JP3605515B2 - CO2 ocean discharge equipment - Google Patents

CO2 ocean discharge equipment Download PDF

Info

Publication number
JP3605515B2
JP3605515B2 JP23152498A JP23152498A JP3605515B2 JP 3605515 B2 JP3605515 B2 JP 3605515B2 JP 23152498 A JP23152498 A JP 23152498A JP 23152498 A JP23152498 A JP 23152498A JP 3605515 B2 JP3605515 B2 JP 3605515B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
discharge pipe
sea
discharge
flexible hose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23152498A
Other languages
Japanese (ja)
Other versions
JP2000061295A (en
Inventor
雅彦 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for Earth
Original Assignee
Research Institute of Innovative Technology for Earth
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for Earth filed Critical Research Institute of Innovative Technology for Earth
Priority to JP23152498A priority Critical patent/JP3605515B2/en
Publication of JP2000061295A publication Critical patent/JP2000061295A/en
Application granted granted Critical
Publication of JP3605515B2 publication Critical patent/JP3605515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は回収した二酸化炭素を海中に放流して海水に溶し込む二酸化炭素の海洋放流装置に関する。
【0002】
【従来の技術】
近時、地球温暖化が大きな問題となっており、これに伴い地球規模での気候変動を引き起こす可能性があると指摘される温室効果をもった二酸化炭素(CO)の大気中における濃度の上昇を抑えることが特に重要となってきている。そして、この対策のひとつとして火力発電所などで排出される燃焼排ガス中の二酸化炭素を回収して海洋へ送り込むことによって、長期に亘って二酸化炭素を大気から隔離する構想が提案されているが、その成立にあたっては二酸化炭素を送り込む海洋において新たな環境影響が引き起こされないようにすることが必要となっている。
【0003】
二酸化炭素送り込みによる海洋環境への影響を小さくするシステムとして、次に述べる2種類のシステムが提案されている。その一つは貯蓄型と称されるもので、二酸化炭素を深海底のくぼみのような場所に集中して溜めることにより影響範囲を特定の場所に限定して局所化しようとする方法である。
【0004】
もう一つのシステムは、溶解拡散型と称されるもので、二酸化炭素を海水中に溶し込んで薄く希釈し広く拡散させて海水中の二酸化炭素の濃度の上昇を抑制しようとする方法であり、本来海水中に溶解している二酸化炭素の濃度がある程度上昇するにとどまるという考え方に基くものである。
【0005】
この溶解拡散型における具体的な方法として船舶により二酸化炭素の放流点を移動させて海中の中層にて二酸化炭素を放流する中層希釈放流方式が挙げられている。この方式について図2ないし図4を参照して説明する。図2は中層希釈放流方式放流のシステムを模式的に示す説明図、図3(a)は同方式において放流管から二酸化炭素を海中へ放流拡散する状態を模式的に示す説明図、図3(b)は図3(a)のZ部を拡大して示す図、図4は二酸化炭素を放流管から放流して形成された液滴の状態を示す説明図である。
【0006】
この中層希釈放流方式は、陸上プラント1で燃焼排ガスから分離、回収した二酸化炭素を液化し、その液化ガスを貯溜タンク2aに充填して液化ガス運搬船2にて所定の海域まで海上輸送し、そこで貯溜タンク2aの内部の液体二酸化炭素を作業船3に搭載した貯溜タンク3aに移し替える。液体二酸化炭素は例えば圧力が6atm、温度が−55℃とする。図5は二酸化炭素の相状態を示す線図であるが、この線図で判るように前記6atm、温度−55℃は液体二酸化炭素を経済的に得ることができる条件である。作業船3は深さ2000mないし2500mの海中に吊り下げる大変長い鋼管などからなる放流管4を備えており、液体二酸化炭素を貯溜タンク3aから放流管4に送り込んで放流管4の下端部に上下方向に並んで形成した複数個の放流孔5から海中に放流する。作業船3は放流管4の孔5から液体二酸化炭素を海中に放流しつつ前進することにより、二酸化炭素の放流点を局所に限定せず移動させて二酸化炭素の希釈を増進させている。なお、運搬船2と作業船3とは別なものであっても、また両者が兼用するものであっても良い。SLは海面である。
【0007】
放流管4から放流された二酸化炭素の状態は、現状の知見から次のように想定される。放流管4の孔5から海中へ放流された二酸化炭素6はすぐに海水に溶け込んでしまわないで、放流管4が後流に生成して残して行く渦8による変動流場9の中で多数の液滴7となって分散してほぼ均一に海水と混合される。放流管4は対向する海流に対する相対的な流速によって船舶進行方向に向かって後側へ傾斜し、その背後に管軸線とほぼ平行な回転軸をもつ後流渦8を連続的に生成しながら進んでいく。渦8のパターンは放流管の形状、表面の状態および寸法や移動速度などの条件によって異なるが、外径数10cmの管が数ノットの速度で進む場合には、通常進行方向に向かって管左右両側から入れ替わり渦が発生して変動流場9を後に残していき、その中で二酸化炭素と海水とが混合すると考えられる。
【0008】
そして、二酸化炭素の液滴7は放流管4の後流からさらに周辺の海水に溶け込みながら緩やかに海水中を上昇していく。すなわち、二酸化炭素の液滴7は海水中を上昇しながら海水に溶け込んでいくことによって直径が小さくなっていく。そして、液滴7がある高さまで上昇する過程で二酸化炭素は全て海水中に溶け込んでしまい液滴7が消滅する。
【0009】
中層希釈放流方式は、海面から約2000mないし2500mの深さ(中層)の海中で二酸化炭素の放流を行うものである。すなわち、2000mより上層の海中で二酸化炭素の放流を行うと、放流された二酸化炭素が全て海水に溶け込まないうちに液滴が海面に達する可能性があり、約2000mないし2500mの深さの海中で二酸化炭素の放流を行なうと液滴が海面に達する前に全ての二酸化炭素を海水に溶け込ませることができる。
【0010】
【発明が解決しようとする課題】
このように中層希釈放流方式は、二酸化炭素を海洋へ放流して隔離する上で大変有望な方法と考えられている。
【0011】
しかし、この中層希釈放流方式の放流装置には次に述べる問題がある。
【0012】
その一つは貯溜タンクに貯溜されて搬送される液体二酸化炭素は、貯溜タンクの耐圧構造の関係から−55℃、6atmという低温で比較的低圧力で液体の状態に保持されている。ところが、液体二酸化炭素は、放流管に送り込まれて長い放流管の内部を流通し海中へ放流されるまでの間に放流管の外部周囲の海水から伝達される熱を受けて加熱され温度上昇する。そして、液体二酸化炭素が放流管の内部を流れる時に、液体二酸化炭素の圧力が自重によって洋上での圧力から概ね直線的に増加してゆくが、この液体二酸化炭素の圧力が上昇しきらない放流管上部において液体二酸化炭素の温度が急速に上昇すると、図5の線図でも明らかなように液体二酸化炭素が気化して気体二酸化炭素となり液体二酸化炭素を海中へ放流することに支障を来すことになる。
【0013】
また、作業船に深さ2000mないし2500mの海中に吊り下げる大変長い放流管を取付けており、作業船を航走させる時にこの放流管が相対的な流速によって船舶進行方向に向かって後側へ傾斜する。ここで、放流管が全体を鋼管などの金属管で形成した剛体であり、また作業船における放流管の取付け部が剛体構造で構成されていると、作業船の航走により放流管が傾斜した場合には作業船における放流管の取付け部に大きな曲げ荷重が加わり、放流管の取付け部における負担が大きく耐久性に問題が生じる。
【0014】
この対策として作業船における放流管の取付け部として放流管を回動可能に取付けて、作業船の航走時に放流管が回動して傾斜できるようにして放流管の取付け部における曲げ荷重の負担を軽減する構造が挙げられる。しかし、大変長い放流管を吊り下げて回動可能に取付けることは、取付け部の構造が大掛かりで頑強となり実用上問題が生じる。
【0015】
従って、放流装置に対しては、内部を流れる液体二酸化炭素の温度上昇を抑え、且つ船舶の取付け部への負担を軽減できる放流管の開発が要望されている。
【0016】
本発明は前記事情に基いてなされたもので、内部を流れる液体二酸化炭素の温度上昇を抑え、且つ船舶の取付け部への負担を軽減できる放流管を備えた二酸化炭素の海洋放流装置を提供することを課題とする。
【0017】
【課題を解決するための手段】
請求項1の発明の二酸化炭素の海洋放流装置は、海上を航走する船から海中に吊り下げた放流管の内部に液体二酸化炭素を送り込んで放流管に形成された孔から海中へ放流する装置において、放流管はその上部が合成樹脂で被覆したフレキシブルホースで構成されており、このフレキシブルホースに続いた下部が金属管で構成されていることを特徴とする。
【0019】
【発明の実施の形態】
本発明の実施の形態について図1を参照して説明する。
【0020】
本発明は、前述した図2ないし図4にて示す液体二酸化炭素を中層希釈放流方式により海洋へ放流する装置を対象としており、図1において図3と同じ部分は同じ符号を付して示している。すなわち、図中3は作業船、3aは作業船3に搭載された液体二酸化炭素を貯溜するタンクである。
【0021】
本発明の特徴について説明する。
【0022】
図中11は放流管で、この放流管11は作業船3に取付けられて液体二酸化炭素を海中へ放流するもので、深さ2000〜3000mの海中に吊り下げて傾斜した状態で曳航できる長さを有している。放流管11はその上部がフレキシブルホース12により構成され、このフレキシブルホース12に続く下部が金属管13により構成されている。
【0023】
フレキシブルホース12は、鋼製の薄板を複数層螺旋状に巻くとともに、さらに合成樹脂で被覆することにより引張り強度や耐圧強度を確保するもので、プラスチックの熱伝導率が金属材料に比較して大変小さいことにより高い断熱効果を併せて有している。
【0024】
このようなフレキシブルホース12は放流管11の上部を構成している。放流管11の上部は海面から数百メートルの深さの海中の表層に相当するもので、この海中の表層は中層および深層に比較して海水の温度が高く海水の熱が放流管11を介して放流管11内部を流れる液体二酸化炭素に伝達して液体二酸化炭素の温度を上昇させる度合が高い。高い断熱効果を有する合成樹脂(プラスチック)で被覆されたフレキシブルホース12により構成される放流管11の上部は、放流管11内部を流れる液体二酸化炭素が海中の表層における水温が高い海水の熱を受けて温度上昇することを抑制している。また、合成樹脂(プラスチック)で被覆されたフレキシブルホース12により構成される放流管11の上部は、後述するように放流管11が傾斜した時に放流管11の曲りを受け持ち、作業船3における放流管11の取付け部(フレキシブルホース12の取付け部)に曲げ荷重が作用することを抑制している。そして、このフレキシブルホース12は上端が作業船3に設けた取付け部15に適宜な剛性構造をもって取付け固定されて作業船3から海中の表層に吊り下げられている。
【0025】
金属管13は鋼管などにより形成されており、放流管11の全長からフレキシブルホース12の長さを引いた長さを有している。金属管13の下端部には複数の放流孔14が軸方向に間隔を存して並べて形成されている。放流管11の下部を金属管13で構成するのは、金属管13がフレキシブルホース12に比較して安価であり、放流管11を製造する上で全長をフレキシブルホース12で形成する場合に比較して経済的に製造できるからである。金属管13は上端がフレキシブルホース12の下端に適宜な剛性構成により液密にして取付けられている。
【0026】
このように構成した放流装置は、作業船3に搭載した貯溜タンク3aに貯溜された液体二酸化炭素を、作業船3から海中に吊り下げた放流管11の内部に送り込み海中へ放流する。すなわち、液体二酸化炭素はまず放流管11の上部を構成するフレキシブルホース12の内部を流れ落ち、次いで金属管13の内部を流れ落ちて金属管13の下端部に形成した複数の放流孔14から海中へ放流される。この場合、海水の温度が高い海中の表層では、断熱効果の高いフレキシブルホース12が位置するために、水温が高い海水の熱がフレキシブルホース12を介してフレキシブルホース12内部を流れる二酸化炭素へ伝達することを抑制される。このため、フレキシブルホース12内部を流れる二酸化炭素が海中の表層の海水により温度上昇することを抑制できる。従って、液体二酸化炭素が放流管11内部を流れる時に海水の熱により温度上昇して気化することを抑制することができる。
【0027】
そして、作業船3は放流点を移動させるために航走する。このため、放流管11は海中において対向する海流に対する相対的な流速によって船舶進行方向に向かって後側へ傾斜する。この場合、放流管11を構成する金属管13は剛性を有するものであるために曲がらず直線的に船舶進行方向に向かって後側へ傾斜する。金属管13に接続されて放流管11の上部を構成するフレキシブルホース12は金属管13の傾斜変位に伴い後側へ向けて傾斜する力が加わる。ここで、フレキシブルホース12は上端が作業船3に剛性構造をもって固定されているので、船舶進行方向に向かって後側へ向けて傾斜する力が加わると後側へ向けて傾斜するように曲がる。すなわち、放流管11に対して船舶進行方向に向かって後側へ傾斜するように加わる力をフレキシブルホース12が吸収してその力による曲がりを許容する。このため、放流管11が船舶進行方向に向かって後側へ向けて傾斜変位した場合に、作業船3における放流管11(フレキシブルホース12)の取付け部15に船舶進行方向に向かって後側へ向けて傾斜する曲げ荷重が直接加わることを抑制して、曲げ荷重からの取付け部15の負担を軽減して耐久性を高めることができる。また、作業船3における放流管11の取付け部15は剛性構造であるから、放流管11を回動可能に取付ける場合の構造に比較して取付け部の構造の簡素化および小型化を図り、取付け部15の製作コストを低減することができる。
【0028】
なお、本発明は前述した実施の形態に限定されず種々変形して実施することができる。例えばフレキシブルホース12の構成は前述したい実施の形態に限定されない。前述した実施の形態では放流管11の上部のみをフレキシブルホースで形成しているが、これに限定されずに放流管11の全長をフレキシブルホースで形成する構成としても良い。この場合にも、フレキシブルホースが有する特性により、放流管を流れる液体二酸化炭素が海水により温度上昇することを抑制するとともに、放流管の取付け部に曲げ荷重が直接加わることを抑制できる。
【0029】
【発明の効果】
本発明の二酸化炭素の海洋放流装置によれば、船に取付けられて海中に吊り下げられる液体二酸化炭素を海中へ放流する放流管の少なくとも一部をフレキシブルホースで構成するので、フレキシブルホースの高い断熱効果により放流管を流れる液体二酸化炭素が海水により温度上昇することを抑制して液体二酸化炭素が気化することを抑制でき、また船舶の航走により放流管が傾斜した場合に船舶における放流管の取付け部に曲げ荷重が加わることを抑制できる。
【0030】
特に放流管の上部をフレキシブルホースで構成することにより、水温が高い海中の表層において海水により放流管内部を流れる液体二酸化炭素が温度上昇することを抑制でき、また放流管の取付け部に曲げ荷重が加わることをさらに効果的に抑制できる。
【図面の簡単な説明】
【図1】本発明の一実施の形態にかかわる二酸化炭素の海洋放流装置を模式的に示す図。
【図2】二酸化炭素の海洋への放流システムを模式的に示す図。
【図3】二酸化炭素の海洋放流装置を模式的に示す図。
【図4】放流装置により海中に放流された液体二酸化炭素の状態を模式的に示す図。
【図5】二酸化炭素の相状態を示す線図。
【符号の説明】
3…作業船、
11…放流管、
12…フレキシブルホース、
13…金属管、
14…放流孔、
15…取付け部。
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a marine discharge apparatus for releasing carbon dioxide into the sea by dissolving it in seawater.
[0002]
[Prior art]
In recent years, global warming has become a major problem, and it has been pointed out that the concentration of carbon dioxide (CO 2 ) in the atmosphere with a greenhouse effect, which has been pointed out as a possibility of causing climate change on a global scale, is increasing. It is particularly important to control the rise. As one of the measures, a concept has been proposed in which carbon dioxide in combustion exhaust gas discharged from thermal power plants and the like is collected and sent to the ocean, thereby isolating carbon dioxide from the atmosphere for a long time. In order to achieve this, it is necessary to ensure that no new environmental impacts are caused in the ocean that sends carbon dioxide.
[0003]
The following two types of systems have been proposed as systems for reducing the influence on the marine environment due to the feeding of carbon dioxide. One of them is a storage type, which is a method in which the area of influence is limited to a specific place and localized by storing carbon dioxide intensively in a place such as a hollow on the deep sea floor.
[0004]
Another system, called the dissolution-diffusion type, is a method in which carbon dioxide is dissolved in seawater, diluted dilutely and diffused widely to suppress the rise in the concentration of carbon dioxide in seawater. However, it is based on the idea that the concentration of carbon dioxide originally dissolved in seawater only increases to some extent.
[0005]
As a specific method in the dissolution-diffusion type, there is a middle-layer dilution discharge method in which a discharge point of carbon dioxide is moved by a ship to discharge carbon dioxide in a middle layer in the sea. This method will be described with reference to FIGS. FIG. 2 is an explanatory view schematically showing a system of a middle-layer dilution discharge method, and FIG. 3A is an explanatory view schematically showing a state in which carbon dioxide is discharged and diffused from a discharge pipe into the sea in the same method, and FIG. FIG. 3B is an enlarged view of a portion Z in FIG. 3A, and FIG. 4 is an explanatory view showing a state of droplets formed by discharging carbon dioxide from a discharge pipe.
[0006]
This middle-layer dilution discharge method liquefies the carbon dioxide separated and recovered from the flue gas in the land plant 1, fills the liquefied gas into the storage tank 2a, and transports the liquefied gas to the predetermined sea area by the liquefied gas carrier 2 where it is transported by sea. The liquid carbon dioxide inside the storage tank 2a is transferred to the storage tank 3a mounted on the work boat 3. The liquid carbon dioxide has, for example, a pressure of 6 atm and a temperature of -55 ° C. FIG. 5 is a diagram showing the phase state of carbon dioxide. As can be seen from this diagram, the above-mentioned 6 atm and a temperature of −55 ° C. are conditions under which liquid carbon dioxide can be obtained economically. The work boat 3 is provided with a discharge pipe 4 made of a very long steel pipe or the like suspended from the sea at a depth of 2000 m to 2500 m, and sends liquid carbon dioxide from the storage tank 3 a to the discharge pipe 4 and moves the carbon dioxide upward and downward at the lower end of the discharge pipe 4. The water is discharged into the sea from a plurality of discharge holes 5 formed side by side. The work boat 3 advances while discharging the liquid carbon dioxide into the sea from the hole 5 of the discharge pipe 4, thereby moving the discharge point of the carbon dioxide without being limited to a local area, thereby increasing the dilution of the carbon dioxide. Note that the carrier 2 and the work boat 3 may be different from each other, or may be shared by both. SL is the sea surface.
[0007]
The state of the carbon dioxide discharged from the discharge pipe 4 is assumed as follows from the current knowledge. The carbon dioxide 6 discharged into the sea from the hole 5 of the discharge pipe 4 does not immediately dissolve into the seawater, but a large number in the fluctuating flow field 9 due to the vortex 8 generated and left behind by the discharge pipe 4. Are dispersed and almost uniformly mixed with seawater. The discharge pipe 4 is inclined rearward in the traveling direction of the ship by the relative flow velocity with respect to the opposing ocean current, and proceeds while continuously generating a wake vortex 8 having a rotation axis substantially parallel to the pipe axis behind the discharge pipe 4. Go out. The pattern of the vortex 8 varies depending on conditions such as the shape, surface condition, dimensions and moving speed of the discharge pipe. It is considered that a swirl is generated from both sides and the fluctuating flow field 9 is left behind, in which carbon dioxide and seawater mix.
[0008]
Then, the carbon dioxide droplet 7 gradually rises in the seawater from the wake of the discharge pipe 4 while being dissolved in the surrounding seawater. That is, the diameter of the carbon dioxide droplet 7 is reduced by dissolving in the seawater while rising in the seawater. Then, in the process of ascending the droplet 7 to a certain height, all the carbon dioxide is dissolved in the seawater, and the droplet 7 disappears.
[0009]
The middle dilution discharge system discharges carbon dioxide in the sea (middle layer) at a depth of about 2000 m to 2500 m from the sea surface. In other words, when carbon dioxide is released in the sea above 2000m, droplets may reach the sea surface before all of the released carbon dioxide is dissolved in seawater, and in a sea with a depth of about 2000m to 2500m. The release of carbon dioxide allows all of the carbon dioxide to dissolve into the seawater before the droplets reach the sea surface.
[0010]
[Problems to be solved by the invention]
Thus, the middle dilution discharge method is considered to be a very promising method for releasing carbon dioxide into the ocean and sequestering it.
[0011]
However, this middle-diluted discharge system has the following problems.
[0012]
One of them is that the liquid carbon dioxide stored and transported in the storage tank is kept in a liquid state at a low temperature of -55 ° C. and 6 atm and a relatively low pressure due to the pressure resistance structure of the storage tank. However, liquid carbon dioxide is heated by the heat transferred from the seawater around the discharge pipe before it is sent into the discharge pipe, circulates inside the long discharge pipe, and is discharged into the sea. . Then, when the liquid carbon dioxide flows inside the discharge pipe, the pressure of the liquid carbon dioxide increases substantially linearly from the pressure at sea due to its own weight, but the pressure of the liquid carbon dioxide does not rise completely If the temperature of the liquid carbon dioxide rises rapidly in the upper part, the liquid carbon dioxide evaporates into gaseous carbon dioxide as is clear from the diagram of FIG. 5, which hinders the discharge of the liquid carbon dioxide into the sea. Become.
[0013]
The workboat is equipped with a very long discharge pipe suspended from the sea at a depth of 2000 m to 2500 m. I do. Here, if the discharge pipe is a rigid body formed entirely of a metal pipe such as a steel pipe, and if the mounting portion of the discharge pipe in the work boat is configured with a rigid structure, the discharge pipe is inclined by the sailing of the work boat In such a case, a large bending load is applied to the mounting portion of the discharge pipe in the work boat, and the load on the mounting portion of the discharge pipe is large, and a problem occurs in durability.
[0014]
As a countermeasure, the discharge pipe is rotatably mounted as a discharge pipe mounting part on the work boat, so that the discharge pipe can rotate and tilt when the work boat sails, and the bending load on the discharge pipe mounting part And a structure for reducing this. However, if a very long discharge pipe is hung and rotatably mounted, the structure of the mounting portion is large and robust, which causes a practical problem.
[0015]
Accordingly, there is a demand for a discharge device that can suppress a rise in the temperature of liquid carbon dioxide flowing inside and reduce the load on a mounting portion of a ship.
[0016]
The present invention has been made in view of the above circumstances, and provides a marine discharge apparatus for carbon dioxide having a discharge pipe capable of suppressing a rise in the temperature of liquid carbon dioxide flowing inside and reducing the load on a mounting portion of a ship. That is the task.
[0017]
[Means for Solving the Problems]
The marine discharge device for carbon dioxide according to the first aspect of the present invention is an apparatus for sending liquid carbon dioxide into a discharge pipe suspended in the sea from a ship sailing on the sea and discharging the liquid carbon dioxide into the sea from a hole formed in the discharge pipe. Wherein the upper part of the discharge pipe is formed of a flexible hose covered with a synthetic resin, and the lower part following the flexible hose is formed of a metal pipe.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIG.
[0020]
The present invention is directed to an apparatus for discharging the liquid carbon dioxide shown in FIGS. 2 to 4 to the ocean by a middle-diluted discharge method described above. In FIG. 1, the same parts as those in FIG. I have. That is, in the drawing, reference numeral 3 denotes a work boat, and 3a denotes a tank mounted on the work boat 3 for storing liquid carbon dioxide.
[0021]
The features of the present invention will be described.
[0022]
In the figure, reference numeral 11 denotes a discharge pipe, which is attached to the work boat 3 and discharges liquid carbon dioxide into the sea. The discharge pipe 11 has a length which can be suspended in the sea at a depth of 2000 to 3000 m and towed in an inclined state. have. The upper part of the discharge pipe 11 is constituted by a flexible hose 12, and the lower part following the flexible hose 12 is constituted by a metal tube 13.
[0023]
The flexible hose 12 is formed by spirally winding a steel thin plate into a plurality of layers and further covering with a synthetic resin to secure tensile strength and pressure resistance. The thermal conductivity of plastic is much higher than that of metal material. The small size also has a high heat insulating effect.
[0024]
Such a flexible hose 12 forms an upper part of the discharge pipe 11. The upper part of the discharge pipe 11 corresponds to the surface layer in the sea at a depth of several hundred meters from the sea surface. The temperature of the seawater is higher than that of the middle and deep layers, and the heat of the seawater passes through the discharge pipe 11. The degree to which the temperature of the liquid carbon dioxide is increased by transmitting to the liquid carbon dioxide flowing inside the discharge pipe 11 is high. The upper part of the discharge pipe 11 constituted by the flexible hose 12 covered with a synthetic resin (plastic) having a high heat insulating effect receives liquid carbon dioxide flowing inside the discharge pipe 11 receiving heat of seawater having a high water temperature in the surface layer in the sea. Temperature rise. Further, the upper part of the discharge pipe 11 constituted by the flexible hose 12 covered with a synthetic resin (plastic) is responsible for bending of the discharge pipe 11 when the discharge pipe 11 is inclined as described later, and the discharge pipe in the work boat 3. This prevents a bending load from acting on the mounting portion 11 (the mounting portion of the flexible hose 12). The flexible hose 12 has an upper end attached and fixed to an attachment portion 15 provided on the work boat 3 with an appropriate rigid structure, and is suspended from the work boat 3 to a surface layer in the sea.
[0025]
The metal pipe 13 is formed of a steel pipe or the like, and has a length obtained by subtracting the length of the flexible hose 12 from the entire length of the discharge pipe 11. A plurality of discharge holes 14 are formed at the lower end of the metal tube 13 at intervals in the axial direction. The lower part of the discharge pipe 11 is composed of the metal pipe 13 because the metal pipe 13 is inexpensive as compared with the flexible hose 12 and compared with the case where the entire length is formed by the flexible hose 12 in manufacturing the discharge pipe 11. Because it can be manufactured economically. The upper end of the metal tube 13 is attached to the lower end of the flexible hose 12 in a liquid-tight manner by an appropriate rigid configuration.
[0026]
The discharge device configured as described above sends the liquid carbon dioxide stored in the storage tank 3a mounted on the work boat 3 from the work boat 3 to the inside of the discharge pipe 11 suspended from the sea, and discharges it into the sea. That is, the liquid carbon dioxide flows first down the inside of the flexible hose 12 constituting the upper part of the discharge pipe 11, then flows down the inside of the metal pipe 13 and discharges into the sea from a plurality of discharge holes 14 formed at the lower end of the metal pipe 13. Is done. In this case, on the surface layer in the sea where the temperature of the seawater is high, the heat of the seawater having a high water temperature is transmitted to the carbon dioxide flowing inside the flexible hose 12 via the flexible hose 12 because the flexible hose 12 having a high heat insulating effect is located on the surface layer in the sea. That is suppressed. For this reason, the temperature rise of the carbon dioxide flowing inside the flexible hose 12 due to the surface water in the sea can be suppressed. Therefore, when the liquid carbon dioxide flows through the inside of the discharge pipe 11, it can be suppressed that the temperature rises due to the heat of the seawater and evaporates.
[0027]
Then, the work boat 3 sails to move the discharge point. For this reason, the discharge pipe 11 is inclined rearward in the ship traveling direction by the relative flow velocity with respect to the opposing ocean current in the sea. In this case, since the metal pipe 13 constituting the discharge pipe 11 has rigidity, it does not bend and linearly inclines rearward in the ship traveling direction. The flexible hose 12 connected to the metal pipe 13 and constituting the upper part of the discharge pipe 11 is subjected to a force tilting rearward with the tilt displacement of the metal pipe 13. Here, since the upper end of the flexible hose 12 is fixed to the work boat 3 with a rigid structure , the flexible hose 12 bends so as to tilt rearward when a force tilting rearward in the direction of travel of the boat is applied. That is, the flexible hose 12 absorbs a force applied to the discharge pipe 11 so as to incline rearward in the ship traveling direction, and allows bending by the force. Therefore, when the discharge pipe 11 is inclined and displaced rearward in the direction of travel of the ship, the mounting portion 15 of the discharge pipe 11 (flexible hose 12) in the work boat 3 is moved rearward in the direction of travel of the vessel. It is possible to suppress the direct application of the bending load inclined toward the mounting direction, reduce the load on the mounting portion 15 from the bending load, and improve the durability. Further, since the mounting portion 15 of the discharge pipe 11 in the work boat 3 has a rigid structure, the structure of the mounting portion is simplified and downsized as compared with a structure in which the discharge pipe 11 is rotatably mounted. The manufacturing cost of the part 15 can be reduced.
[0028]
The present invention is not limited to the above-described embodiment, and can be implemented with various modifications. For example, the configuration of the flexible hose 12 is not limited to the embodiment described above. In the above-described embodiment, only the upper part of the discharge pipe 11 is formed of a flexible hose, but the present invention is not limited to this, and the entire length of the discharge pipe 11 may be formed of a flexible hose. Also in this case, due to the characteristics of the flexible hose, the temperature of the liquid carbon dioxide flowing through the discharge pipe is prevented from rising due to seawater, and the bending load is not directly applied to the mounting portion of the discharge pipe.
[0029]
【The invention's effect】
According to the marine discharge device for carbon dioxide of the present invention, at least a part of the discharge pipe for discharging liquid carbon dioxide attached to a ship and suspended in the sea is formed of a flexible hose. The effect prevents the temperature of the liquid carbon dioxide flowing through the discharge pipe from rising due to seawater, thereby suppressing the vaporization of the liquid carbon dioxide, and installing the discharge pipe in the ship when the discharge pipe is inclined due to the navigation of the ship The application of a bending load to the portion can be suppressed.
[0030]
In particular, by configuring the upper part of the discharge pipe with a flexible hose, it is possible to suppress the temperature rise of the liquid carbon dioxide flowing inside the discharge pipe due to seawater on the surface layer in the sea where the water temperature is high, and the bending load is applied to the mounting part of the discharge pipe. Addition can be more effectively suppressed.
[Brief description of the drawings]
FIG. 1 is a view schematically showing a marine discharge device for carbon dioxide according to an embodiment of the present invention.
FIG. 2 is a diagram schematically showing a system for discharging carbon dioxide to the ocean.
FIG. 3 is a diagram schematically showing a marine discharge device for carbon dioxide.
FIG. 4 is a diagram schematically showing a state of liquid carbon dioxide discharged into the sea by the discharge device.
FIG. 5 is a diagram showing a phase state of carbon dioxide.
[Explanation of symbols]
3. Work boat,
11 ... discharge pipe,
12 ... Flexible hose,
13 ... metal tube,
14 ... discharge holes,
15 ... Mounting part.

Claims (1)

海上を航走する船から海中に吊り下げた放流管の内部に液体二酸化炭素を送り込んで放流管に形成された孔から海中へ放流する装置において、放流管はその上部が合成樹脂で被覆したフレキシブルホースで構成されており、このフレキシブルホースに続いた下部が金属管で構成されていることを特徴とする二酸化炭素の海洋放流装置。A device that sends liquid carbon dioxide into a discharge pipe suspended under the sea from a ship sailing on the sea and discharges it into the sea through a hole formed in the discharge pipe. It consists of a hose, marine discharge device of carbon dioxide, characterized in that the lower that followed the flexible hose is made of a metal tube.
JP23152498A 1998-08-18 1998-08-18 CO2 ocean discharge equipment Expired - Fee Related JP3605515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23152498A JP3605515B2 (en) 1998-08-18 1998-08-18 CO2 ocean discharge equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23152498A JP3605515B2 (en) 1998-08-18 1998-08-18 CO2 ocean discharge equipment

Publications (2)

Publication Number Publication Date
JP2000061295A JP2000061295A (en) 2000-02-29
JP3605515B2 true JP3605515B2 (en) 2004-12-22

Family

ID=16924848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23152498A Expired - Fee Related JP3605515B2 (en) 1998-08-18 1998-08-18 CO2 ocean discharge equipment

Country Status (1)

Country Link
JP (1) JP3605515B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2514154A (en) * 2013-05-15 2014-11-19 Statoil Petroleum As Venting dense phase carbon dioxide

Also Published As

Publication number Publication date
JP2000061295A (en) 2000-02-29

Similar Documents

Publication Publication Date Title
US9376167B2 (en) Frictional resistance reduction device for ship
US11391261B2 (en) Hydrogen production and conveyance system
US10048689B2 (en) Position control system and position control method for an unmanned surface vehicle
US20140378012A1 (en) Vessel
JP3605515B2 (en) CO2 ocean discharge equipment
JP3556812B2 (en) Apparatus for releasing carbon dioxide into the ocean
JP3583624B2 (en) Apparatus for diluting carbon dioxide into the ocean
JP3552919B2 (en) A device that dilutes and releases carbon dioxide to the ocean
JP3588417B2 (en) Carbon dioxide dilution and discharge device
GB2361458A (en) Semi-submersible marine craft
JP3552921B2 (en) Carbon dioxide discharge device
JP2005247077A (en) Water-jet-fin propelling system
JP6926932B2 (en) Attitude control system for hydroelectric power generators
KR20210000900U (en) Wind-Water Machine Set
JP2000061292A (en) Carbon dioxide state prediction method in sea discharge of carbon dioxide, device therefor, and control system of sea discharge of carbon dioxide
JP3552920B2 (en) Carbon dioxide discharge device
JP5462647B2 (en) Power generation equipment by ship sway
CN100478250C (en) System for positioning a vessel, mainly a submarine
Vassalos et al. Broaching and capsize model tests for validation of numerical ship motion predictions
KR102511197B1 (en) Control device, ship equipped with the same and method for controlling the ship
JP3583625B2 (en) Method for releasing carbon dioxide to the ocean and apparatus for releasing carbon dioxide to the ocean
WO2015047148A2 (en) Nine-branched wind platform
KR20240153609A (en) Hydrogen production and conveyance system
JP4541002B2 (en) Carbon dioxide spraying equipment
KR20190072952A (en) Suction pipe assembly with concentration gradient preventing function of urea storage tank

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees