JP3583624B2 - Apparatus for diluting carbon dioxide into the ocean - Google Patents

Apparatus for diluting carbon dioxide into the ocean Download PDF

Info

Publication number
JP3583624B2
JP3583624B2 JP23152398A JP23152398A JP3583624B2 JP 3583624 B2 JP3583624 B2 JP 3583624B2 JP 23152398 A JP23152398 A JP 23152398A JP 23152398 A JP23152398 A JP 23152398A JP 3583624 B2 JP3583624 B2 JP 3583624B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
seawater
discharge pipe
liquid carbon
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23152398A
Other languages
Japanese (ja)
Other versions
JP2000061299A (en
Inventor
圭介 園田
和久 竹内
雅彦 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for Earth
Original Assignee
Research Institute of Innovative Technology for Earth
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for Earth filed Critical Research Institute of Innovative Technology for Earth
Priority to JP23152398A priority Critical patent/JP3583624B2/en
Publication of JP2000061299A publication Critical patent/JP2000061299A/en
Application granted granted Critical
Publication of JP3583624B2 publication Critical patent/JP3583624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は回収した二酸化炭素を海中に放流して海水に溶し込む二酸化炭素の海洋への希釈放流装置に関する。
【0002】
【従来の技術】
近時、地球温暖化が大きな問題となっており、これに伴い地球規模での気候変動を引き起こす可能性があると指摘される温室効果をもった二酸化炭素(CO)の大気中における濃度の上昇を抑えることが特に重要となってきている。そして、この対策のひとつとして火力発電所などで排出される燃焼排ガス中の二酸化炭素を回収して海洋へ送り込むことによって、長期に亘って二酸化炭素を大気から隔離する構想が提案されているが、その成立にあたっては二酸化炭素を送り込む海洋において新たな環境影響を引き起こさないようにすることが必要となっている。
【0003】
二酸化炭素送り込みによる海洋環境への影響を小さくするシステムとして、次に述べる2種類のシステムが提案されている。その一つは貯蓄型と称されるもので、二酸化炭素を深海底のくぼみのような場所に集中して溜めることにより影響範囲を特定の場所に限定して局所化しようとする方法である。
【0004】
もう一つのシステムは、溶解拡散型と称されるもので、二酸化炭素を海水中に溶し込んで薄く希釈し広く拡散させて海水中の二酸化炭素の濃度の上昇を抑制しようとする方法であり、本来海水中に溶解している二酸化炭素の濃度がある程度上昇するにとどまるという考え方に基くものである。
【0005】
この溶解拡散型における具体的な方法として、船舶により液体二酸化炭素の放流点を移動させて海中の中層にて液体二酸化炭素を放流する中層希釈放流方式が挙げられている。この方式について図4ないし図6を参照して説明する。図4は中層希釈放流方式のシステムを模式的に示す説明図、図5(a)は同方式における希釈放流装置を模式的に示す説明図、図5(b)は図5(a)のZ部を拡大して示す図、図6は二酸化炭素を放流管から放流して形成された液滴の状態を示す説明図である。
【0006】
この中層希釈放流方式は、陸上プラント1で燃焼排ガスから分離、回収した二酸化炭素を液化し、その液化ガスを貯溜タンク2aに充填して液化ガス運搬船2にて所定の海域まで海上輸送し、そこで貯溜タンク2aの内部の液体二酸化炭素を作業船3に搭載した貯溜タンク3aに移し替える。液体二酸化炭素は例えば圧力が6atm、温度が−55℃とする。図7は二酸化炭素の相状態を示す線図であるが、この線図で判るように前記圧力6atm、温度を−55℃は液体二酸化炭素を経済的に得ることができる条件である。作業船3は深さ2000mないし2500mの海中に吊り下げる大変長い鋼管などからなる放流管4を備え、この放流管4は下端面が閉塞されるとともに下端部の周壁には複数の放流孔5が上下方向に間隔を存して同列に並べて形成されている。そして、液体二酸化炭素を貯溜タンク3aから放流管4に送り込んで放流管4の下端部に上下方向に並んで形成した複数個の放流孔5から海中に放流する。作業船3は放流管4の孔5から液体二酸化炭素を海中に放流しつつ前進することにより、液体二酸化炭素の放流点を局所に限定せず移動させて液体二酸化炭素の希釈を増進させている。なお、運搬船2と作業船3とは別なものであっても、また両者が兼用するものであっても良い。SLは海面である。
【0007】
放流管4から放流された液体二酸化炭素の状態は、現状の知見から次のように想定される。放流管4の孔5から海中へ放流された液体二酸化炭素6はすぐに海水に溶け込まないで、放流管4が後流に生成して残して行く渦8による変動流場9の中で多数の液滴7となって分散してほぼ均一に海水と混合される。放流管4は作業船3の航走により海水の抵抗を受けて海流との相対的な流速によって船航走方向に向かって後面側へ傾斜し、その背後に軸線とほぼ平行な回転軸をもつ後流渦を連続的に生成しながら進んでいく。渦8のパターンは放流管の形状、表面の状態および寸法や移動速度などの条件によって異なるが、外径数10cmの管が数ノットの速度で進む場合には、通常進行方向に向かって管左右両側から入れ替わり渦が発生して変動流場9を後に残していき、その中で液体二酸化炭素と海水とが混合すると考えられる。
【0008】
そして、液体二酸化炭素の液滴7は放流管4の後流からさらに周辺の海水に溶け込みながら緩やかに海水中を上昇していく。すなわち、液体二酸化炭素の液滴7は海水中を上昇しながら海水に溶け込んでいくことによって直径が小さくなっていく。そして、液滴7がある高さまで上昇する過程で液体二酸化炭素は全て海水中に溶け込んでしまい液滴7が消滅する。
【0009】
中層希釈放流方式は、海面から約2000mないし2500mの深さ(中層)の海中で液体二酸化炭素の放流を行うものである。すなわち、2000mより上層の海中で液体二酸化炭素の放流を行うと、放流された液体二酸化炭素が全て海水に溶け込まない内に液滴が海面に達する可能性があり、約2000mないし2500mの深さの海中で液体二酸化炭素の放流を行なうと液滴が海面に達する前に全ての液体二酸化炭素を海水に溶け込ませることができる。
【0010】
【発明が解決しようとする課題】
このように中層希釈放流方式を採用した希釈放流装置は、液体二酸化炭素を海洋へ放流して隔離する上で大変有望な装置と考えられているが、この希釈放流装置には次に述べる問題がある。
【0011】
液体二酸化炭素の放流管4への送り込みを開始する時点では、海中に吊り下げられた放流管4の内部には放流孔5を通して海水が入っている。この状態で放流管4の内部において海水と液体二酸化炭素とが接触し、または海水と気体二酸化炭素とが接触すると、図7から判るように温度と圧力条件によっては海水と液体二酸化炭素とが接触する接触部、水と気体二酸化炭素とが接触する接触部に固体状の水和物(クラスレート)が生成され、この水和物により放流管4の内部が閉塞される可能性がある。この結果、放流管4の内部が閉塞されて液体二酸化炭素の下降が阻止されて液体二酸化炭素の海中への放流が困難になる。
【0012】
本発明は前記事情に基いてなされたもので、放流管内部における海水と液体二酸化炭素との接触部、海水と気体二酸化炭素との接触部の状態を制御して液体二酸化炭素の放流を良好に行なえる二酸化炭素の海洋への希釈放流装置を提供することを課題とする。
【0013】
【課題を解決するための手段】
請求項1の発明の二酸化炭素の海洋への希釈放流装置は、放流管を海中に吊り下げた船を航走して前記放流管を傾斜させて曳航しながら、液体二酸化炭素を前記放流管に送り込んで前記放流管に形成した放流孔から海中へ放流する希釈放流装置において、
前記放流管の内部に海水が存在している状態において海水と二酸化炭素とが接触する接触部に対応する位置に、この接触部を加熱する加熱器として電気ヒータを備えたことを特徴とする。
【0014】
なお、ここで海水と二酸化炭素とが接触する接触部とは、海水と液体二酸化炭素とが接触する接触部と、海水と気体二酸化炭素とが接触する接触部をいうものである。
【0017】
請求項2の発明は、請求項1に記載の二酸化炭素の海洋への希釈装置において、前記加熱器は昇降可能であることを特徴とする。
【0018】
【発明の実施の形態】
本発明の実施の形態について図面を参照して説明する。
【0019】
本発明の発明者は、放流管の内部に液体二酸化炭素を送り込むに際して、放流管の内部に入っている海水と液体二酸化炭素が接触接触すると、その接触部で海水が氷結して送り込みに支障をきたすので、この事態の発生を回避するために、はじめに常温の気体二酸化炭素を放流管内部に送り込んでその圧力に応じた位置まで下降させ、その位置で海水と接触する気体二酸化炭素を周囲温度により凝固させて液体化させ、その後に液体二酸化炭素を定常の送り込みとして放流管に送り込んで海中へ放流する方法を提案している。この方法において、海水と気体二酸化炭素が接触し、また気体二酸化炭素が周囲温度により凝固して液体二酸化炭素と海水とが接触した場合、この接触部に水和物が発生することが考えられる。以下に説明する各実施の形態は、この状態を対象にして水和物の形成を抑えるものである。
【0020】
なお、本発明の発明者はまた液体二酸化炭素の送り込みを停止する際にも気体二酸化炭素を放流管に送り込む方法を提案しているが、この場合にも前記と同様な状態が生じるので、本発明を対象にすることができる、
第1の実施の形態について図1を参照して説明する。
【0021】
図1はこの実施の形態にかかわる希釈放流装置を模式的に示す図で、この希釈放流装置は前述した図4ないし図6にて示す液体二酸化炭素を中層希釈放流方式により海洋へ放流する装置を対象としており、図1において図5と同じ部分は同じ符号を付して示している。すなわち、図中3は作業船、3aは作業船3に搭載された液体二酸化炭素を貯溜するタンク、4は作業船3に取付けられて海中に吊り下げられタンク3aに貯溜された液体二酸化炭素を上端から送り込んで流して海中へ放出する放流管である。放流管4は2000mないし2500mの中層の海中で傾斜して曳航することが可能な長さを有しており、図示しないが下端部に送り込まれた液体二酸化炭素を海中に放出する多数の放流孔5が形成されている。
【0022】
そして、放流管4においてこの放流管4の内部に入っている海水10と液体二酸化炭素6とが接触する接触部に対応する箇所には、放流管4を外側から囲む環状をなす加熱器21が設置固定してある。この加熱器21は次に述べる位置に設置する。放流管4の内部に液体二酸化炭素6を送り込むに際して、始めに気体二酸化炭素6Aを放流管4内部に送り込み、気体二酸化炭素6Aが放流管4の内部に入っている海水10と接触しながら気体二酸化炭素6Aの圧力に応じた深さ位置まで海水10を押し下げて停止する。ここで、海水10と接触する気体二酸化炭素6Aは周囲温度により凝固して液体化した場合、この液体二酸化炭素6と海水10とが接触する接触部に対応する箇所に加熱器21が設置される。この接触部の位置は気体二酸化炭素の圧力に応じて決り、例えば気体二酸化炭素が6atm,20℃で送り込むと接触部は深さ600mの位置になる。
【0023】
この接触部で液体二酸化炭素6と海水10とが接触すると固体状の水和物が形成され、この水和物により放流管4の内部が閉塞される。図7の線図におけるA線に示すように液体二酸化炭素6と海水10とが接触して水和物が形成される温度は、45atm以上の場合には10℃であり、45atm未満の場合には気圧の低下とともに10℃より徐々に低下していく。そこで、加熱器21は接触部における液体二酸化炭素6と海水10とを温度10℃を越えるように加熱して水和物の発生を抑える。なお液体二酸化炭素を45atm以上に保持する。
【0024】
この実施の形態の加熱器21は熱源として電気ヒータ22を搭載したもので、作業船3に搭載した電源24にケーブル23を介して接続されている。また、放流管4においてこの放流管4の内部に入っている海水10と液体二酸化炭素6とが接触する接触部に対応する箇所には、ここの温度を測定するために図示しない温度計が設けられており、この温度計による温度情報は加熱器21が加熱する動作を制御するために用いられる。なお、電気ヒータ22は加熱器21に搭載しても良い。
【0025】
このように構成された希釈放流装置は、海上で作業船3を航走して放流管4を傾斜しながら曳航し、作業船3に搭載したタンク3aに貯溜した液体二酸化炭素を放流管4を通して海中へ放流する。放流を行なう前には放流管4の内部に海水が入っている。まず、放流開始に際して始めに所定圧力および温度例えば6atmおよび20℃の気体二酸化炭素6Aを送り込むと、気体二酸化炭素6Aは放流管4の内部に入っている海水10と接触しながら下降して気体二酸化炭素6Aの圧力に応じた深さ位置、例えば600mまで海水10を押し下げて停止する。海水10と接触する気体二酸化炭素6Aは周囲温度により凝固して液体化して液体二酸化炭素6となる。
【0026】
一方、放流開始時には、液体二酸化炭素6と海水10との接触部の位置に対応して放流管4に設置した加熱器21の電気ヒータ22に、作業船3に設けた電源24からケーブル23を介して電力を供給する。電力を受けた電気ヒータ22は発熱して放流管4の周壁を介して放流管4の内部にある液体二酸化炭素6と海水10との接触部を加熱する。この加熱温度は水和物の形成を抑える温度、すなわち前述したように10℃を越える温度に加熱する。これにより放流管4における液体二酸化炭素6と海水10との接触部で、両者の接触による水和物の形成を抑えて、水和物が放流管4の内部を閉塞して液体二酸化炭素の流通を阻害することを防止できる。
【0027】
また、海水10と気体二酸化炭素とが接触することについても同様に構成し、作用して放流管4において海水10と気体二酸化炭素とが接触した場合に加熱器がこの接触部を加熱して水和物の発生を抑える。
【0028】
図2は、加熱器の形態を異ならせた第2の実施の形態における希釈放流装置を模式的に示す図である。図2において図1と同じ部分は同じ符号を付して示している。この実施の形態では、放流管4における海水10と液体二酸化炭素6との接触部を加熱する加熱器として海水を熱源とする加熱器25を用いており、この加熱器25は放流管4の外部に設置固定され海水入口と海水出口を有する加熱器本体26と、この加熱器本体25に海水入口から海水を送り込むポンプ27と、このポンプ27の吸込み口に接続されて海洋の海面SL近くの海水(海水として一番温度が高い部分)を取り入れる吸水管28を備えている。吸水管28は放流管4に沿わせて保持する。ポンプ27は図示しないがケーブルを介して作業船に設けた制御器に接続されて駆動を制御されるようになっている。
【0029】
そして、ポンプ27を駆動して海洋の海面SL近くの海水を吸水管28より取り入れて加熱器本体26の内部に吸い込む。加熱器本体26内部の海水は放流管4における海水10と液体二酸化炭素6との接触部を加熱して、この接触部を水和物の形成を抑える温度まで上昇させる。この加熱により温度低下した加熱器本体26の海水は海中へ吐出する。このような加熱器25は海水を熱源とするために経済性が大変高いという利点がある。
【0030】
また、海水10と気体二酸化炭素とが接触することについても同様に構成し、作用して放流管4において海水10と気体二酸化炭素とが接触した場合に加熱器がこの接触部を加熱して水和物の発生を抑える。
【0031】
図3は、加熱器の形態を異ならせた第2の実施の形態における希釈放流装置を模式的に示す図である。図3において図1と同じ部分は同じ符号を付して示している。この実施の形態は加熱器を昇降できるように設置したもので、加熱器としては第1の実施の形態の加熱器21および第2の実施の形態の加熱器25のいずれでも良いが、ここで第2の実施の形態の加熱器25を用いている。加熱器25の加熱器本体26を放流管4に適宜な手段により昇降可能に設置するとともに、例えば加熱器本体26に自身で昇降する図示しない昇降機構を搭載する。また、作業船3に搭載した制御器31からケーブル32を介して加熱器本体26へ電力および信号を供給して昇降機構を駆動し、加熱器本体26を放流管4に沿って昇降させる。加熱器25は予め予想される海水10と液体二酸化炭素6との接触部に対応した位置を中心として昇降できるようにする。
【0032】
そして、放流管4の上端入口に設けた圧力計および流量計33により放流管4に送り込む気体二酸化炭素6Aの圧力および流量を計測し、その計測信号を制御器31に送る。制御器31は放流管4に送り込む気体二酸化炭素6Aの圧力変動および流量に応じた海水10と液体二酸化炭素6との接触部の位置変動を推定して、昇降機構を駆動して加熱器本体26を推定した接触部位置に位置するように昇降する。このようにすれば加熱器25を常に海水10と液体二酸化炭素6との接触部の位置に位置させることができる。
【0033】
なお、加熱器は作業船3に設けた昇降機構によりワイヤなどを介して昇降させるようにしても良い。また、海水10と液体二酸化炭素6との接触部の位置は、接触部近傍における海水10と液体二酸化炭素6の密度が変化する位置(接触部位置)が変動すること、あるいは海水10と液体二酸化炭素6の光の屈折率が変化する位置(接触部位置)が変動することを夫々利用して検出することも可能である。
【0034】
また、海水10と気体二酸化炭素とが接触することについても同様に構成し、作用して放流管4において海水10と気体二酸化炭素とが接触した場合に加熱器がこの接触部を加熱して水和物の発生を抑える。
【0035】
なお、本発明は前述した実施の形態に限定されず、種々変形して実施することができる。例えば加熱器は化学反応を熱源としても良い。前述した実施の形態では放流管への液体二酸化炭素送り込み開始時を対象にしたが、前述したように送り込み停止時も対象にして加熱器により海水と液体二酸化炭素との接触部、海水と気体二酸化炭素との接触部を加熱する場合も含むことができる。
【0036】
【発明の効果】
以上説明したように本発明の二酸化炭素の海洋への希釈放流装置によれば、放流管の内部に海水が存在している状態において海水と液体二酸化炭素とが接触する接触部、海水と気体二酸化炭素とが接触する接触部を加熱器が加熱して、この接触部における水和物の形成を抑えて水和物が放流管の内部を閉塞して液体二酸化炭素の流通を阻害することを防止できるので良好な二酸化炭素の放流を行なうことができる。
【0037】
また、本発明によれば、加熱器に適切な熱源を提供できる。さらに、本発明によれば、海水と液体二酸化炭素との接触部位置、海水と気体二酸化炭素との接触部位置の変動に応じて加熱器を昇降させて常に接触部に対応する位置に位置させて、接触部を良好に加熱することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態にかかわる希釈放流装置を模式的に示す図。
【図2】第2の実施の形態にかかわる希釈放流装置を模式的に示す図。
【図3】第3の実施の形態にかかわる希釈放流装置を模式的に示す図。
【図4】二酸化炭素の海洋への放流システムを示す図。
【図5】二酸化炭素の海洋への希釈放流装置を模式的に示す図。
【図6】希釈放流装置により海中に放流された液体二酸化炭素の状態を模式的に示す図。
【図7】二酸化炭素の相状態を示す線図。
【符号の説明】
3…作業船、
4…放流管、
5…放流孔、
6…液体二酸化炭素、
7…液滴、
21…加熱器、
22…電気ヒ−タ、
25…加熱器。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a device for diluting and releasing carbon dioxide into the sea by discharging recovered carbon dioxide into the sea and dissolving it in seawater.
[0002]
[Prior art]
In recent years, global warming has become a major problem, and it has been pointed out that the concentration of carbon dioxide (CO 2 ) in the atmosphere with a greenhouse effect, which has been pointed out as a possibility of causing climate change on a global scale, is increasing. It is particularly important to control the rise. As one of the measures, a concept has been proposed in which carbon dioxide in combustion exhaust gas discharged from thermal power plants and the like is collected and sent to the ocean, thereby isolating carbon dioxide from the atmosphere for a long time. In order to achieve this, it is necessary to avoid causing new environmental impacts in the ocean that sends carbon dioxide.
[0003]
The following two types of systems have been proposed as systems for reducing the influence on the marine environment due to the feeding of carbon dioxide. One of them is a storage type, which is a method in which the area of influence is limited to a specific place and localized by storing carbon dioxide intensively in a place such as a hollow on the deep sea floor.
[0004]
Another system, called the dissolution-diffusion type, is a method in which carbon dioxide is dissolved in seawater, diluted dilutely and diffused widely to suppress the rise in the concentration of carbon dioxide in seawater. However, it is based on the idea that the concentration of carbon dioxide originally dissolved in seawater only increases to some extent.
[0005]
As a specific method in the dissolution-diffusion type, there is a middle-layer dilution discharge method in which a discharge point of liquid carbon dioxide is moved by a ship to discharge liquid carbon dioxide in a middle layer in the sea. This method will be described with reference to FIGS. FIG. 4 is an explanatory view schematically showing a system of a middle-layer dilution and discharge system, FIG. 5A is an explanatory view schematically showing a dilution and discharge apparatus in the same system, and FIG. 5B is a Z of FIG. 5A. FIG. 6 is an explanatory diagram showing a state of a droplet formed by discharging carbon dioxide from a discharge pipe.
[0006]
This middle-layer dilution discharge method liquefies the carbon dioxide separated and recovered from the flue gas in the land plant 1, fills the liquefied gas into the storage tank 2a, and transports the liquefied gas to the predetermined sea area by the liquefied gas carrier 2 where it is transported by sea. The liquid carbon dioxide inside the storage tank 2a is transferred to the storage tank 3a mounted on the work boat 3. The liquid carbon dioxide has, for example, a pressure of 6 atm and a temperature of -55 ° C. FIG. 7 is a diagram showing the phase state of carbon dioxide. As can be seen from the diagram, the pressure of 6 atm and the temperature of -55 ° C. are conditions under which liquid carbon dioxide can be obtained economically. The work boat 3 is provided with a discharge pipe 4 made of a very long steel pipe or the like suspended from the sea at a depth of 2000 m to 2500 m. The discharge pipe 4 has a lower end face closed and a plurality of discharge holes 5 formed in a peripheral wall at the lower end. They are arranged in the same row at intervals in the vertical direction. Then, the liquid carbon dioxide is sent from the storage tank 3a to the discharge pipe 4 and discharged into the sea from a plurality of discharge holes 5 formed at the lower end of the discharge pipe 4 and arranged vertically. The work boat 3 advances while discharging the liquid carbon dioxide from the hole 5 of the discharge pipe 4 into the sea, thereby moving the discharge point of the liquid carbon dioxide without being limited to a local area, thereby increasing the dilution of the liquid carbon dioxide. . Note that the carrier 2 and the work boat 3 may be different from each other, or may be shared by both. SL is the sea surface.
[0007]
The state of the liquid carbon dioxide discharged from the discharge pipe 4 is assumed as follows from the current knowledge. The liquid carbon dioxide 6 discharged into the sea from the hole 5 of the discharge pipe 4 does not immediately dissolve into the seawater, and the discharge pipe 4 generates a large number in a fluctuating flow field 9 due to the vortex 8 generated and left behind in the wake. The droplets 7 are dispersed and almost uniformly mixed with seawater. The discharge pipe 4 receives the resistance of the seawater due to the running of the work boat 3, and is inclined rearward in the direction of the ship due to the relative flow velocity with the ocean current, and has a rotation axis behind and substantially parallel to the axis. It progresses while continuously generating wake vortices. The pattern of the vortex 8 varies depending on conditions such as the shape, surface condition, dimensions and moving speed of the discharge pipe. However, when a pipe having an outer diameter of several 10 cm advances at a speed of several knots, the pipe normally moves left and right in the direction of travel. It is considered that the swirl is generated from both sides and the fluctuating flow field 9 is left behind, in which the liquid carbon dioxide and the seawater mix.
[0008]
Then, the liquid carbon dioxide droplet 7 gradually rises in the seawater from the wake of the discharge pipe 4 while being further dissolved in the surrounding seawater. That is, the diameter of the droplet 7 of the liquid carbon dioxide is reduced by being dissolved in the seawater while rising in the seawater. Then, during the process in which the droplet 7 rises to a certain height, all the liquid carbon dioxide is dissolved in the seawater, and the droplet 7 disappears.
[0009]
The middle-layer dilution discharge method discharges liquid carbon dioxide in the sea at a depth of about 2000 m to 2500 m (middle layer) from the sea surface. That is, when liquid carbon dioxide is discharged in the sea above 2000m, the liquid droplets may reach the sea surface before all the discharged liquid carbon dioxide does not dissolve in the seawater, and a depth of about 2000m to 2500m When the liquid carbon dioxide is discharged in the sea, all the liquid carbon dioxide can be dissolved in the seawater before the droplet reaches the sea surface.
[0010]
[Problems to be solved by the invention]
As described above, it is considered that the diluting and discharging apparatus employing the middle-layer diluting and discharging method is a very promising apparatus for discharging and isolating liquid carbon dioxide into the ocean, but this diluting and discharging apparatus has the following problems. is there.
[0011]
At the time when the supply of the liquid carbon dioxide to the discharge pipe 4 is started, the seawater enters the discharge pipe 4 suspended in the sea through the discharge hole 5. In this state, when seawater and liquid carbon dioxide come into contact with each other inside the discharge pipe 4, or when seawater comes into contact with gaseous carbon dioxide, as shown in FIG. 7, depending on temperature and pressure conditions, seawater and liquid carbon dioxide come into contact with each other. A solid hydrate (clathrate) is generated at the contact portion where water and gaseous carbon dioxide come into contact with each other, and the inside of the discharge pipe 4 may be blocked by this hydrate. As a result, the inside of the discharge pipe 4 is closed and the descent of the liquid carbon dioxide is prevented, and it becomes difficult to discharge the liquid carbon dioxide into the sea.
[0012]
The present invention has been made in view of the above circumstances, the contact portion between seawater and liquid carbon dioxide in the discharge pipe, the state of the contact portion between seawater and gaseous carbon dioxide to control the discharge of liquid carbon dioxide satisfactorily It is an object of the present invention to provide an apparatus for diluting and releasing carbon dioxide into the ocean.
[0013]
[Means for Solving the Problems]
The apparatus for diluting and releasing carbon dioxide into the ocean of the invention according to claim 1 is configured such that, while navigating a ship having a discharge pipe suspended in the sea and towing the discharge pipe in an inclined manner, liquid carbon dioxide is discharged to the discharge pipe. In a dilution discharge device that discharges and discharges into the sea from a discharge hole formed in the discharge pipe,
An electric heater is provided at a position corresponding to a contact portion where seawater and carbon dioxide come into contact with each other in a state where seawater is present inside the discharge pipe, as an electric heater for heating the contact portion.
[0014]
Here, the contact portion where seawater and carbon dioxide are in contact means a contact portion where seawater and liquid carbon dioxide are in contact and a contact portion where seawater and gaseous carbon dioxide are in contact.
[0017]
According to a second aspect of the present invention, in the apparatus for diluting carbon dioxide into the ocean according to the first aspect, the heater is vertically movable.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
[0019]
The inventor of the present invention, when sending liquid carbon dioxide into the discharge pipe, if the seawater and liquid carbon dioxide contained inside the discharge pipe come into contact with each other, the seawater freezes at the contact portion and hinders the delivery. In order to avoid this situation, gaseous carbon dioxide at normal temperature is first sent into the discharge pipe and lowered to a position corresponding to the pressure, and gaseous carbon dioxide that comes in contact with seawater at that position is changed according to the ambient temperature. It proposes a method of solidifying and liquefying, and then sending liquid carbon dioxide to the discharge pipe as a steady feed and discharging it into the sea. In this method, when seawater comes into contact with gaseous carbon dioxide, and when gaseous carbon dioxide solidifies at ambient temperature and comes into contact with liquid carbon dioxide and seawater, hydrates may be generated at the contact portion. In the embodiments described below, the formation of a hydrate is suppressed in this state.
[0020]
The inventor of the present invention has also proposed a method of sending gaseous carbon dioxide to the discharge pipe when stopping the supply of liquid carbon dioxide.However, in this case, the same state as described above occurs. Can be directed to the invention,
A first embodiment will be described with reference to FIG.
[0021]
FIG. 1 is a view schematically showing a dilution and discharge apparatus according to this embodiment. This dilution and discharge apparatus is an apparatus for discharging the liquid carbon dioxide shown in FIGS. In FIG. 1, the same parts as those in FIG. 5 are denoted by the same reference numerals. That is, in the drawing, reference numeral 3 denotes a work boat, 3a denotes a tank for storing liquid carbon dioxide mounted on the work boat 3, and 4 denotes a tank attached to the work boat 3 and suspends the liquid carbon dioxide suspended in the sea and stored in the tank 3a. This is a discharge pipe that is sent in from the upper end and then released into the sea. The discharge pipe 4 has a length capable of being inclined and towed in a middle layer sea of 2000 m to 2500 m, and has many discharge holes (not shown) for discharging liquid carbon dioxide fed to the lower end into the sea. 5 are formed.
[0022]
An annular heater 21 that surrounds the discharge pipe 4 from outside is provided at a position corresponding to a contact portion of the discharge pipe 4 where the seawater 10 and the liquid carbon dioxide 6 that are inside the discharge pipe 4 come into contact with each other. Installation fixed. The heater 21 is installed at a position described below. When the liquid carbon dioxide 6 is sent into the discharge pipe 4, gaseous carbon dioxide 6A is first sent into the discharge pipe 4, and the gaseous carbon dioxide 6A contacts the seawater 10 contained in the discharge pipe 4 to form The seawater 10 is pushed down to a depth position corresponding to the pressure of the carbon 6A and stopped. Here, when the gaseous carbon dioxide 6A that comes into contact with the seawater 10 solidifies and liquefies due to the ambient temperature, the heater 21 is installed at a location corresponding to the contact portion where the liquid carbon dioxide 6 comes into contact with the seawater 10. . The position of the contact portion is determined according to the pressure of gaseous carbon dioxide. For example, when gaseous carbon dioxide is fed at 6 atm and 20 ° C., the contact portion becomes a position at a depth of 600 m.
[0023]
When the liquid carbon dioxide 6 and the seawater 10 come into contact with each other at this contact portion, a solid hydrate is formed, and the inside of the discharge pipe 4 is closed by the hydrate. As shown by the line A in the diagram of FIG. 7, the temperature at which the liquid carbon dioxide 6 and the seawater 10 come into contact with each other to form a hydrate is 10 ° C. in the case of 45 atm or more, and 10 ° C. in the case of less than 45 atm. Gradually decreases from 10 ° C. as the atmospheric pressure decreases. Therefore, the heater 21 heats the liquid carbon dioxide 6 and the seawater 10 at the contact portion so as to exceed the temperature of 10 ° C. to suppress the generation of hydrate. The liquid carbon dioxide is kept at 45 atm or more.
[0024]
The heater 21 of this embodiment has an electric heater 22 mounted thereon as a heat source, and is connected to a power supply 24 mounted on the work boat 3 via a cable 23. A thermometer (not shown) for measuring the temperature of the discharge pipe 4 is provided at a position corresponding to a contact portion where the seawater 10 and the liquid carbon dioxide 6 contained in the discharge pipe 4 come into contact with each other. The temperature information from the thermometer is used to control the operation of heating the heater 21. The electric heater 22 may be mounted on the heater 21.
[0025]
The dilution and discharge device configured as described above sails the work boat 3 at sea, tow the discharge pipe 4 while tilting the discharge pipe 4, and passes the liquid carbon dioxide stored in the tank 3a mounted on the work boat 3 through the discharge pipe 4. Release into the sea. Before the discharge, seawater is contained in the discharge pipe 4. First, when gaseous carbon dioxide 6A at a predetermined pressure and temperature, for example, 6 atm and 20 ° C., is sent at the beginning of discharge, gaseous carbon dioxide 6A descends while contacting seawater 10 contained in discharge pipe 4 and gaseous carbon dioxide The seawater 10 is pushed down to a depth position corresponding to the pressure of the carbon 6A, for example, 600 m and stopped. The gaseous carbon dioxide 6A that comes into contact with the seawater 10 solidifies and liquefies at ambient temperature to become liquid carbon dioxide 6.
[0026]
On the other hand, at the time of starting discharge, the cable 23 is connected to the electric heater 22 of the heater 21 installed in the discharge pipe 4 corresponding to the position of the contact portion between the liquid carbon dioxide 6 and the seawater 10 from the power supply 24 provided in the work boat 3. Supply power through. The electric heater 22 receiving the electric power generates heat and heats the contact portion between the liquid carbon dioxide 6 and the seawater 10 inside the discharge pipe 4 via the peripheral wall of the discharge pipe 4. This heating temperature is a temperature at which hydrate formation is suppressed, that is, a temperature exceeding 10 ° C. as described above. This suppresses the formation of hydrate due to the contact between the liquid carbon dioxide 6 and the seawater 10 in the discharge pipe 4 at the contact portion between the liquid carbon dioxide 6 and the seawater 10. Can be prevented.
[0027]
Further, the same configuration is applied to the contact between the seawater 10 and the gaseous carbon dioxide. When the seawater 10 and the gaseous carbon dioxide come into contact with each other in the discharge pipe 4, the heater heats this contact portion to generate water. Reduce the occurrence of Japanese food.
[0028]
FIG. 2 is a diagram schematically illustrating a dilution and discharge device according to a second embodiment in which the form of the heater is different. 2, the same parts as those in FIG. 1 are denoted by the same reference numerals. In this embodiment, a heater 25 using seawater as a heat source is used as a heater for heating a contact portion between the seawater 10 and the liquid carbon dioxide 6 in the discharge pipe 4, and the heater 25 is provided outside the discharge pipe 4. And a pump 27 for feeding seawater from the seawater inlet to the heater body 25, and a seawater near the sea surface SL of the ocean connected to the suction port of the pump 27. A water suction pipe 28 for taking in (the part having the highest temperature as seawater) is provided. The water absorption pipe 28 is held along the discharge pipe 4. Although not shown, the pump 27 is connected to a controller provided on the work boat via a cable so that the driving thereof is controlled.
[0029]
Then, the pump 27 is driven to take in the seawater near the sea surface SL of the ocean from the water suction pipe 28 and suck the seawater into the heater main body 26. The seawater inside the heater main body 26 heats a contact portion between the seawater 10 and the liquid carbon dioxide 6 in the discharge pipe 4, and raises the contact portion to a temperature at which hydrate formation is suppressed. The seawater of the heater main body 26 whose temperature has been lowered by this heating is discharged into the sea. Such a heater 25 has the advantage of being very economical because it uses seawater as a heat source.
[0030]
Further, the same configuration is applied to the contact between the seawater 10 and the gaseous carbon dioxide. When the seawater 10 and the gaseous carbon dioxide come into contact with each other in the discharge pipe 4, the heater heats this contact portion to generate water. Reduce the occurrence of Japanese food.
[0031]
FIG. 3 is a diagram schematically illustrating a dilution and discharge device according to a second embodiment in which the form of the heater is different. 3, the same parts as those in FIG. 1 are denoted by the same reference numerals. In this embodiment, the heater is installed so as to be able to move up and down. As the heater, any of the heater 21 of the first embodiment and the heater 25 of the second embodiment may be used. The heater 25 of the second embodiment is used. The heater main body 26 of the heater 25 is installed in the discharge pipe 4 so as to be able to move up and down by an appropriate means. Further, the controller 31 mounted on the work boat 3 supplies electric power and a signal to the heater main body 26 via the cable 32 to drive the elevating mechanism, thereby moving the heater main body 26 up and down along the discharge pipe 4. The heater 25 can be moved up and down around a position corresponding to a predicted contact portion between the seawater 10 and the liquid carbon dioxide 6 in advance.
[0032]
Then, the pressure and flow rate of the gaseous carbon dioxide 6 </ b> A fed into the discharge pipe 4 are measured by a pressure gauge and a flow meter 33 provided at the upper end entrance of the discharge pipe 4, and the measurement signal is sent to the controller 31. The controller 31 estimates the pressure fluctuation of the gaseous carbon dioxide 6A sent into the discharge pipe 4 and the position fluctuation of the contact portion between the seawater 10 and the liquid carbon dioxide 6 according to the flow rate, and drives the elevating mechanism to drive the heater main body 26. Is raised and lowered so as to be located at the estimated contact position. By doing so, the heater 25 can always be located at the position of the contact portion between the seawater 10 and the liquid carbon dioxide 6.
[0033]
The heater may be moved up and down through a wire or the like by an elevating mechanism provided on the work boat 3. The position of the contact portion between the seawater 10 and the liquid carbon dioxide 6 may be such that the position where the density of the seawater 10 and the liquid carbon dioxide 6 changes in the vicinity of the contact portion (contact portion position) varies, or It is also possible to detect the change in the position where the refractive index of the light of the carbon 6 changes (the position of the contact portion), respectively.
[0034]
Further, the same configuration is applied to the contact between the seawater 10 and the gaseous carbon dioxide. When the seawater 10 and the gaseous carbon dioxide come into contact with each other in the discharge pipe 4, the heater heats this contact portion to generate water. Reduce the occurrence of Japanese food.
[0035]
The present invention is not limited to the above-described embodiment, but can be implemented with various modifications. For example, the heater may use a chemical reaction as a heat source. In the above-described embodiment, the time when the supply of liquid carbon dioxide to the discharge pipe is started is targeted. However, as described above, even when the supply of liquid carbon dioxide is stopped, the contact portion between the seawater and the liquid carbon dioxide by the heater, the seawater and the gas dioxide The case where the contact part with carbon is heated can also be included.
[0036]
【The invention's effect】
As described above, according to the apparatus for diluting and releasing carbon dioxide into the ocean of the present invention, the contact portion where seawater and liquid carbon dioxide come into contact with each other in a state where seawater is present inside the discharge pipe, The heater heats the contact area where the carbon comes in contact, and suppresses the formation of hydrate at this contact area, preventing the hydrate from blocking the inside of the discharge pipe and obstructing the flow of liquid carbon dioxide Therefore, good discharge of carbon dioxide can be performed.
[0037]
Further, according to the present invention, an appropriate heat source can be provided to the heater. Furthermore, according to the present invention, the heater is moved up and down in accordance with a change in the position of the contact portion between seawater and liquid carbon dioxide, and the position of the contact portion between seawater and gaseous carbon dioxide, so that the heater is always positioned at a position corresponding to the contact portion. Thus, the contact portion can be satisfactorily heated.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a dilution and discharge device according to a first embodiment of the present invention.
FIG. 2 is a diagram schematically showing a dilution and discharge device according to a second embodiment.
FIG. 3 is a diagram schematically showing a dilution and discharge device according to a third embodiment.
FIG. 4 is a diagram showing a system for discharging carbon dioxide to the ocean.
FIG. 5 is a diagram schematically showing a device for diluting and discharging carbon dioxide into the ocean.
FIG. 6 is a diagram schematically showing a state of liquid carbon dioxide discharged into the sea by a dilution discharge device.
FIG. 7 is a diagram showing a phase state of carbon dioxide.
[Explanation of symbols]
3. Work boat,
4 ... discharge pipe,
5 ... discharge hole,
6 ... liquid carbon dioxide,
7 ... droplets,
21 ... heater,
22 ... electric heater,
25 ... heater.

Claims (2)

放流管を海中に吊り下げた船を航走して前記放流管を傾斜させて曳航しながら、液体二酸化炭素を前記放流管に送り込んで前記放流管に形成した放流孔から海中へ放流する希釈放流装置において、
前記放流管の内部に海水が存在している状態において海水と二酸化炭素とが接触する接触部に対応する位置に、この接触部を加熱する加熱器として電気ヒータを備えたことを特徴とする二酸化炭素の海洋への希釈放流装置。
Dilution discharge in which liquid carbon dioxide is fed into the discharge pipe and discharged into the sea from a discharge hole formed in the discharge pipe while running on a ship in which the discharge pipe is suspended in the sea while towing the discharge pipe while tilting the discharge pipe. In the device,
An electric heater is provided at a position corresponding to a contact portion where seawater and carbon dioxide contact with each other in a state where seawater is present inside the discharge pipe, as an electric heater for heating the contact portion. A device for diluting carbon into the ocean.
前記加熱器は昇降可能である請求項1記載の二酸化炭素の海洋への希釈放流装置。The apparatus for diluting and discharging carbon dioxide into the ocean according to claim 1, wherein the heater is vertically movable.
JP23152398A 1998-08-18 1998-08-18 Apparatus for diluting carbon dioxide into the ocean Expired - Fee Related JP3583624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23152398A JP3583624B2 (en) 1998-08-18 1998-08-18 Apparatus for diluting carbon dioxide into the ocean

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23152398A JP3583624B2 (en) 1998-08-18 1998-08-18 Apparatus for diluting carbon dioxide into the ocean

Publications (2)

Publication Number Publication Date
JP2000061299A JP2000061299A (en) 2000-02-29
JP3583624B2 true JP3583624B2 (en) 2004-11-04

Family

ID=16924833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23152398A Expired - Fee Related JP3583624B2 (en) 1998-08-18 1998-08-18 Apparatus for diluting carbon dioxide into the ocean

Country Status (1)

Country Link
JP (1) JP3583624B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4883583B2 (en) * 2007-09-26 2012-02-22 独立行政法人海上技術安全研究所 CO2 deep sea injection method and apparatus
KR101924777B1 (en) * 2014-03-25 2018-12-05 현대중공업 주식회사 Offshore plant
KR101924778B1 (en) * 2014-05-20 2018-12-05 현대중공업 주식회사 Offshore plant
CN114988590B (en) * 2022-07-08 2023-08-08 华北电力科学研究院有限责任公司西安分公司 Seawater hardness removal synchronous carbon fixation system and method using new energy as power

Also Published As

Publication number Publication date
JP2000061299A (en) 2000-02-29

Similar Documents

Publication Publication Date Title
US9376167B2 (en) Frictional resistance reduction device for ship
JP5604736B2 (en) Ship frictional resistance reduction device
KR101208168B1 (en) Auto system and method for bring a vessel alongside the pier
JP3583624B2 (en) Apparatus for diluting carbon dioxide into the ocean
EP2958796B1 (en) Improved apparatus for and method of transferring an object between a marine transport vessel and a construction or vessel
US20170212516A1 (en) Position control system and position control method for an unmanned surface vehicle
JP2568944B2 (en) Submarine driving method and submarine
JP5737662B2 (en) Ship jet gas supply method and jet gas control device
JP5688821B2 (en) Ship jet gas supply method and jet gas control device
JP2593458B2 (en) Mooring device and method of installing mooring device
JP2017101620A (en) Exhaust gas emission control facility of combustion engine
EP3748123B1 (en) Tunnel wall-adhering shuttle platform and tunnel monitoring apparatus
KR20130010481A (en) Icebreaking vessel and method of breaking ice
JP2014184877A (en) Ship equipped with bubble type resistance reduction device and resistance reduction method of ship
FI71769C (en) ANORDNING OCH FOERFARANDE FOER FAERSKNING AV ETT METALLBAD INNEHAOLLANDE KYLANDE AEMNEN.
KR20120003025U (en) System for preventing freesing of anchor and ship having the same
JP2007537917A (en) Method and apparatus for reducing water friction on a ship hull
KR102439124B1 (en) temperature control system for urea water tank
KR20150018312A (en) Freezing easy 360 degree icing is rotatable air bubble icebreaker
KR102418132B1 (en) Apparatus for preventing freezing of ballast water
JPS6337204B2 (en)
JP5806251B2 (en) Ship equipped with bubble resistance reduction device and ship resistance reduction method
RU2642677C1 (en) Underwater winch probe
KR101470489B1 (en) Apparatus for controlling the yacht
JP3583625B2 (en) Method for releasing carbon dioxide to the ocean and apparatus for releasing carbon dioxide to the ocean

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040729

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees