JP3583625B2 - Method for releasing carbon dioxide to the ocean and apparatus for releasing carbon dioxide to the ocean - Google Patents

Method for releasing carbon dioxide to the ocean and apparatus for releasing carbon dioxide to the ocean Download PDF

Info

Publication number
JP3583625B2
JP3583625B2 JP23152698A JP23152698A JP3583625B2 JP 3583625 B2 JP3583625 B2 JP 3583625B2 JP 23152698 A JP23152698 A JP 23152698A JP 23152698 A JP23152698 A JP 23152698A JP 3583625 B2 JP3583625 B2 JP 3583625B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
discharge
sea
liquid carbon
discharge pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23152698A
Other languages
Japanese (ja)
Other versions
JP2000061296A (en
Inventor
雅彦 尾崎
宗二 溝上
和久 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for Earth
Original Assignee
Research Institute of Innovative Technology for Earth
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for Earth filed Critical Research Institute of Innovative Technology for Earth
Priority to JP23152698A priority Critical patent/JP3583625B2/en
Publication of JP2000061296A publication Critical patent/JP2000061296A/en
Application granted granted Critical
Publication of JP3583625B2 publication Critical patent/JP3583625B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は回収した液体二酸化炭素を海水に溶し込んで隔離するための二酸化炭素を海洋へ放流する装置に関する。
【0002】
【従来の技術】
近時、地球温暖化が大きな問題となっており、これに伴い地球規模での気候変動を引き起こす可能性があると指摘される温室効果をもった二酸化炭素(CO)の大気中における濃度の上昇を抑えることが特に重要となってきている。そして、この対策のひとつとして火力発電所などで排出される燃焼排ガス中の二酸化炭素を回収して海洋へ送り込むことによって、長期に亘って二酸化炭素を大気から隔離する構想が提案されているが、その成立にあたっては二酸化炭素を送り込む海洋において新たな環境影響が引き起こされないようにすることが必要となっている。
【0003】
二酸化炭素送り込みによる海洋環境への影響を小さくするシステムとして、次に述べる2種類のシステムが提案されている。その一つは貯蓄型と称されるもので、二酸化炭素を深海底のくぼみのような場所に集中して溜めることにより影響範囲を特定の場所に限定して局所化しようとする方法である。
【0004】
もう一つのシステムは、溶解拡散型と称されるもので、二酸化炭素を海水中に溶し込んで薄く希釈し広く拡散させて海水中の二酸化炭素の濃度の上昇を抑制しようとする方法であり、本来海水中に溶解している二酸化炭素の濃度がある程度上昇するにとどまるという考え方に基くものである。
【0005】
この溶解拡散型における具体的な方法として船舶により二酸化炭素の放流点を移動させて海中の中層にて二酸化炭素を放流する中層希釈放流方式が挙げられている。この方式について図1ないし図3を参照して説明する。図1(a)は中層希釈放流方式を模式的に示す図、図1(b)は図1(a)のZ部を拡大して示す図、図2は放流装置により放流を行なうシステムを模式的に示す図、図3は二酸化炭素を放流管から放流した直後に形成される液滴挙動を示す説明図である。
【0006】
この中層希釈放流方式は、図1および図2に示すように陸上プラント1で燃焼排ガスから分離、回収した二酸化炭素を液化し、その液体二酸化炭素を貯溜タンク2aに充填して運搬船2にて所定の海域まで海上輸送し、そこで貯溜タンク2aの液体二酸化炭素を作業船3に搭載した貯溜タンク3aに移し替える。液体二酸化炭素は例えば圧力が6atm、温度が−55℃とする。図6は二酸化炭素の相状態を示す線図であるが、この線図で判るように前記6atm、温度を−55℃は液体二酸化炭素を経済的に得ることができる条件である。作業船3は海中に吊り下げる鋼管などからなる放流管4を備えており、液体二酸化炭素を貯溜タンク3aから放流管4に送り込んで放流管4の例えば下端部に上下方向に並んで形成した複数個の放流孔5から海中に放流する。作業船3は放流管4の放流孔5から液体二酸化炭素を海中に放流しつつ前進することにより、液体二酸化炭素の放流点を局所に限定せず移動させて液体二酸化炭素の希釈を増進させている。また、放流管4は上端が作業船3の甲板付近に枢軸によって作業船前後方向に傾動できるように支持されており、作業船3の走行によって支持点を支点にして走行方向後側へ向けて傾斜することになる。なお、運搬船2と作業船3とは別なものであっても、また両者が兼用するものであっても良い。なお、図中SLは海面を示している。
【0007】
放流管4から放流された液体二酸化炭素の液滴の挙動は、現状の知見からは次のように想定される。図3に示すように放流管4の孔5から海中へ放流された二酸化炭素6はすぐに海水に溶け込まないで、放流管4が後流に生成して残して行く渦8による変動流場9の中で多数の液滴7となって分散してほぼ均一に海水と混合される。放流管4は対向する相対的な流速によって船舶進行方向に向かって後側へ傾斜し、その背後に管軸線とほぼ平行な回転軸をもつ後流渦を連続的に生成しながら進んでいく。渦8のパターンは放流管の形状、表面の状態および寸法や移動速度などの条件によって異なるが、外径数10cmの放流管4が数ノットの速度で進む場合には、通常進行方向に向かって管左右両側から入れ替わり渦8が発生して変動流場9を後に残していき、その中で液体二酸化炭素と海水とが混合すると考えられる。
【0008】
そして、液体二酸化炭素の液滴7は放流管4の後流からさらに周辺の海水に溶け込みながら緩やかに海水中を上昇していく。すなわち、二酸化炭素6の液滴7は海水中を上昇しながら海水に溶け込んでいくことによって直径が小さくなっていく。そして、液滴7がある高さまで上昇していく過程で液体二酸化炭素は全て海水中に溶け込んでしまい液滴7が消滅する。
【0009】
中層希釈放流方式は、中層の海中で二酸化炭素の放流を行うものである。すなわち、表層に近い海中で二酸化炭素の放流を行うと放流された液体二酸化炭素が全て海水に溶け込まない内に液滴が海の表層に到達する可能性があり、中層の深さの海中で二酸化炭素の放流を行なうと液滴が海面に達する前に全ての液体二酸化炭素を海水に溶け込ませることができる。
【0010】
【発明が解決しようとする課題】
このように中層希釈放流方式は、液体二酸化炭素を海洋へ放流して隔離する上で大変有望な方法と考えられているが、しかし次に述べる問題がある。
【0011】
海中に放流した液体二酸化炭素が海水に溶け込むと、海水のpH(酸性)値が低下するなどして海洋生物への影響が生じる可能性があるので、このような影響を極小に抑えるためには海中に放流した二酸化炭素をできるだけ希釈して海水における二酸化炭素の濃度の増大、すなわちPHの低下を抑制する技術の開発が重要となってくる。
【0012】
前述したように前進移動する放流管の放流孔から海水中に放流された液体二酸化炭素は、液滴となって放流管の後流の幅で上昇しながら海水中に溶け込んでいき、最終的に液滴が消滅して全て海水中に溶け込む。このため、海水中に放流された液体二酸化炭素は、船舶の移動速度(放流管の移動速度)と、放流管後流の幅と、液滴の上昇高さで囲まれる体積の海水中に溶け込んで希釈されることになる。すなわち、海水中に放流された液体二酸化炭素の初期希釈率は、Q/b・U・Lという近似式により求められる。ただし、Qは液体二酸化炭素の流量、bは放流管後流(変動流場)の幅、Uは作業船の速度(放流管の速度)、Lは液滴浮上による鉛直方向への広がりである。例えば、Qを100Kg/秒、bを3m(放流管の外径の数倍)、Uを3m/秒(放流管の浮き上がりからの制限がある。)とした場合、Lがほぼ300mであると希釈率は1/30000でpHが6.5であり、Lがほぼ1000mであると希釈率は1/90000でpHが7.5である。
【0013】
一方、液体二酸化炭素を海水中に放流して発生した液滴は、周辺海水より若干軽いので上昇しながらすこしづつ周辺の海水に溶け込んでいく。この液滴はほぼ一定速度で溶解して縮小していき、初期直径が大きいほど海水に溶け込むまでの上昇距離が長くなる。そして、放流管の放流孔から液体二酸化炭素を放流した直後の初期液滴直径が大き過ぎると、中層の海中においては液滴が溶け込まないうちに海の表層に到達して液体二酸化炭素を大気から隔離するという目的が不十分となるとともに、その多くが表層に生存する海洋生物の活動に悪影響を及ぼすことになる。また、初期液滴直径が小さ過ぎると上昇高さが短く早い時間のうちに海水中に溶け込んでしまい、この結果二酸化炭素の濃度が高い水塊が生じることになる。
【0014】
従って、海中の中層において放流された液体二酸化炭素の液滴を中層の深さの範囲で海水に溶け込ませて、海洋生物の活動に悪影響を与えずに液体二酸化炭素を海水中に溶け込ませることができるようにするために、液体二酸化炭素を放流管の放流孔から放流した時に生じる液滴の直径を制御することが必要となる。
【0015】
本発明は、中層希釈放流方式において海中に放流した液体二酸化炭素の液滴の直径を制御して液滴を海中の中層で溶け込ませるようにした二酸化炭素を海洋へ放流する装置を提供することを課題とする。
【0016】
【課題を解決するための手段】
発明の二酸化炭素を海洋へ放流する方法は、多数の放流孔を形成した放流管を海上を走行する船から海中に吊り下げて移動させながら液体二酸化炭素を放流管に送り込んで前記放流孔から海中に放流することを前提とする。そして、1500mから2500mの深さの範囲の海中に液滴の初期直径が10mmないし15mm液体二酸化炭素を放流管の放流孔から海中に放流する。
【0017】
また、本発明の二酸化炭素を海洋へ放流する装置は、多数の放流孔を形成した放流管を海上を走行する船から海中に吊り下げて移動させながら液体二酸化炭素を放流管に送り込んで放流孔から海中に放流することを前提とする。そして、液体二酸化炭素が海中に放流された時に形成される液滴の初期直径が10mmないし15mmとなるように前記液体二酸化炭素を海中に放流する放流管の放流孔の直径3mmないし10mmとする
【0018】
この場合、二酸化炭素を海洋へ放流する装置において、放流管の放流孔の数下記の式で求められる数以上であることが好ましい。
【0019】
n=Q/[(π/4)・d・V]
ただし、
Q:液体二酸化炭素を放流管の放流孔から放流する単位時間当りの流量、
V:前記放流孔から放流される液体二酸化炭素の放流速度=5cm/秒ないし15cm/秒、
d:放流孔の直径、
(π/4)・d:放流孔の開口面積。
【0020】
また、二酸化炭素を海洋へ放流する装置において、放流管の長さは、2000mないし4000mとする。
二酸化炭素を海洋へ放流する方法において、放流孔の直径は、3mmないし10mmとし、放流孔から放流される液体二酸化炭素の放流速度は、5cm/秒ないし15cm/秒以下とする。
【0021】
【発明の実施の形態】
本発明の実施の形態について説明する。
【0022】
本発明は、前述した図1ないし図3にて示す液体二酸化炭素を中層希釈放流方式により海洋へ放流する放流装置を対象としている。すなわち、中層希釈放流方式を採用した放流装置は、作業船3に搭載した貯溜タンク3aに貯溜された液体二酸化炭素を、作業船3に傾動自在に支持されて海中に吊り下げられた鋼管などからなる放流管4に送り込み、放流管4の例えば下端部に上下方向に並んで形成した複数個の放流孔5から海中の中層に放流するもので、作業船3は放流管4の放流孔5から液体二酸化炭素を海中に放流しつつ前進して放流点を移動する方式の放流装置である。放流管4の放流孔5から海中に放流された液体二酸化炭素は液滴となり、これらの液滴が海中に分散して上昇しつつ海中に溶け込んで希釈される。
【0023】
本発明の放流装置における特徴について図1を参照して説明する。
【0024】
本発明の発明者は種々研究を重ねてきた結果、放流管4の放流孔5から液体二酸化炭素を放流した時に形成される液滴7が海中の中層の深さ範囲で上昇するうちに海水に溶け込ませることができる液滴7の初期直径を見出した。
【0025】
すなわち、本発明の放流装置は、作業船3から海中に吊り下げた放流管4の下端部に上下方向に並んで形成される多数の放流孔5から海中に液体二酸化炭素を放流する時に、海中に放流された液体二酸化炭素により形成される液滴7の初期の直径が10mmないし15mmとなるように液体二酸化炭素を放流管4の放流孔5から海中に放流するものである。
【0026】
説明を加える。本発明の放流装置は、図1に示すように放流管4の放流孔5から液体二酸化炭素を放流する海中の中層を海面SLから1500mから2500mの深さの範囲として設定している。従来の知見では放流装置が対象とする海中の中層とは、深さ1000mないし2000mの海中を対象としていたが、本願発明の発明者が種々研究した結果最新の知見に基き、海面から深さ1500mから2500mの範囲で液体二酸化炭素を放流して,液体二酸化炭素が溶けながら上昇する現象を利用する構想を見出した。この深さ1500mから2500mの海中に吊り下げる放流管4の長さは作業船3の走行に伴う傾斜を見込んで約2000mないし4000mとする。すなわち、この長さであると、作業船の走行により放流管4が最大45度まで傾いても放流管4を1500mから2500mの海中に吊り下げることができ、中層希釈放流方式により放流を行なうことが可能となる。
【0027】
そして、本発明の放流装置は、図1に示すように1500mから2500mの深さの範囲の海中において、液体二酸化炭素を放流した時に形成される液滴7の初期直径が10mmないし15mmになるように、液体二酸化炭素を放流管4の放流孔5から海中へ放流するものである。液体二酸化炭素の放流により形成された初期直径が10mmないし15mmの液滴7は、海中を500mないし1000mほど上昇するうちに全て海水中に溶け込んで消滅する。
【0028】
この液滴7の初期直径が5mm未満であると、液滴7の上昇高さが短く早い時間のうちに海水中に溶け込んでしまい、この結果二酸化炭素の濃度が高い水塊が生じる。また、液滴7の初期直径が15mmを越えると、中層の海中においては液滴が溶け込まないうちに海の表層に到達して液体二酸化炭素を大気から隔離するという目的が不十分となるとともに、その多くが表層部に生存する海洋生物の活動に悪影響を及ぼす。
【0029】
このように1500mから2500mの深さの範囲の海中において、液滴7の直径を10mmないし15mmに制御して液体二酸化炭素を放流することにより、500mないし1000mほどの距離の上昇で液体二酸化炭素を全て海水に溶け込ませることができる。従って、中層の海中において液体二酸化炭素を放出して液滴7の上下方向の希釈をかせいで海水に溶け込ませることができるとともに、液体二酸化炭素が海の表層に到達することを阻止して、二酸化炭素を海中に放流して隔離する目的を達成するとともに海の表層に存在する海洋生物の活動に悪影響を与えることを防止できる。
【0030】
図4は放流管4の後流中を上昇する液滴と静水中を上昇する液滴の夫々の直径変化を試算して求めた線図である。すなわち、深さ1500mの海中で発生した直径5mm、10mm、15mmおよび20mmの各液滴が上昇していくに伴いその深度の減少と直径が減少していく過程を示したものである。この線図によれば、初期直径が10mmないし15mmの液滴7が500mないし1000mほどの距離を上昇するうちに消滅していくことが判る。
【0031】
さらに、本発明の発明者は前述した液滴7の初期直径を10mmないし15mmの範囲に特定するという知見に基いて、この特定の初期直径を有する液滴7を形成させるための具体的技術について種々研究を重ねてきた結果、放流管4に形成する放流孔5の直径を特定の範囲に設定することにより前記液滴7の初期直径を制御できることを見出した。
【0032】
すなわち、本発明の放流装置は、前記のように液滴7の初期の直径が10mmないし15mmとなるように液体二酸化炭素を放流管4の放流孔5から海中に放流するために、放流管4に形成する放流孔5の直径を3mmないし10mmの範囲に設定する。すなわち、放流管4に形成する放流孔5の直径を3mmないし10mmの範囲に設定することにより、放流孔5から放流する液滴7の初期直径を10mmないし15mmに制御することができる。
【0033】
放流孔5の直径が3mm未満であると、液滴の直径を10mm以上に制御することができず、また放流孔5の直径が10mmを越えると液滴の直径を15mm以下に制御することができない。液滴7の直径と放流孔5の直径との比をみると、約1.5倍から約3倍の範囲に入ると考えられる。
【0034】
図5は液体二酸化炭素および海水に相当する模擬流体を用いて、(液滴直径 /放流孔直径 )と液体二酸化炭素放流流量との関係を計測した結果を示す線図である。線図において□印で示す計測に用いたCO模擬流体はシリコン油(比重0.83)、海水模擬流体は水+アルコール(比重0.84)である。両者の界面張力は5.6dyne/cmである。また、線図において○および△印で表す計測に用いたCO模擬流体はシリコン油(比重0.95)、海水模擬流体は水+アルコール(比重0.96)である。両者の界面張力は23.8dyne/cmである。なお、放流孔直径5mm、放流管の傾斜角度は約45度、放流孔の向きは上向きである。
【0035】
また図中の線は以下の評価式で計算された結果である。
【0036】
/d=1.31{d (γ−γco2 )/σ}−0.3
ただし、dは二酸化炭素液滴径、dは孔径、γは海水の比重、γco2 は液体二酸化炭素の比重、σは界面張力である。実験結果と設計結果は良く一致していることが判る。上式に実際の海洋中層での諸値を入れてdが10mmから15mmになる範囲を検討する。すなわち、深度が1500mmで海水温度2〜3℃の場合、γ−γco2 は0.05程度であり、界面張力は75dyne/cmであるので、dが3mmの時d/dは3.1に近似し、dが10mmの時d/dは1.5に近似する。つまり、dが10〜15mmの範囲になるためにはdが3〜10mmの範囲であれば良いことになる。
【0037】
また、本発明の発明者は、放流管4の放流孔5から液体二酸化炭素を放流する時に、初期直径を10mmないし15mmの範囲の液滴を発生させるためには、放流孔5の直径を3mmから10mmに設定することに加えて、液体二酸化炭素の放流速度をできるだけ低速、具体的には5cm/秒ないし15cm/秒以下に制御することが好ましいことを見出した。すなわち、液体二酸化炭素の放流速度が前記範囲より速いと液滴初期直径を10mmないし15mmの範囲に制御することが困難になるからである。
【0038】
本発明の発明者は、液体二酸化炭素の放流速度を前記の範囲に制御するために、放流管4に形成する放流孔5の数に着目した。すなわち、放流孔5から放流される液体二酸化炭素の流量は、放流孔の開口面積、放流孔の数および放流速度を乗したものであり、次に示す式により求められる。
【0039】
n=Q/[(π/4)・d・V]
ただし、
n:放流孔の数、
Q液体二酸化炭素を放流管の放流孔から放流する単位時間当りの流量、
V:前記放流孔から放流される液体二酸化炭素の放流速度、
d:放流孔の直径、
(π/4)・d:放流孔の開口面積。
【0040】
そこで、この式の前記放流孔から放流される液体二酸化炭素の放流速度Vに5cm/秒ないし15cm/秒を挿入して、この式により放流孔の数を求める。そして、放流管4の放流孔5の数を、前記式により求めた放流孔の数より大きく設定することにより、液体二酸化炭素の放流速度Vを5cm/秒ないし15cm/秒以下に抑えることが可能となる。
【0041】
例えば流量が100cm/秒、放流孔5の直径が0.5cm、放流速度が10cm/秒とした場合、前記式により放流孔5の数は約50000となる。すなわち50000以上の放流孔5を形成することにより放流速度が10cm/秒に調整することができることが判る。
【0042】
このようにして放流管に形成する放流孔5の直径を3mmから10mmに設定し、さらに好ましくは液体二酸化炭素の放流速度をできるだけ低速の5cm/秒ないし15cm/秒以下にすることにより、液滴7の初期直径を10mmないし15mmの範囲に正確に制御することができる。
【0043】
一つの具体例について述べる。100Kg/秒の液体二酸化炭素(50万から100万の石炭火力から排出される二酸化炭素に相当する。)を放流するために、直径数10cm、長さ2500mの放流管を使用し、この放流管を吊り下げた作業船を5ノットで走行させて放流管から液体二酸化炭素を海中へ放流した。そして、放流された二酸化炭素の液滴が海水に溶け込み終わるまで海中を1000m上昇すると約5万倍の希釈率が得られ、海水のpHを6.8程度に抑えることができた。
【0044】
なお、本発明は前述した実施の形態に限定されず、種々変形して実施することができる。
【0045】
【発明の効果】
以上説明したように本発明の液体二酸化炭素を海洋へ放流する装置によれば、液滴の初期直径を特定の値となるように制御して放流管の放流孔から液体二酸化炭素を海中に放流して、海中の中層において放流された液体二酸化炭素の液滴をこの中層の深さの範囲で海水に溶け込ませて、海洋生物の活動に悪影響を与えずに液体二酸化炭素を全て海水中に溶け込ませることができる。従って、本発明によれば、中層希釈放流方式において海中に放流した液体二酸化炭素の液滴の直径を制御して液滴を海中の中層で溶け込ませるようにした二酸化炭素を海洋へ放流する装置を得ることができる。
【0046】
また、本発明によれば、放流管に形成する放流孔の直径を特定の範囲に設定し、さらに好ましくは放流管に形成する形成孔の数を特定の範囲に設定して放流速度を制御することにより、液滴の初期直径を特定の値となるように正確に制御することができる。
【0047】
さらに、作業船に吊り下げる放流管の長さを特定することにより、深さ1500mないし2500mの中層の海中において液体二酸化炭素の放流を行なうことを可能にできる。
【図面の簡単な説明】
【図1】本発明の放流装置を模式的に示す図。
【図2】本発明の放流装置により放流を行なうシステムを模式的に示す図。
【図3】放流装置に設けた放流管から二酸化炭素を放流して発生する液滴の挙動を示す図。
【図4】放流装置に設けた放流管から二酸化炭素を放流して発生する液滴が水中を上昇する際における液滴直径の変化を示す線図。
【図5】放流管から模擬流体を放流してその流量と液滴直径/放流孔との関係を調べる実験の結果を示す線図。
【図6】二酸化炭素の相状態を示す線図。
【符号の説明】
2…運搬船、
3…作業船、
3a…貯溜タンク、
4…放流管、
5…放流孔、
6…放流後の二酸化炭素
7…液滴、
8…渦、
9…変動流場。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for dissolving recovered carbon dioxide in seawater and discharging carbon dioxide to the sea for sequestration.
[0002]
[Prior art]
In recent years, global warming has become a major problem, and it has been pointed out that the concentration of carbon dioxide (CO 2 ) in the atmosphere with a greenhouse effect, which has been pointed out as a possibility of causing climate change on a global scale, is increasing. It is particularly important to control the rise. As one of the measures, a concept has been proposed in which carbon dioxide in combustion exhaust gas discharged from thermal power plants and the like is collected and sent to the ocean, thereby isolating carbon dioxide from the atmosphere for a long time. In order to achieve this, it is necessary to ensure that no new environmental impacts are caused in the ocean that sends carbon dioxide.
[0003]
The following two types of systems have been proposed as systems for reducing the influence on the marine environment due to the feeding of carbon dioxide. One of them is a storage type, which is a method in which the area of influence is limited to a specific place and localized by storing carbon dioxide intensively in a place such as a hollow on the deep sea floor.
[0004]
Another system, called the dissolution-diffusion type, is a method in which carbon dioxide is dissolved in seawater, diluted dilutely and diffused widely to suppress the rise in the concentration of carbon dioxide in seawater. However, it is based on the idea that the concentration of carbon dioxide originally dissolved in seawater only increases to some extent.
[0005]
As a specific method in the dissolution-diffusion type, there is a middle-layer dilution discharge method in which a discharge point of carbon dioxide is moved by a ship to discharge carbon dioxide in a middle layer in the sea. This method will be described with reference to FIGS. FIG. 1A is a diagram schematically showing a middle-layer dilution discharge system, FIG. 1B is an enlarged view of a portion Z in FIG. 1A, and FIG. 2 is a diagram showing a system for discharging by a discharge device. FIG. 3 is an explanatory view showing the behavior of droplets formed immediately after carbon dioxide is discharged from a discharge pipe.
[0006]
As shown in FIGS. 1 and 2, this middle-layer dilution discharge system liquefies carbon dioxide separated and recovered from flue gas in a land plant 1, fills the liquid carbon dioxide into a storage tank 2a, and performs predetermined , The liquid carbon dioxide in the storage tank 2a is transferred to the storage tank 3a mounted on the work boat 3. The liquid carbon dioxide has, for example, a pressure of 6 atm and a temperature of -55 ° C. FIG. 6 is a diagram showing the phase state of carbon dioxide. As can be seen from this diagram, the condition of 6 atm and a temperature of -55 ° C. are conditions under which liquid carbon dioxide can be obtained economically. The work boat 3 is provided with a discharge pipe 4 made of a steel pipe or the like suspended under the sea, and a plurality of liquid carbon dioxides are sent from the storage tank 3a to the discharge pipe 4 and formed at the lower end of the discharge pipe 4, for example, in the vertical direction. The water is discharged from the individual discharge holes 5 into the sea. The work boat 3 advances while discharging the liquid carbon dioxide from the discharge hole 5 of the discharge pipe 4 into the sea, thereby moving the discharge point of the liquid carbon dioxide without being limited to a local area and increasing the dilution of the liquid carbon dioxide. I have. The discharge pipe 4 is supported at the upper end thereof near the deck of the work boat 3 by a pivot so as to be able to tilt in the front-rear direction of the work boat. Will be inclined. Note that the carrier 2 and the work boat 3 may be different from each other, or may be shared by both. In the figure, SL indicates the sea surface.
[0007]
The behavior of the droplet of the liquid carbon dioxide discharged from the discharge pipe 4 is assumed as follows from the current knowledge. Not incorporated insoluble in released carbon dioxide 6 seawater immediately into the sea from the holes 5 of the discharge tube 4 as shown in FIG. 3, fluctuation flow field due to the eddy 8 discharge pipe 4 is gradually leaving generated downstream In 9, a large number of droplets 7 are dispersed and almost uniformly mixed with seawater. The discharge pipe 4 is inclined rearward in the direction of travel of the ship by the opposing relative flow velocities, and proceeds while continuously generating a wake vortex having a rotation axis substantially parallel to the pipe axis behind the discharge pipe. The pattern of the vortex 8 varies depending on conditions such as the shape, surface condition, dimensions and moving speed of the discharge pipe. It is considered that the swirl 8 is generated from the left and right sides of the pipe and the fluctuating flow field 9 is left behind, in which the liquid carbon dioxide and the seawater mix.
[0008]
Then, the liquid carbon dioxide droplet 7 gradually rises in the seawater from the wake of the discharge pipe 4 while being further dissolved in the surrounding seawater. That is, the diameter of the droplet 7 of the carbon dioxide 6 is reduced by being dissolved in the seawater while rising in the seawater. Then, in the process of ascending the droplet 7 to a certain height, all the liquid carbon dioxide is dissolved in the seawater, and the droplet 7 disappears.
[0009]
The middle-layer dilution discharge system discharges carbon dioxide in the middle layer sea. In other words, if carbon dioxide is released in the sea near the surface layer, droplets may reach the surface of the sea before all of the released liquid carbon dioxide dissolves in the seawater. The release of carbon allows all of the liquid carbon dioxide to dissolve into the seawater before the droplets reach the sea surface.
[0010]
[Problems to be solved by the invention]
Thus, the middle dilution discharge method is considered to be a very promising method for discharging and isolating liquid carbon dioxide into the ocean, but has the following problems.
[0011]
If liquid carbon dioxide released into the sea dissolves into seawater, it may cause an effect on marine organisms, such as a decrease in the pH (acidity) value of seawater. To minimize such effects, It is important to develop a technique for diluting carbon dioxide discharged into the sea as much as possible to suppress an increase in the concentration of carbon dioxide in seawater, that is, a decrease in PH.
[0012]
As described above, the liquid carbon dioxide discharged into the seawater from the discharge hole of the discharge pipe that moves forward moves into the seawater as droplets while rising at the width of the wake of the discharge pipe, and finally dissolves in the seawater. Droplets disappear and all dissolve into seawater. For this reason, the liquid carbon dioxide discharged into the seawater dissolves in the volume of seawater surrounded by the moving speed of the ship (moving speed of the discharge pipe), the width of the wake of the discharge pipe, and the height of the droplets. Will be diluted. That is, the initial dilution rate of the liquid carbon dioxide discharged into the seawater is obtained by an approximate expression of Q / b · U · L. Here, Q is the flow rate of the liquid carbon dioxide, b is the width of the wake (fluctuation flow field) of the discharge pipe, U is the speed of the work boat (the speed of the discharge pipe), and L is the vertical spread due to the floating of droplets. . For example, if Q is 100 kg / sec, b is 3 m (several times the outer diameter of the discharge pipe), and U is 3 m / sec (there is a restriction from the rise of the discharge pipe), L is about 300 m. The dilution ratio is 1/30000 and the pH is 6.5, and when L is approximately 1000 m, the dilution ratio is 1/90000 and the pH is 7.5.
[0013]
On the other hand, the droplets generated by discharging the liquid carbon dioxide into the seawater are slightly lighter than the surrounding seawater, and gradually dissolve into the surrounding seawater while rising. These droplets dissolve and shrink at a substantially constant speed, and the larger the initial diameter, the longer the rising distance before dissolving in seawater. If the initial droplet diameter immediately after discharging the liquid carbon dioxide from the discharge hole of the discharge pipe is too large, the liquid carbon dioxide will reach the surface of the sea before the droplets dissolve in the middle layer sea, and the liquid carbon dioxide will be removed from the atmosphere. The purpose of sequestration becomes inadequate, and many will adversely affect the activity of surface marine life. On the other hand, if the initial droplet diameter is too small, the rising height is short and dissolves in seawater within a short period of time, and as a result, a water mass having a high concentration of carbon dioxide is generated.
[0014]
Therefore, liquid carbon dioxide droplets released in the middle layer of the sea can be dissolved in seawater within the range of the depth of the middle layer, and liquid carbon dioxide can be dissolved in seawater without adversely affecting the activity of marine life. In order to be able to do so, it is necessary to control the diameter of the droplet that is generated when the liquid carbon dioxide is discharged from the discharge hole of the discharge pipe.
[0015]
The present invention provides a device for controlling the diameter of liquid carbon dioxide droplets discharged into the sea in the middle-layer dilution discharge system to discharge the carbon dioxide into the sea where the droplets are dissolved in the middle layer of the sea. Make it an issue.
[0016]
[Means for Solving the Problems]
How to discharge the carbon dioxide present invention to the ocean, the discharge hole by feeding the flow tube discharge liquid carbon dioxide while moving the discharge tubes forming a plurality of discharge holes from the ship that travels sea hanging into the sea It is assumed that the water is released from the sea . Then, it discharged into the sea to no 10mm deep initial diameter of the droplet in the sea in the range of 2500m from the release Nagareana of the tube release the 15mm of liquid carbon dioxide from 1500 m.
[0017]
The device for discharge of the carbon dioxide of the present invention to the ocean is discharged liquid carbon dioxide is fed into the discharge tube while moving the discharge tubes forming a plurality of discharge holes from the ship that travels sea hanging into the sea It is assumed that the water is released from the hole into the sea. And, the diameter of the discharge hole of the discharge pipe for discharging the liquid carbon dioxide into the sea is set to 3 mm to 10 mm so that the initial diameter of the droplet formed when the liquid carbon dioxide is discharged into the sea is 10 mm to 15 mm . .
[0018]
In this case, the device for discharge of carbon dioxide into the ocean, the number of Nagareana release of release flow tube is preferably equal to or greater than the number that is obtained by the following formula.
[0019]
n = Q / [(π / 4) · d 2 · V]
However,
Q: Flow rate per unit time at which liquid carbon dioxide is discharged from the discharge hole of the discharge pipe,
V: discharge rate of liquid carbon dioxide discharged from the discharge hole = 5 cm / sec to 15 cm / sec;
d: diameter of discharge hole,
(Π / 4) · d 2 : opening area of discharge hole.
[0020]
Further, in the apparatus for discharge of carbon dioxide into the ocean, the length of the discharge flow tube, to no 2000m and 4000 m.
In the method of discharging carbon dioxide to the ocean, the diameter of the discharge hole is set to 3 mm to 10 mm, and the discharge speed of the liquid carbon dioxide discharged from the discharge hole is set to 5 cm / sec to 15 cm / sec or less.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described.
[0022]
The present invention is directed to a discharge device that discharges the liquid carbon dioxide shown in FIGS. 1 to 3 to the ocean by a middle dilution discharge method. That is, the discharge apparatus employing the middle-layer dilution discharge method is configured to transfer the liquid carbon dioxide stored in the storage tank 3a mounted on the work boat 3 from a steel pipe suspended in the sea while being tiltably supported by the work boat 3 and suspended in the sea. Into the middle layer of the sea through a plurality of discharge holes 5 vertically arranged at, for example, the lower end of the discharge pipe 4. This is a discharge device of the type that moves forward while moving forward while discharging liquid carbon dioxide into the sea. The liquid carbon dioxide discharged into the sea from the discharge hole 5 of the discharge pipe 4 becomes droplets, and these droplets disperse into the sea and ascend into the sea while being ascended and diluted.
[0023]
The features of the discharge device of the present invention will be described with reference to FIG.
[0024]
As a result of various studies, the inventor of the present invention has found that a droplet 7 formed when liquid carbon dioxide is discharged from the discharge hole 5 of the discharge pipe 4 rises in the depth range of the middle layer in the sea. The initial diameter of the droplet 7 that can be dissolved has been found.
[0025]
That is, the discharge device of the present invention is capable of discharging liquid carbon dioxide into the sea from a large number of discharge holes 5 formed in the lower end portion of the discharge pipe 4 suspended from the work boat 3 into the sea. The liquid carbon dioxide is discharged from the discharge hole 5 of the discharge pipe 4 into the sea so that the initial diameter of the droplet 7 formed by the liquid carbon dioxide discharged to the water is 10 mm to 15 mm.
[0026]
Add a description. In the discharge device of the present invention, as shown in FIG. 1, the middle layer in the sea where liquid carbon dioxide is discharged from the discharge hole 5 of the discharge pipe 4 is set to have a depth of 1500 m to 2500 m from the sea surface SL. According to the conventional knowledge, the middle layer in the sea targeted by the discharge device targets the sea at a depth of 1000 m to 2000 m. However, based on the latest knowledge obtained by various studies by the inventors of the present invention, the depth of 1500 m from the sea surface was determined. A range of 2500 m from the liquid carbon dioxide, and found a concept of utilizing a phenomenon in which the liquid carbon dioxide rises while melting. The length of the discharge pipe 4 suspended from the sea at a depth of 1500 m to 2500 m is about 2,000 m to 4000 m in consideration of the inclination accompanying the traveling of the work boat 3. In other words, with this length, the discharge pipe 4 can be suspended from the sea of 1500 m to 2500 m even if the discharge pipe 4 is inclined up to 45 degrees by traveling of the work boat, and the discharge is performed by the middle-layer dilution discharge method. Becomes possible.
[0027]
Then, as shown in FIG. 1, the discharge device of the present invention is designed so that the initial diameter of the droplet 7 formed when the liquid carbon dioxide is discharged is 10 mm to 15 mm in the sea having a depth of 1500 m to 2500 m. In addition, liquid carbon dioxide is discharged from the discharge hole 5 of the discharge pipe 4 into the sea. All the droplets 7 having an initial diameter of 10 mm to 15 mm formed by the discharge of liquid carbon dioxide are dissolved in seawater and disappear in the course of rising in the sea by about 500 m to 1000 m.
[0028]
If the initial diameter of the droplet 7 is less than 5 mm, the rising height of the droplet 7 is short and the droplet 7 dissolves in seawater within a short period of time, and as a result, a water mass having a high concentration of carbon dioxide is generated. If the initial diameter of the droplet 7 exceeds 15 mm, the purpose of reaching the surface of the sea before the droplet is dissolved and isolating liquid carbon dioxide from the atmosphere becomes insufficient in the middle layer of the sea, Many adversely affect the activity of marine organisms living on the surface.
[0029]
As described above, in the sea having a depth of 1500 m to 2500 m, by discharging the liquid carbon dioxide while controlling the diameter of the droplet 7 to 10 mm to 15 mm, the liquid carbon dioxide can be removed at a rise of about 500 m to 1000 m. All can be dissolved in seawater. Therefore, the liquid carbon dioxide can be released into the middle layer of the sea and dissolved in the seawater by diluting the droplet 7 in the vertical direction, and the liquid carbon dioxide can be prevented from reaching the surface layer of the sea, and The purpose of the present invention is to release carbon into the sea and sequester the carbon, and to prevent adverse effects on the activities of marine organisms existing on the surface of the sea.
[0030]
FIG. 4 is a diagram obtained by trial calculation of the diameter change of each of the droplet rising in the downstream of the discharge pipe 4 and the droplet rising in still water. That is, it shows the process of decreasing the depth and decreasing the diameter as each of the droplets having a diameter of 5 mm, 10 mm, 15 mm and 20 mm generated in a sea of 1500 m in depth rises. According to this diagram, it can be seen that the droplet 7 having an initial diameter of 10 mm to 15 mm disappears as the distance increases from 500 m to 1000 m.
[0031]
Further, based on the knowledge that the inventor of the present invention specifies the initial diameter of the droplet 7 in the range of 10 mm to 15 mm, a specific technique for forming the droplet 7 having this specific initial diameter is described. As a result of various studies, it has been found that the initial diameter of the droplet 7 can be controlled by setting the diameter of the discharge hole 5 formed in the discharge pipe 4 to a specific range.
[0032]
That is, the discharge device of the present invention discharges the liquid carbon dioxide from the discharge hole 5 of the discharge tube 4 into the sea so that the initial diameter of the droplet 7 becomes 10 mm to 15 mm as described above. Is set in the range of 3 mm to 10 mm. That is, by setting the diameter of the discharge hole 5 formed in the discharge pipe 4 in the range of 3 mm to 10 mm, the initial diameter of the droplet 7 discharged from the discharge hole 5 can be controlled to 10 mm to 15 mm.
[0033]
If the diameter of the discharge hole 5 is less than 3 mm, it is impossible to control the diameter of the droplet on the 10 m m or more, also the diameter of the discharge hole 5 controls the diameter of the droplets exceeds 10mm to 15mm or less I can't. The ratio between the diameter of the droplet 7 and the diameter of the discharge hole 5 is considered to be in the range of about 1.5 to about 3 times.
[0034]
5 using simulated fluid corresponding to the liquid carbon dioxide and seawater is a graph showing the results of measuring the relationship between the liquid carbon dioxide discharge flow rate (droplet diameter d o / discharge hole diameter d n). In the diagram, the CO 2 simulated fluid used for the measurement indicated by □ is silicon oil (specific gravity 0.83), and the seawater simulated fluid is water + alcohol (specific gravity 0.84). Both have an interfacial tension of 5.6 dyne / cm. In the diagram, the CO 2 simulated fluid used for the measurement indicated by ○ and Δ was silicon oil (specific gravity 0.95), and the seawater simulated fluid was water + alcohol (specific gravity 0.96). Both have an interfacial tension of 23.8 dyne / cm. The discharge hole diameter is 5 mm, the inclination angle of the discharge tube is about 45 degrees, and the direction of the discharge hole is upward.
[0035]
The line in the figure is the result calculated by the following evaluation formula.
[0036]
d 0 / d n = 1.31 { d n 2 (γ w -γ co2) / σ} -0.3
However, d 0 is carbon dioxide droplet size, is d n is a pore diameter, gamma w seawater density, gamma of co2 is the liquid carbon dioxide density, sigma is the interfacial tension. It can be seen that the experimental results and the design results are in good agreement. It is d 0 to consider a range of from 10mm to 15mm put the various values of the actual ocean middle layer in the above equation. That is, if the depth of the sea water temperature 2 to 3 ° C. at 1500mm, γ wco2 is about 0.05, since the interfacial tension is a 75dyne / cm, d 0 / d n when d n is 3mm is close to 3.1, d n is the d 0 / d n when the 10mm approximates to 1.5. That, d n is for d 0 is in the range of 10~15mm is that may be in the range of 3 to 10 mm.
[0037]
Further, the inventor of the present invention has set the diameter of the discharge hole 5 to 3 mm in order to generate droplets having an initial diameter in the range of 10 mm to 15 mm when discharging the liquid carbon dioxide from the discharge hole 5 of the discharge pipe 4. It has been found that in addition to the setting of from 10 mm to 10 mm, it is preferable to control the discharge rate of the liquid carbon dioxide as low as possible, specifically, 5 cm / sec to 15 cm / sec or less. That is, if the discharge speed of the liquid carbon dioxide is higher than the above range, it becomes difficult to control the initial diameter of the droplet within the range of 10 mm to 15 mm.
[0038]
The inventor of the present invention paid attention to the number of discharge holes 5 formed in the discharge pipe 4 in order to control the discharge speed of the liquid carbon dioxide within the above range. That is, the flow rate of the liquid carbon dioxide discharged from the discharge hole 5 is obtained by multiplying the opening area of the discharge hole, the number of the discharge holes, and the discharge speed, and is obtained by the following equation.
[0039]
n = Q / [(π / 4) · d 2 · V]
However,
n: number of discharge holes,
Q Flow rate per unit time of discharging liquid carbon dioxide from the discharge hole of the discharge pipe,
V: discharge rate of liquid carbon dioxide discharged from the discharge hole,
d: diameter of discharge hole,
(Π / 4) · d 2 : opening area of discharge hole.
[0040]
Then, 5 cm / sec to 15 cm / sec is inserted into the discharge velocity V of the liquid carbon dioxide discharged from the discharge hole in the above formula, and the number of the discharge holes is obtained by this formula. By setting the number of the discharge holes 5 of the discharge pipe 4 to be larger than the number of the discharge holes obtained by the above equation, the discharge speed V of the liquid carbon dioxide can be suppressed to 5 cm / sec to 15 cm / sec or less. It becomes.
[0041]
For example, when the flow rate is 100 cm 3 / sec, the diameter of the discharge hole 5 is 0.5 cm, and the discharge speed is 10 cm / sec, the number of the discharge holes 5 is about 50,000 according to the above equation. That is, it is found that the discharge speed can be adjusted to 10 cm / sec by forming the discharge holes 5 of 50,000 or more.
[0042]
By setting the diameter of the discharge hole 5 formed in the discharge pipe in this way from 3 mm to 10 mm, and more preferably, setting the discharge rate of liquid carbon dioxide to 5 cm / sec to 15 cm / sec or less as low as possible, 7 can be precisely controlled in the range of 10 mm to 15 mm.
[0043]
One specific example will be described. In order to discharge 100 kg / sec of liquid carbon dioxide (corresponding to carbon dioxide emitted from 500,000 to 1,000,000 coal-fired power plants), a discharge pipe having a diameter of several 10 cm and a length of 2500 m is used. Was suspended at 5 knots to discharge liquid carbon dioxide from the discharge pipe into the sea. Then, when the released carbon dioxide droplets were elevated 1000 m in the sea until the dissolution of the droplets in the seawater was completed, a dilution ratio of about 50,000 times was obtained, and the pH of the seawater could be suppressed to about 6.8.
[0044]
The present invention is not limited to the above-described embodiment, but can be implemented with various modifications.
[0045]
【The invention's effect】
As described above, according to the apparatus for discharging liquid carbon dioxide into the ocean according to the present invention, liquid carbon dioxide is discharged into the sea from the discharge hole of the discharge pipe by controlling the initial diameter of the droplet to a specific value. Then, the liquid carbon dioxide droplets released in the middle layer of the sea are dissolved in seawater within the depth of this middle layer, and all the liquid carbon dioxide is dissolved in the seawater without affecting the activity of marine life Can be made. Therefore, according to the present invention, there is provided an apparatus for controlling the diameter of liquid carbon dioxide droplets discharged into the sea in the middle-layer dilution discharge system to discharge the carbon dioxide into the sea so that the droplets are dissolved in the middle layer of the sea. Obtainable.
[0046]
Further, according to the present invention, the diameter of the discharge hole formed in the discharge pipe is set to a specific range, and more preferably, the discharge rate is controlled by setting the number of the formation holes formed in the discharge pipe to a specific range. Thus, the initial diameter of the droplet can be accurately controlled to have a specific value.
[0047]
Further, by specifying the length of the discharge pipe suspended from the workboat, it is possible to discharge liquid carbon dioxide in the middle seawater having a depth of 1500 m to 2500 m.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a discharge device of the present invention.
FIG. 2 is a diagram schematically showing a system for discharging water by the discharge device of the present invention.
FIG. 3 is a view showing the behavior of droplets generated by discharging carbon dioxide from a discharge pipe provided in a discharge device.
FIG. 4 is a diagram showing a change in droplet diameter when a droplet generated by discharging carbon dioxide from a discharge pipe provided in a discharge device rises in water.
FIG. 5 is a diagram showing the results of an experiment in which a simulated fluid is discharged from a discharge pipe and the relationship between the flow rate and the droplet diameter / discharge hole is examined.
FIG. 6 is a diagram showing a phase state of carbon dioxide.
[Explanation of symbols]
2. Carrier,
3. Work boat,
3a ... storage tank,
4 ... discharge pipe,
5 ... discharge hole,
6: carbon dioxide after discharge 7: droplets,
8 ... vortex,
9… Floating flow field.

Claims (5)

多数の放流孔を形成した放流管を海上を走行する船から海中に吊り下げて移動させながら液体二酸化炭素を前記放流管に送り込んで前記放流孔から海中に放流する二酸化炭素を海洋へ放流する方法において、
1500mから2500mの深さの範囲の海中に液滴の初期直径が10mmないし15mm前記液体二酸化炭素を前記放流管の前記放流孔から海中に放流することを特徴とする二酸化炭素を海洋へ放流する方法
A method of sending liquid carbon dioxide to the discharge pipe while suspending and moving a discharge pipe having a large number of discharge holes from a ship traveling on the sea into the sea, and discharging carbon dioxide discharged into the sea from the discharge hole to the ocean. At
It initial diameter of the droplet is not 10mm the sea depth ranging 2500m from 1500m you characterized in that discharge into the sea of the liquid carbon dioxide 15mm from the discharge hole of the discharge tube of carbon dioxide into the ocean How to release.
多数の放流孔を形成した放流管を海上を走行する船から海中に吊り下げて移動させながら液体二酸化炭素を前記放流管に送り込んで前記放流孔から海中に放流する装置において、
前記液体二酸化炭素が海中に放流された時に形成される液滴の初期直径が10mmないし15mmとなるように前記液体二酸化炭素を海中に放流する前記放流管の前記放流孔の直径が3mmないし10mmであることを特徴とする二酸化炭素を海洋へ放流する装置。
In an apparatus for discharging liquid carbon dioxide into the discharge pipe while discharging and moving the discharge pipe formed with a large number of discharge holes from the ship traveling on the sea to the discharge water while moving it underwater,
The discharge pipe for discharging the liquid carbon dioxide into the sea has a diameter of 3 mm to 10 mm so that the initial diameter of the droplet formed when the liquid carbon dioxide is discharged into the sea is 10 mm to 15 mm. device for discharge of carbon dioxide you wherein there marine.
前記放流管の前記放流孔の数が下記の式で求められる数以上であることを特徴とする請求項2に記載の二酸化炭素を海洋へ放流する装置。
n=Q/[(π/4)・d・V]
ただし、
Q:液体二酸化炭素を放流管の放流孔から放流する単位時間当りの流量、
V:前記放流孔から放流される液体二酸化炭素の放流速度=5cm/秒ないし15cm/秒、
d:放流孔の直径、
(π/4)・d:放流孔の開口面積。
Device for discharge of carbon dioxide according to the ocean in claim 2, wherein the number of the discharge hole of the discharge tube is not less than the number that is obtained by the following formula.
n = Q / [(π / 4) · d 2 · V]
However,
Q: Flow rate per unit time at which liquid carbon dioxide is discharged from the discharge hole of the discharge pipe,
V: discharge rate of liquid carbon dioxide discharged from the discharge hole = 5 cm / sec to 15 cm / sec;
d: diameter of discharge hole,
(Π / 4) · d 2 : opening area of discharge hole.
前記放流管の長さが2000mないし4000mであることを特徴とする請求項2に記載の二酸化炭素を海洋へ放流する装置。The apparatus for discharging carbon dioxide to the ocean according to claim 2 , wherein the length of the discharge pipe is 2000m to 4000m. 前記放流孔から放流される液体二酸化炭素の放流速度は、5cm/秒ないし15cm/秒以下とすることを特徴とする請求項2に記載の二酸化炭素を海洋へ放流する装置。3. The apparatus according to claim 2, wherein the discharge speed of the liquid carbon dioxide discharged from the discharge hole is 5 cm / sec to 15 cm / sec or less.
JP23152698A 1998-08-18 1998-08-18 Method for releasing carbon dioxide to the ocean and apparatus for releasing carbon dioxide to the ocean Expired - Fee Related JP3583625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23152698A JP3583625B2 (en) 1998-08-18 1998-08-18 Method for releasing carbon dioxide to the ocean and apparatus for releasing carbon dioxide to the ocean

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23152698A JP3583625B2 (en) 1998-08-18 1998-08-18 Method for releasing carbon dioxide to the ocean and apparatus for releasing carbon dioxide to the ocean

Publications (2)

Publication Number Publication Date
JP2000061296A JP2000061296A (en) 2000-02-29
JP3583625B2 true JP3583625B2 (en) 2004-11-04

Family

ID=16924879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23152698A Expired - Fee Related JP3583625B2 (en) 1998-08-18 1998-08-18 Method for releasing carbon dioxide to the ocean and apparatus for releasing carbon dioxide to the ocean

Country Status (1)

Country Link
JP (1) JP3583625B2 (en)

Also Published As

Publication number Publication date
JP2000061296A (en) 2000-02-29

Similar Documents

Publication Publication Date Title
KR100318114B1 (en) Friction Reduction Ship and Surface Friction Reduction Method
JP5604736B2 (en) Ship frictional resistance reduction device
CN105501388A (en) Frictional resistance reduction device for ship
KR19990071792A (en) Method of reducing frictional resistance of hull, Method of reducing frictional resistance using this method, and Method of analysis of blowing bubble in ship
WO1994007740A1 (en) Method of forming air film on submerged surface of submerged part-carrying structure, and film structure on submerged surface
JP2008018781A (en) Hull friction resistance reducing device
JP3583625B2 (en) Method for releasing carbon dioxide to the ocean and apparatus for releasing carbon dioxide to the ocean
JP5599482B1 (en) Ship equipped with bubble resistance reduction device and ship resistance reduction method
KR20140138535A (en) Ship with foil type hill under flat bottom
JP3556812B2 (en) Apparatus for releasing carbon dioxide into the ocean
JP3552921B2 (en) Carbon dioxide discharge device
JP3552919B2 (en) A device that dilutes and releases carbon dioxide to the ocean
JP2000061299A (en) Device for diluting and discharging carbon dioxide into ocean
JP3552920B2 (en) Carbon dioxide discharge device
JP5806251B2 (en) Ship equipped with bubble resistance reduction device and ship resistance reduction method
Ozaki et al. Dilution of released CO2 in mid ocean depth by moving ship
JP3605515B2 (en) CO2 ocean discharge equipment
JPS58526B2 (en) Renzokukihouhekinyoru Odakukakusanboushikouhou
Lee et al. A Study on the Development of Auto Pilot Device at Shallow Water for the Docking of Fishing Boat
JP2000061302A (en) Apparatus for discharging carbon dioxide for dilution in the sea
Chanson et al. Modelling air bubble entrainment by plunging breakers
JP4299694B2 (en) Carbon dioxide spraying equipment
JP3623706B2 (en) Dilution release device for carbon dioxide to the ocean
Vassalos et al. Broaching and capsize model tests for validation of numerical ship motion predictions
Kyoung—Hwa et al. A Study on the Development of Auto Pilot Device at Shallow Water for the Docking of Fishing Boat

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040729

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees