.

Claims (1)

【特許請求の範囲】 【請求項1】 海上を航走する船から海中に吊り下げた
放流管の内部に液体二酸化炭素を送り込んで放流管から
海中へ放流する放流装置において、 前記放流管の下端に前記放流管内部を流れてきた液体二
酸化炭素が流出する開口を形成し、且つ前記放流管の下
端部にその外側周囲を囲んで前記放流管の下端開口から
流出した液体二酸化炭素を収容して前記下端開口から流
出する向きとは逆向きに流す収容室を形成する外筒を設
け、この外筒の周壁に前記収容室に収容された液体二酸
化炭素を海中へ放流する複数の放流孔を上下方向に並べ
て形成したことを特徴とする二酸化炭素の放流装置。
Claims: 1. A discharge device for sending liquid carbon dioxide into a discharge pipe suspended from the ship sailing in the sea into the sea and discharging the liquid carbon dioxide from the discharge pipe into the sea, wherein a lower end of the discharge pipe is provided. An opening through which the liquid carbon dioxide flowing inside the discharge pipe flows out is formed, and the lower end of the discharge pipe surrounds the outer periphery thereof and accommodates the liquid carbon dioxide flowing out from the lower end opening of the discharge pipe. An outer cylinder is provided that forms a storage chamber that flows in a direction opposite to the direction in which the liquid carbon dioxide flows out of the lower end opening, and a plurality of discharge holes for discharging the liquid carbon dioxide stored in the storage chamber into the sea are provided on the peripheral wall of the outer cylinder. A carbon dioxide discharge device, which is formed side by side in a direction.
JP23152898A 1998-08-18 1998-08-18 Carbon dioxide discharge device Expired - Fee Related JP3552920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23152898A JP3552920B2 (en) 1998-08-18 1998-08-18 Carbon dioxide discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23152898A JP3552920B2 (en) 1998-08-18 1998-08-18 Carbon dioxide discharge device

Publications (2)

Publication Number Publication Date
JP2000061297A true JP2000061297A (en) 2000-02-29
JP3552920B2 JP3552920B2 (en) 2004-08-11

Family

ID=16924910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23152898A Expired - Fee Related JP3552920B2 (en) 1998-08-18 1998-08-18 Carbon dioxide discharge device

Country Status (1)

Country Link
JP (1) JP3552920B2 (en)

Also Published As

Publication number Publication date
JP3552920B2 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
EP0650889A1 (en) Method of reducing friction on cruising body, cruising body with reduced friction, method of and apparatus for generating microbubbles for use in reduction of friction
JP6804192B2 (en) Small distribution tray for marine gas-liquid contact tower
US9707534B2 (en) Antibubble generator and preparation method
US9943776B2 (en) Compact distributor tray for offshore gas/liquid contact columns
KR20110139708A (en) Method and system for gas capture
GB1495852A (en) Method of treating waste water
JP4678602B2 (en) Liquid-phase and gas-phase mixed distribution method
JP2000061297A (en) Carbon dioxide discharger
JP3556812B2 (en) Apparatus for releasing carbon dioxide into the ocean
JP3552921B2 (en) Carbon dioxide discharge device
JP3552919B2 (en) A device that dilutes and releases carbon dioxide to the ocean
JP3583625B2 (en) Method for releasing carbon dioxide to the ocean and apparatus for releasing carbon dioxide to the ocean
Chow et al. Carbon dioxide hydrate particles for ocean carbon sequestration
JP3588417B2 (en) Carbon dioxide dilution and discharge device
JP3583624B2 (en) Apparatus for diluting carbon dioxide into the ocean
US3972198A (en) Method of protecting a pile imbedded in offshore areas having a shifting layer of mud
JP3623706B2 (en) Dilution release device for carbon dioxide to the ocean
KR101342468B1 (en) Voc reducing apparatus
Lee et al. A Study on the Development of Auto Pilot Device at Shallow Water for the Docking of Fishing Boat
KR102434905B1 (en) Ship with running resistance reduce friction
JPH04104834A (en) Treatment of co2 into the ocean
JPH0832303B2 (en) Carbon dioxide immobilization method
WO2012050300A1 (en) Apparatus for decreasing volatile organic components
JPS62215839A (en) Experimental water tank
JPH0751696A (en) Large-capacity pumping method and device therefor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees