JP2000058085A - Electrolyte film and manufacture thereof, solid high molecular electrolyte fuel cell using the electrolyte film and operating method therefor - Google Patents

Electrolyte film and manufacture thereof, solid high molecular electrolyte fuel cell using the electrolyte film and operating method therefor

Info

Publication number
JP2000058085A
JP2000058085A JP10234947A JP23494798A JP2000058085A JP 2000058085 A JP2000058085 A JP 2000058085A JP 10234947 A JP10234947 A JP 10234947A JP 23494798 A JP23494798 A JP 23494798A JP 2000058085 A JP2000058085 A JP 2000058085A
Authority
JP
Japan
Prior art keywords
electrolyte
electrolyte membrane
porous
membrane
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10234947A
Other languages
Japanese (ja)
Other versions
JP4045661B2 (en
JP2000058085A5 (en
Inventor
Kazuhide Totsuka
戸塚  和秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP23494798A priority Critical patent/JP4045661B2/en
Priority to US09/369,143 priority patent/US6562446B1/en
Priority to CNB991112830A priority patent/CN1163998C/en
Publication of JP2000058085A publication Critical patent/JP2000058085A/en
Publication of JP2000058085A5 publication Critical patent/JP2000058085A5/ja
Application granted granted Critical
Publication of JP4045661B2 publication Critical patent/JP4045661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the moisture content of an electrolyte film by forming a multiple- layered electrolyte film of the porous electrolyte formed with at least one electrolyte film having three-dimensional communication holes except for both sides electrolyte films. SOLUTION: After adjusting the concentration of the electrolyte solution obtained by dissolving the solvent containing alcohol, the electrolyte solution is coated on one surface of an electrolyte film into the layered-structure for porous treatment, and an electrolyte solution coated layer is formed into the porous electrolyte having three-dimensional communication holes. Continuously, this electrolyte is laminated on a perfluorosulfonic acid resin film, so that the porous electrolyte film contacts with the resin film. This film is heated at 125 deg.C and pressurized at 50-500 kg/cm2 for integral bonding. A three-layered multiple-layered electrolyte film forming with the perfluorosulfonic acid resin film in both sides thereof and the three-dimensional communication holes between them is formed. This multiple-layered electrolyte film holds water in holes parts of the porous electrolyte having the three-dimensional holes for raising the moisture content of the electrolyte film, and increase in the resistance of the electrolyte due to the lowering of the moisture content is restrained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電解質膜を備える
固体高分子電解質型燃料電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte fuel cell having an electrolyte membrane.

【0002】[0002]

【従来の技術】固体高分子電解質型燃料電池は、アノー
ドに燃料として例えば水素およびカソードに酸化剤とし
て例えば酸素とを供給して電気化学的に反応させて、電
力を得る電気化学装置である。アノードおよびカソード
はガス拡散電極であり、電解質膜の一方の面にアノード
を、もう一方の面にカソードを接合してガス拡散電極−
電解質膜接合体を構成する。ガス拡散電極はガス拡散層
と反応層とからなり、アノードおよびカソードの触媒層
は白金族金属の金属粒子あるいはこれらの粒子を担持し
たカーボン粒子などを触媒として備えており、ガス拡散
層は撥水性を有する多孔質なカーボンペーパーなどが用
いられる。
2. Description of the Related Art A solid polymer electrolyte fuel cell is an electrochemical device that supplies electric power, for example, hydrogen as an anode, and oxygen, for example, as an oxidant to an anode and electrochemically reacts them to produce electric power. The anode and the cathode are gas diffusion electrodes, and the anode is joined to one surface of the electrolyte membrane and the cathode is joined to the other surface to form a gas diffusion electrode.
Construct an electrolyte membrane assembly. The gas diffusion electrode is composed of a gas diffusion layer and a reaction layer, and the anode and cathode catalyst layers are provided with catalysts such as metal particles of platinum group metals or carbon particles carrying these particles, and the gas diffusion layers are water repellent. For example, a porous carbon paper having the following is used.

【0003】このガス拡散電極−電解質膜接合体をガス
供給流路が形成されたガス不透過性の一対のセパレータ
で挟持して基本単位となる単電池を構成する。この単電
池を複数個積層して固体高分子電解質型燃料電池を構成
する。
[0003] The gas diffusion electrode-electrolyte membrane assembly is sandwiched between a pair of gas-impermeable separators having a gas supply channel formed therein to form a unit cell as a basic unit. A plurality of such unit cells are stacked to form a solid polymer electrolyte fuel cell.

【0004】固体高分子電解質型燃料電池を作動させる
とアノードでは、 2H2 → 4H+ + 4e− カソードでは、 O2 + 4H+ + 4e− → 2H2O の電気化学反応が進行する。
When a solid polymer electrolyte fuel cell is operated, an electrochemical reaction of 2H2.fwdarw.4H ++ 4e- at the anode and O2 + 4H ++ 4e-.fwdarw.2H2O at the cathode proceeds.

【0005】固体高分子電解質型燃料電池おいて電解質
は高分子の膜であり、たとえばイオン交換樹脂膜の一種
でありパーフロロスルホン酸樹脂膜などのプロトン伝導
性を示す膜が用いられる。これらの電解質膜は含水状態
でプロトン導電性を示し、アノードで水素から生成した
プロトンは数個の水和水をともなって電解質膜を介して
カソードに伝達されて酸素と反応して水が生成する。し
かし、これらの電解質膜は乾燥状態ではプロトン導電性
を示さず、また電解質膜の含水量が低減するとプロトン
伝導性が低減し、もって膜抵抗が増大する。
In a solid polymer electrolyte fuel cell, the electrolyte is a polymer membrane, for example, a membrane having proton conductivity such as a perfluorosulfonic acid resin membrane, which is a kind of ion exchange resin membrane. These electrolyte membranes show proton conductivity in a water-containing state, and protons generated from hydrogen at the anode are transmitted to the cathode through the electrolyte membrane with some hydration water, and react with oxygen to produce water. . However, these electrolyte membranes do not show proton conductivity in a dry state, and when the water content of the electrolyte membrane is reduced, the proton conductivity is reduced, thereby increasing the membrane resistance.

【0006】固体高分子電解質型燃料電池を作動する
と、水和水の移動のためにアノード側の電解質膜の含水
量が低下し、電解質膜の抵抗の増大の原因となる。これ
を防止するために、アノードに供給される燃料ガスは水
分を含む状態に加湿して供給される。固体高分子電解質
型燃料電池において、電解質膜の含水量の低減による抵
抗の増大は抵抗過電圧を著しく増大させて出力特性の低
下の原因となるので、高出力化のためには電解質膜の高
い含水量を保つことが重要である。
When a solid polymer electrolyte fuel cell is operated, the water content of the electrolyte membrane on the anode side decreases due to the movement of hydration water, which causes an increase in the resistance of the electrolyte membrane. In order to prevent this, the fuel gas supplied to the anode is humidified and supplied to a state containing moisture. In a solid polymer electrolyte fuel cell, an increase in resistance due to a decrease in the water content of the electrolyte membrane significantly increases the resistance overvoltage and causes a decrease in output characteristics. It is important to maintain the amount of water.

【0007】電解質膜の含水量を保つために、加湿した
燃料ガスを供給する方法の他に、電解質膜の含水量を保
ための水管理の方法が提案されている。たとえば、膜厚
の薄い電解質膜を用いる方法がある。電解質膜のカソー
ド側では、電極反応で生成する水およびプロトン移動に
ともなう水和水の移動とにより、アノード側に対して含
水量が過剰になる。つまり電解質膜中では含水量の勾配
が生じる。このとき電解質膜中の水の濃度勾配が駆動力
となってカソード側からアノード側への水の逆拡散が起
こる。電解質膜が薄いほど濃度勾配が急になるので水の
逆拡散は多く起こり、カソード側の含水量の低下の抑制
への寄与が大きくなる。
In order to maintain the water content of the electrolyte membrane, a water management method for maintaining the water content of the electrolyte membrane has been proposed in addition to the method of supplying a humidified fuel gas. For example, there is a method using an electrolyte membrane having a small thickness. On the cathode side of the electrolyte membrane, the water content becomes excessive with respect to the anode side due to movement of water generated by the electrode reaction and hydration water accompanying the movement of protons. That is, a gradient of the water content occurs in the electrolyte membrane. At this time, the concentration gradient of water in the electrolyte membrane serves as a driving force, and reverse diffusion of water from the cathode side to the anode side occurs. Since the concentration gradient becomes steeper as the electrolyte membrane becomes thinner, the reverse diffusion of water occurs more frequently, and the contribution to suppressing the decrease in the water content on the cathode side increases.

【0008】また、電解質膜の含水量を保つために、電
解質膜の一端あるいは一部を水と接触させて水を供給す
る方法や電解質膜に吸水性を有する繊維等を埋め込んで
その繊維の一端を水に接触させてウィックにより水を供
給する方法など電解質膜への水の供給方法に関する方法
がある。あるいは、電解質膜中に酸化チタンなどの微細
粒子を分散することにより保水性を向上する方法や電解
質膜中に白金の微細粒子を分散ことにより電解質膜を透
過してくる酸素と水素とから水を生成する方法など電解
質膜の含水量を向上する方法が提案されている。
Further, in order to maintain the water content of the electrolyte membrane, a method of supplying water by bringing one end or a part of the electrolyte membrane into contact with water or embedding a water-absorbing fiber or the like in the electrolyte membrane to form one end of the fiber There is a method relating to a method of supplying water to the electrolyte membrane, such as a method of bringing water into contact with water and supplying water by a wick. Alternatively, a method of improving water retention by dispersing fine particles such as titanium oxide in the electrolyte membrane, or water from oxygen and hydrogen permeating the electrolyte membrane by dispersing fine particles of platinum in the electrolyte membrane. Methods for improving the water content of the electrolyte membrane, such as a method for producing the same, have been proposed.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、電解質
膜の膜厚を薄くする方法では、膜厚の薄くすれば電解質
膜の強度が低減する。このために固体高分子電解質型燃
料電池を構成しうる強度を維持するために膜厚の低減に
も限界がある。一方、電解質膜の含水量を保つために
は、電解質膜自体の保水力を高めることも必要である。
しかし、水との接触や吸水性の繊維などのウィックを用
いた方法では、十分な水を供給することは困難である。
However, in the method of reducing the thickness of the electrolyte membrane, the strength of the electrolyte membrane is reduced if the thickness is reduced. For this reason, there is a limit in reducing the film thickness in order to maintain the strength that can constitute a solid polymer electrolyte fuel cell. On the other hand, in order to maintain the water content of the electrolyte membrane, it is necessary to increase the water retention capacity of the electrolyte membrane itself.
However, it is difficult to supply a sufficient amount of water by a method using a wick such as a fiber that is in contact with water and water-absorbing fibers.

【0010】電解質膜中に酸化チタンを分散させる方法
では、電解質膜の保水力を向上するには不十分である。
また、電解質膜中に白金を分散させる方法では、製造工
程が煩雑になり、また高価な白金を使用するためにコス
トが高くなる。したがって、固体高分子電解質型燃料電
池の高出力化のために、電解質膜の保水性を向上して膜
抵抗を小さくすること、およびその電解質膜の簡易で低
コストな製造方法が必要である。
[0010] The method of dispersing titanium oxide in the electrolyte membrane is insufficient for improving the water retention of the electrolyte membrane.
In addition, the method of dispersing platinum in the electrolyte membrane complicates the manufacturing process and increases the cost because expensive platinum is used. Therefore, in order to increase the output of a solid polymer electrolyte fuel cell, it is necessary to improve the water retention of the electrolyte membrane to reduce the membrane resistance, and to provide a simple and low-cost manufacturing method of the electrolyte membrane.

【0011】[0011]

【課題を解決するための手段】両側の電解質層を除く少
なくともひとつの電解質層が三次元連通性の孔を有する
多孔質電解質である複層電解質膜を形成して、この多孔
質電解質層の孔に水を保持させることにより電解質膜の
含水性の向上を図る。少なくとも一方に面に三次元連通
性の孔を有する多孔質電解質層を形成した電解質膜を多
孔質電解質層が接するように電解質膜と一体にすること
により、両側の電解質層を除く少なくともひとつの電解
質層が三次元連通性の孔を有する多孔質電解質層である
複層電解質膜の製造方法でを提供する。
Means for Solving the Problems At least one of the electrolyte layers other than the electrolyte layers on both sides forms a multilayer electrolyte membrane which is a porous electrolyte having three-dimensionally communicating pores, and the pores of this porous electrolyte layer are formed. The water content of the electrolyte membrane is increased by holding water. By integrating an electrolyte membrane formed with a porous electrolyte layer having three-dimensionally communicating pores on at least one surface thereof with the electrolyte membrane so that the porous electrolyte layer contacts, at least one electrolyte excluding the electrolyte layers on both sides The present invention provides a method for producing a multilayer electrolyte membrane in which the layer is a porous electrolyte layer having three-dimensionally connected pores.

【0012】両側の電解質層を除く少なくともひとつの
電解質層が三次元連通性の孔を有する多孔質電解質であ
る複層電解質膜を備える固体高分子電解質型燃料電池を
構成し、電解質膜の含水性の向上を図って膜抵抗の増大
を抑制し、もって膜抵抗に起因する抵抗過電圧を低減し
て固体高分子電解質型燃料電池を高出力化するととも
に、燃料や酸化剤を加湿しないで供給した場合でも電解
質膜の含水量を保ち出力を安定させる。
[0012] A solid polymer electrolyte fuel cell comprising a multilayer electrolyte membrane in which at least one of the electrolyte layers except for the electrolyte layers on both sides is a porous electrolyte having three-dimensionally communicating pores is formed. In order to improve the membrane resistance and suppress the increase in membrane resistance, thereby reducing the resistance overvoltage caused by the membrane resistance to increase the output of the polymer electrolyte fuel cell and supplying the fuel and oxidant without humidification However, the output is stabilized by maintaining the water content of the electrolyte membrane.

【0013】[0013]

【発明の実施の形態】本発明の複層電解質膜の製造方法
は、つぎの2つの段階からなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method for producing a multilayer electrolyte membrane of the present invention comprises the following two steps.

【0014】段階1では、電解質膜の少なくとも一方の
面に三次元連通性の孔を有する多孔質電解質層を形成す
る。
In step 1, a porous electrolyte layer having three-dimensionally connected pores on at least one surface of the electrolyte membrane is formed.

【0015】段階2では、作製した三次元連通性の孔を
有する多孔質電解質層を備える電解質膜を多孔性電解質
層が接するように電解質膜に配置して一体にすることに
より、本発明の複層電解質膜を作製する。
In the step 2, the electrolyte membrane provided with the porous electrolyte layer having the three-dimensionally connected pores is arranged on the electrolyte membrane so that the porous electrolyte layer is in contact with the electrolyte membrane and integrated to form the composite membrane of the present invention. A layer electrolyte membrane is produced.

【0016】はじめに、段階1について説明する。First, step 1 will be described.

【0017】三次元連通性の孔を有する多孔質電解質層
は、つぎのようにして作製できる。すなわち、アルコー
ル類を含有する溶媒に溶解した電解質の溶液の濃度を調
整した後、電解質膜の少なくとも一方の面に層状に塗布
して多孔化処理し、電解質の溶液の塗布層を三次元連通
性の孔を有する多孔質電解質にする。多孔化処理はアル
コール性水酸基以外の極性基を有する有機溶媒に浸漬す
ることであり、この処理により溶解している電解質が固
化して三次元連通性の孔を有する多孔質電解質が形成さ
れる。
A porous electrolyte layer having three-dimensionally connected pores can be prepared as follows. That is, after adjusting the concentration of the solution of the electrolyte dissolved in the solvent containing alcohols, at least one surface of the electrolyte membrane is applied in a layer form and subjected to a porous treatment, and the coating layer of the electrolyte solution is three-dimensionally connected. A porous electrolyte having pores of The porosity treatment is immersion in an organic solvent having a polar group other than the alcoholic hydroxyl group, and the dissolved electrolyte is solidified to form a porous electrolyte having three-dimensionally connected pores.

【0018】つぎに、三次元連通性の孔を有する多孔質
電解質層の作製の方法の一例を具体的に説明する。
Next, an example of a method for producing a porous electrolyte layer having three-dimensionally communicating pores will be specifically described.

【0019】アルコール類を含有する溶媒に電解質を溶
解した溶液として、たとえば市販のパーフロロスルホン
酸樹脂の溶液である5wt%ナフィオン溶液(米国、ア
ルドリッチ社)を用いることができる。このナフィオン
溶液を濃縮することにより、種々の濃度のナフィオン溶
液を調製する。
As a solution obtained by dissolving the electrolyte in a solvent containing alcohols, for example, a 5 wt% Nafion solution (Aldrich, USA) which is a commercially available solution of perfluorosulfonic acid resin can be used. By concentrating this Nafion solution, Nafion solutions of various concentrations are prepared.

【0020】電解質膜として、たとえば市販のパーフロ
ロスルホン酸樹脂膜であるナフィオン112膜(米国、
デュポン社)を用いることができる。この電解質膜を精
製水で1時間煮沸してから室温の精製水に保存する。そ
の後、たとえばエタノールなどのエタノールに浸漬して
電解質膜をさらに膨潤させる.この膨潤した電解質膜を
エタノールから取り出して膜の表面の余分なエタノール
をペーパータオルなどで拭き取り、少なくも片側の面に
上述の濃度を調製したナフィオン溶液をスプレーなどの
手段により塗布して電解質膜−電解質溶液塗布体を形成
した後、アルコール性水酸基以外の極性基を有する有機
溶媒として、たとえば酢酸ブチルに前述の電解質膜−電
解質溶液塗布体を浸漬して放置する。
As the electrolyte membrane, for example, a commercially available perfluorosulfonic acid resin membrane, Nafion 112 membrane (US,
DuPont) can be used. The electrolyte membrane is boiled with purified water for one hour and stored in purified water at room temperature. Thereafter, the electrolyte membrane is further swelled by immersion in ethanol such as ethanol. The swollen electrolyte membrane is taken out of ethanol, excess ethanol on the surface of the membrane is wiped off with a paper towel or the like, and at least one side of the surface is coated with a Nafion solution having the above-mentioned concentration by spraying or the like. After forming the solution-coated body, the above-mentioned electrolyte membrane-electrolyte solution-coated body is immersed in an organic solvent having a polar group other than the alcoholic hydroxyl group, for example, butyl acetate, and left as it is.

【0021】その後、酢酸ブチルから電解質膜−電解質
溶液塗布体を取り出して室温で乾燥すると、電解質膜の
少なくとも片側の面に三次元連通性の孔を有する多孔質
電解質層を形成した電解質膜が作製できる。なお、ナフ
ィオンはデュポン社の登録商標である。
Thereafter, the electrolyte membrane-electrolyte solution coated body is taken out of the butyl acetate and dried at room temperature to produce an electrolyte membrane having a porous electrolyte layer having three-dimensionally connected pores on at least one surface of the electrolyte membrane. it can. Nafion is a registered trademark of DuPont.

【0022】ここではアルコール類を含有する溶媒に電
解質を溶解した溶液として市販のパーフロロスルホン酸
樹脂の溶液である5wt%ナフィオン溶液を用いて説明
したが、本発明はこの溶液に限定されるものでなく、パ
ーフロロスルホン酸樹脂の溶液であればよく、たとえば
フレミオン(旭ガラスの商標)など他のパーフロロスル
ホン酸樹脂の溶液を用いることができ、また、電解質の
溶液の濃度は希釈あるいは濃縮などの方法により任意に
変更することができる。
Although a 5 wt% Nafion solution which is a commercially available solution of perfluorosulfonic acid resin is used as a solution in which the electrolyte is dissolved in a solvent containing alcohols, the present invention is not limited to this solution. Instead, a solution of a perfluorosulfonic acid resin may be used. For example, a solution of another perfluorosulfonic acid resin such as Flemion (trade name of Asahi Glass) can be used, and the concentration of the electrolyte solution is diluted or concentrated. It can be arbitrarily changed by such a method.

【0023】電解質の希釈はメタノール、エタノール、
1−プロパノール、2−プロパノール、1−ブタノール
あるいは2−ブタノールなどの炭素数が4以下のアルコ
ールあるいは水もしくはこれらを混合物を用いることが
できる。濃縮は加熱や真空乾燥などの方法により電解質
溶液の溶媒の一部を除くことができる。
The electrolyte is diluted with methanol, ethanol,
An alcohol having 4 or less carbon atoms, such as 1-propanol, 2-propanol, 1-butanol or 2-butanol, water or a mixture thereof can be used. In the concentration, a part of the solvent of the electrolyte solution can be removed by a method such as heating or vacuum drying.

【0024】電解質膜としてナフィオン112を用いて
説明したが、他のパーフロロスルホン酸膜、パーフロロ
カルボン酸膜などフッ素系の電解質膜あるいはスチレン
ビニルベンゼンスルホン酸など炭化水素系の電解質膜な
ど含水状態でプロトン伝導性を示す高分子膜であれば、
いずれの膜を用いても構わない。また、膜状で市販され
ている電解質膜の他に、電解質の溶液から作製したキャ
スティング膜を用いることもできる。ただし、これらの
高分子膜の中では、耐熱性に優れたパーフロロスルホン
酸膜やパーフロロカルボン酸膜などのフッ素系電解質膜
が好ましい。
Although the description has been made using Nafion 112 as the electrolyte membrane, other hydrofluoric electrolyte membranes such as perfluorosulfonic acid membranes and perfluorocarboxylic acid membranes and hydrocarbon-based electrolyte membranes such as styrene vinylbenzene sulfonic acid can be used. If it is a polymer membrane that shows proton conductivity,
Either film may be used. In addition to a commercially available electrolyte membrane in the form of a membrane, a casting membrane prepared from an electrolyte solution can also be used. However, among these polymer films, a fluorine-based electrolyte film such as a perfluorosulfonic acid film or a perfluorocarboxylic acid film having excellent heat resistance is preferable.

【0025】電解質膜への電解質溶液の塗布は、スプレ
ー以外の方法としてたとえばドクターブレード法、スク
リーン印刷法などがあり、従来公知の方法を用いること
ができる。
The application of the electrolyte solution to the electrolyte membrane includes, for example, a doctor blade method and a screen printing method as methods other than spraying, and a conventionally known method can be used.

【0026】含水状態の電解質膜を湿潤させるアルコー
ルは、エタノールの他に炭素数が4以下のメタノール、
1−プロパノール、2−プロパノール、1−ブタノール
あるいは2−ブタノールを用いることもできる。
Alcohol which wets the electrolyte membrane in a water-containing state is methanol having 4 or less carbon atoms in addition to ethanol.
1-propanol, 2-propanol, 1-butanol or 2-butanol can also be used.

【0027】アルコール性水酸基以外の極性基を有する
有機溶媒は酢酸ブチルに限定されるものでなく、分子内
にアルコキシカルボニル基を有する炭素鎖の炭素数が1
〜7の有機溶媒、たとえば、ぎ酸プロピル、ぎ酸ブチ
ル、ぎ酸イソブチル、酢酸エチル、酢酸プロピル、酢酸
イソプロピル、酢酸アリル、酢酸ブチル、酢酸イソブチ
ル、酢酸ペンチル、酢酸イソペンチル、プロピオン酸メ
チル、プロピオン酸エチル、プロピオン酸プロピル、ア
クリル酸メチル、アクリル酸ブチル、アクリル酸イソブ
チル、酪酸メチル、イソ酪酸メチル、酪酸エチル、イソ
酪酸エチル、メタクリル酸メチル、酪酸プロピル、イソ
酪酸イソプロピル、酢酸2−エトキシエチル、酢酸2−
(2エトキシエトキシ)エチル等の単独若しくは混合
物、又は分子内にエーテル結合を有する炭素鎖の炭素数
が3〜5の有機溶媒、たとえば、ジプロピルエーテル、
ジブチルエーテル、エチレングリコールジメチルエーテ
ル、エチレングリコールジエチルエーテル、トリプロピ
レングリコールモノメチルエーテル、テトラヒドロフラ
ン等の単独若しくは混合物、又は分子内にカルボニル基
を有する炭素鎖の炭素数が4〜8の有機溶媒、たとえ
ば、メチルブチルケトン、メチルイソブチルケトン、メ
チルヘキシルケトン、ジプロピルケトン等の単独若しく
は混合物、又は分子内にアミノ基を有する炭素鎖の炭素
数が1〜5の有機溶媒、たとえば、イソプロピルアミ
ン、イソブチルアミン、ターシャルブチルアミン、イソ
ペンチルアミン、ジエチルアミン等の単独若しくは混合
物、又は分子内にカルボキシル基を有する炭素鎖の炭素
数が1〜6の有機溶媒、たとえば、プロピオン酸、吉草
酸、カプロン酸、ヘプタン酸等の単独若しくは混合物、
又はこれらの組み合わせから得られるものを用いること
ができる。
The organic solvent having a polar group other than the alcoholic hydroxyl group is not limited to butyl acetate, and the number of carbon atoms in the carbon chain having an alkoxycarbonyl group in the molecule is one.
To 7 organic solvents, for example, propyl formate, butyl formate, isobutyl formate, ethyl acetate, propyl acetate, isopropyl acetate, allyl acetate, butyl acetate, isobutyl acetate, pentyl acetate, isopentyl acetate, methyl propionate, propionic acid Ethyl, propyl propionate, methyl acrylate, butyl acrylate, isobutyl acrylate, methyl butyrate, methyl isobutyrate, ethyl butyrate, ethyl isobutyrate, methyl methacrylate, propyl butyrate, isopropyl isobutyrate, 2-ethoxyethyl acetate, acetic acid 2-
(2ethoxyethoxy) ethyl or the like alone or as a mixture, or an organic solvent having 3 to 5 carbon atoms in the carbon chain having an ether bond in the molecule, for example, dipropyl ether;
Dibutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, tripropylene glycol monomethyl ether, alone or a mixture of tetrahydrofuran, or an organic solvent having 4 to 8 carbon atoms in the carbon chain having a carbonyl group in the molecule, for example, methyl butyl Ketone, methyl isobutyl ketone, methyl hexyl ketone, dipropyl ketone, etc., alone or in a mixture, or an organic solvent having 1 to 5 carbon atoms in the carbon chain having an amino group in the molecule, for example, isopropylamine, isobutylamine, tertial Butylamine, isopentylamine, diethylamine, etc., alone or in a mixture, or an organic solvent having 1 to 6 carbon atoms in the carbon chain having a carboxyl group in the molecule, for example, propionic acid, valeric acid, caproic acid, heptonic acid Alone or a mixture of such phosphate,
Alternatively, a material obtained from a combination thereof can be used.

【0028】このようにして作製したの三次元連通性の
孔を有する多孔質電解質層の表面の様子を示した図(電
子顕微鏡写真)の一例を図2に示す。空孔部分は連通し
ており三次元的に形成されており、電解質部分は網状に
連続しており三次元的に形成されている。
FIG. 2 shows an example of a view (electron micrograph) showing the appearance of the surface of the porous electrolyte layer having three-dimensionally interconnected pores thus produced. The pores are in communication with each other and are formed three-dimensionally, and the electrolytes are continuous in a network and are formed three-dimensionally.

【0029】また、図3は、三次元連通性の孔を有する
多孔質電解質層の表面の基本構成の様子を示した模式図
である。1は三次元連通性の孔を有する多孔質電解質層
の電解質部分を、2は三次元連通性の孔を有する多孔質
電解質層の空孔部分を、3は三次元連通性の孔を有する
多孔質電解質層の空孔部分の開口径を、4は三次元連通
性の孔を有する多孔質電解質層の電解質部分の径をそれ
ぞれ示す。
FIG. 3 is a schematic diagram showing the basic structure of the surface of the porous electrolyte layer having three-dimensionally communicating pores. 1 is an electrolyte part of a porous electrolyte layer having three-dimensionally communicating pores, 2 is a pore part of a porous electrolyte layer having three-dimensionally communicating pores, and 3 is a porous part having three-dimensionally communicating pores. The opening diameter of the pore portion of the porous electrolyte layer is indicated by 4, and the diameter of the electrolyte portion of the porous electrolyte layer having three-dimensionally communicating pores is indicated by 4.

【0030】図2は16wt%ナフィオン溶液を用いた
場合の三次元連通性の孔を有する多孔質電解質層であ
り、三次元連通性の孔を有する多孔質電解質層の空孔部
分の開口径は0.3〜5.0μm、三次元連通性の孔を
有する多孔質電解質層の電解質部分の径は0.2〜1.
0μm、多孔度は70%である。
FIG. 2 shows a porous electrolyte layer having three-dimensionally communicating pores when a 16 wt% Nafion solution is used. The opening diameter of the pore portion of the porous electrolyte layer having three-dimensionally communicating pores is as follows. The diameter of the electrolyte portion of the porous electrolyte layer having pores of 0.3 to 5.0 μm and three-dimensional communication is 0.2 to 1.0.
0 μm, porosity is 70%.

【0031】電解質膜に塗布するナフィオン溶液の濃度
によって、三次元連通性の孔を有する多孔質電解質層の
網状骨格構造の網目部分の開口径を0.1〜10μmの
範囲、網状骨格構造の骨格部分の径を0.1〜30μm
の範囲、多孔度を10〜90%に範囲に調整することが
できる。電解質膜の面に形成する三次元連通性の孔を有
する多孔質電解質層の厚みは、塗布するナフィオン溶液
の量によって、1〜50μmの範囲で調整することがで
きる。
Depending on the concentration of the Nafion solution applied to the electrolyte membrane, the opening diameter of the mesh portion of the network skeleton structure of the porous electrolyte layer having three-dimensionally communicating pores is in the range of 0.1 to 10 μm, and the skeleton of the network skeleton structure is formed. The diameter of the part is 0.1-30 μm
And the porosity can be adjusted in the range of 10 to 90%. The thickness of the porous electrolyte layer having three-dimensionally connected pores formed on the surface of the electrolyte membrane can be adjusted in the range of 1 to 50 μm depending on the amount of the Nafion solution to be applied.

【0032】つぎに、段階2について説明する。Next, step 2 will be described.

【0033】両側の電解質層を除く少なくともひとつの
電解質層が三次元連通性の孔を有する多孔質電解質であ
る複層電解質膜は、たとえばつぎのようにして作製でき
る。すなわち、段階1で作製した少なくとも一方の面に
三次元連通性の孔を有する多孔質電解質層を備えた電解
質膜の多孔質電解質層が接するように電解質膜と一体に
する。
A multilayer electrolyte membrane in which at least one electrolyte layer other than the electrolyte layers on both sides is a porous electrolyte having three-dimensionally connected pores can be produced, for example, as follows. That is, the electrolyte membrane provided with the porous electrolyte layer having pores of three-dimensional communication on at least one surface prepared in Step 1 is integrated with the electrolyte membrane so that the porous electrolyte layer is in contact with the electrolyte membrane.

【0034】つぎに、両側の電解質層を除く少なくとも
ひとつの電解質層が三次元連通性の孔を有する多孔質電
解質である複層電解質膜の作製の方法の一例を具体的に
説明する。
Next, an example of a method for producing a multilayer electrolyte membrane in which at least one electrolyte layer except for the electrolyte layers on both sides is a porous electrolyte having three-dimensionally communicating pores will be specifically described.

【0035】段階1で作製した一方の面に三次元連通性
の孔を有する多孔質電解質層を備えた電解質を多孔性電
解質層が接するようにナフィオン112に積層する。こ
の積層体をたとえば、50kg/cm2〜500kg/
cm2、125℃で3分間、加熱圧接して一体に接合す
る。両側がナフィオン112膜であり、これらの間に三
次元連通性の孔を有する多孔質電解質が形成された3層
からなる本発明の複層電解質膜が形成される。この本発
明の複層電解質膜の模式図を図1に示す。
An electrolyte having a porous electrolyte layer having three-dimensionally connected pores on one surface prepared in step 1 is laminated on Nafion 112 so that the porous electrolyte layer is in contact with the electrolyte. For example, this laminated body is set at 50 kg / cm 2 to 500 kg /
C. for 2 minutes at 125.degree. On both sides, a Nafion 112 membrane is formed, and a multilayer electrolyte membrane of the present invention comprising three layers in which a porous electrolyte having three-dimensionally communicating pores is formed therebetween is formed. FIG. 1 is a schematic view of the multilayer electrolyte membrane of the present invention.

【0036】この説明では、段階1で作製した三次元連
通性の孔を有する多孔質電解質を備える電解質膜は片側
にのみ多孔質電解質を備えているが両面に備えるものを
用いることもできる。この場合、4層からなる表面にも
三次元連通性の孔を有する多孔質電解質を備える本発明
の複層電解質膜が形成される。
In this description, the electrolyte membrane provided with the porous electrolyte having the three-dimensionally connected pores prepared in the step 1 has the porous electrolyte only on one side, but may have the porous electrolyte on both sides. In this case, the multilayer electrolyte membrane of the present invention having a porous electrolyte having three-dimensionally connected pores also on the surface composed of four layers is formed.

【0037】段階1で作製した三次元連通性の孔を有す
る多孔質電解質を備える電解質膜に接合する電解質膜と
してナフィオン112を用いて説明したが、他のパーフ
ロロスルホン酸膜、パーフロロカルボン酸膜などフッ素
系の電解質膜あるいはスチレンビニルベンゼンスルホン
酸など炭化水素系の電解質膜など含水状態でプロトン伝
導性を示す高分子膜であれば、いずれの膜を用いても構
わない。また、膜状で市販されている電解質膜の他に、
電解質の溶液から作製したキャスティング膜を用いるこ
ともできる。
Although the description has been made using Nafion 112 as an electrolyte membrane to be joined to the electrolyte membrane having a porous electrolyte having three-dimensionally interconnected pores prepared in Step 1, other perfluorosulfonic acid membranes and perfluorocarboxylic acid Any membrane may be used as long as it is a polymer membrane that exhibits proton conductivity in a water-containing state, such as a fluorine-based electrolyte membrane such as a membrane or a hydrocarbon-based electrolyte membrane such as styrene-vinylbenzenesulfonic acid. In addition to the electrolyte membrane that is commercially available in the form of a membrane,
A casting film made from an electrolyte solution can also be used.

【0038】上述の電解質膜の加熱圧接するときの圧
力、温度および時間は、これらの兼ね合いできまり、場
合に応じて、50kg/cm2〜500kg/cm2
100℃〜175℃の範囲で条件が決められる。
The pressure, temperature and time when the above-mentioned electrolyte membrane is heated and pressed are determined by balancing these factors. Depending on the case, the pressure, the temperature and the time may be 50 kg / cm 2 to 500 kg / cm 2 ,
Conditions are determined in the range of 100 ° C to 175 ° C.

【0039】また、作製した本発明の3層の複層電解質
膜に、さらに一方の面に三次元連通性の孔を有する多孔
質電解質層を備えた電解質を多孔性電解質層が接するよ
うに積層して加熱圧接により一体に接合し、図4に示す
ように無孔性の電解質層と多孔性の電解質層とがくり返
し構造をした複層電解質膜を構成することができる。
Further, an electrolyte having a porous electrolyte layer having three-dimensionally communicating pores on one surface is laminated on the three-layered multilayer electrolyte membrane of the present invention so that the porous electrolyte layer is in contact with the electrolyte. Then, they are integrally joined by heating and pressure welding to form a multi-layer electrolyte membrane in which a non-porous electrolyte layer and a porous electrolyte layer have a repeating structure as shown in FIG.

【0040】このように一方の面に三次元連通性の孔を
有する多孔質電解質層を備えた電解質を任意の回数接合
することを繰り返すことにより、無孔性の電解質層と多
孔性の電解質層とが任意の回数のくり返し構造をした本
発明の複層電解質膜を構成することができる。
By repeating joining of the electrolyte provided with the porous electrolyte layer having three-dimensionally connected pores on one surface as described above an arbitrary number of times, the non-porous electrolyte layer and the porous electrolyte layer are repeatedly bonded. Can constitute the multilayer electrolyte membrane of the present invention having a repeating structure of an arbitrary number of times.

【0041】[0041]

【実施例】次に、本発明の好適な実施例を図面を参照し
て説明する。
Next, a preferred embodiment of the present invention will be described with reference to the drawings.

【0042】[実施例1]本発明の複層電解質膜の製造
方法の実施の一例について説明する。図5は、本発明の
複層電解質膜の製造工程の実施の一例を示したフロート
図である。本発明の複層電解質膜の製造は6工程からな
り、図5を用いてそれぞれの工程について具体的に説明
する。
Example 1 An example of an embodiment of the method for producing a multilayer electrolyte membrane of the present invention will be described. FIG. 5 is a float view showing an example of the embodiment of the production process of the multilayer electrolyte membrane of the present invention. The production of the multilayer electrolyte membrane of the present invention comprises six steps, and each step will be specifically described with reference to FIG.

【0043】第一の工程では、電解質溶液の濃度を調製
した。市販の5wt%ナフィオン溶液をサンプル瓶に取
り、撹拌しながら60度に加熱して溶液を16wt%ま
で濃縮した。
In the first step, the concentration of the electrolyte solution was adjusted. A commercially available 5 wt% Nafion solution was placed in a sample bottle, and heated to 60 ° C with stirring to concentrate the solution to 16 wt%.

【0044】第二の工程では、濃縮したナフィオン溶液
から電解質のキャスティング膜を形成した。間隔を0.
33mmに調整したドクターブレードを用いて16wt
%ナフィオン溶液をアルミ箔に塗布して乾燥し、アルミ
箔上にナフィオンのキャスティング膜を形成した。この
膜の厚みを測定したところ約22μmであり、これを電
解質膜A1とする。
In the second step, an electrolyte casting film was formed from the concentrated Nafion solution. Set the interval to 0.
16wt using a doctor blade adjusted to 33mm
The Nafion solution was applied to an aluminum foil and dried to form a casting film of Nafion on the aluminum foil. When the thickness of this film was measured, it was about 22 μm, which was used as the electrolyte film A1.

【0045】第三の工程では、電解質膜A1に三次元連
通性の孔を有する多孔質電解質層を形成した。間隔を
0.16mmに調整したドクターブレードを用いて16
wt%ナフィオン溶液を第二の工程で作製したアルミ箔
上の電解質膜A1に塗布し、多孔化処理として酢酸ブチ
ルに10分間浸漬した後、室温で乾燥してアルミ箔上の
電解質膜A1の表面に三次元連通性の孔を有する多孔質
電解質層を形成した。これを電解質膜A2とする。形成
した多孔性の電解質層の厚みは、約17μmであった。
In the third step, a porous electrolyte layer having three-dimensionally communicating pores was formed on the electrolyte membrane A1. 16 using a doctor blade with the spacing adjusted to 0.16 mm.
A wt% Nafion solution is applied to the electrolyte membrane A1 on the aluminum foil prepared in the second step, immersed in butyl acetate for 10 minutes as a porous treatment, and then dried at room temperature to obtain a surface of the electrolyte membrane A1 on the aluminum foil. Then, a porous electrolyte layer having three-dimensionally connected pores was formed. This is referred to as an electrolyte membrane A2. The thickness of the formed porous electrolyte layer was about 17 μm.

【0046】第四の工程では、電解質膜A2を接合して
複層電解質膜を作製した。アルミ箔上に形成した2枚の
電解質膜A2を多孔性の電解質層が向き合うように積層
する。この積層体をプレス治具に設置し、100kg/
cm2、125℃で3分間加熱圧接して2枚の電解質膜A
2を一体に接合し、両面にアルミ箔が付着した状態の本
発明の複層電解質膜を形成した。
In the fourth step, the electrolyte membrane A2 was joined to form a multilayer electrolyte membrane. Two electrolyte membranes A2 formed on an aluminum foil are laminated such that the porous electrolyte layers face each other. This laminate was placed on a press jig, and 100 kg /
The two electrolyte membranes A were heated and pressed at 125 ° C. for 3 minutes in cm 2 .
2 were integrally joined to form a multilayer electrolyte membrane of the present invention in a state where aluminum foil was adhered to both surfaces.

【0047】第五の工程では、作製した複層電解質膜か
らアルミ箔を除去した。作製した複層電解質膜の両面に
はアルミ箔が付着している状態である。これを0.5M
の希硫酸に浸漬し、アルミ箔を溶解して取り除き、本発
明の複層電解質膜を得た。この本発明の複層電解質膜の
厚みは、含水状態で約59μmであった。
In the fifth step, the aluminum foil was removed from the produced multilayer electrolyte membrane. The aluminum foil is adhered to both surfaces of the prepared multilayer electrolyte membrane. 0.5M
Of dilute sulfuric acid to dissolve and remove the aluminum foil to obtain a multilayer electrolyte membrane of the present invention. The thickness of the multilayer electrolyte membrane of the present invention was about 59 μm in a water-containing state.

【0048】第六の工程では、作製した本発明の複層電
解質膜に前処理を施した。作製した複層電解質膜を別の
0.5Mの希硫酸に移し替えて1時間煮沸した後、精製
水で5回洗浄して電解質膜をプロトン型にする処理を施
し、精製水中に保存した。
In the sixth step, the prepared multilayer electrolyte membrane of the present invention was subjected to a pretreatment. The prepared multilayer electrolyte membrane was transferred to another 0.5 M diluted sulfuric acid, boiled for 1 hour, washed 5 times with purified water to convert the electrolyte membrane into a proton type, and stored in purified water.

【0049】このようにして作製した本発明の複層電解
質膜を複層電解質膜Aとする。
The multilayer electrolyte membrane of the present invention thus manufactured is referred to as multilayer electrolyte membrane A.

【0050】本発明による複層電解質膜Aを備える固体
高分子電解質型燃料電池を作製した。 以下にその作製
方法を示す.まず、つぎのようにして本発明の複層電解
質膜Aの両面に触媒層を形成した。すなわち、白金を3
0wt%担持したカーボン触媒2.6gに精製水45m
l加え、次いで2−プロパノール45mlを徐々に拡散
しながら加えて白金担持カーボン触媒を水/2−プロパ
ノール混合溶媒に分散し、さらに撹拌器を用いて30分
間混合する。この混合物にPTFEのディスパージョン溶液
(三井デュポンフロロケミカル社製、PTFE固形成分:6
0%)0.5mlを撹拌しながら徐々に加えて添加後3
0分間撹拌した後、5wt%ナフィオン溶液(米国、ア
ルドリッチ社製)17.5mlを撹拌しながら徐々に加
え、さらに30分間撹拌して触媒分散液を作製した。
A solid polymer electrolyte fuel cell provided with the multilayer electrolyte membrane A according to the present invention was manufactured. The fabrication method is described below. First, catalyst layers were formed on both surfaces of the multilayer electrolyte membrane A of the present invention as follows. That is, 3
2.6 g of a carbon catalyst loaded with 0 wt% and 45 m of purified water
Then, 45 ml of 2-propanol is added while gradually diffusing to disperse the platinum-supported carbon catalyst in a mixed solvent of water / 2-propanol, and further mixed using a stirrer for 30 minutes. A PTFE dispersion solution (manufactured by Mitsui DuPont Fluorochemicals, PTFE solid component: 6) is added to this mixture.
0%) 0.5 ml was slowly added with stirring, and 3
After stirring for 0 minutes, 17.5 ml of a 5 wt% Nafion solution (manufactured by Aldrich, USA) was gradually added with stirring, and further stirred for 30 minutes to prepare a catalyst dispersion.

【0051】スプレーによりこの触媒分散液を直径3c
mの円形状に複層電解質膜Aの両面に塗布し、乾燥して
複層電解質膜Aの両面に触媒層を形成した。この触媒層
の白金触媒の含有量が約0.5mg/cm2になるよう
に触媒分散物を塗布した。
The catalyst dispersion was sprayed with a diameter of 3c by spraying.
m was applied to both surfaces of the multilayer electrolyte membrane A in a circular shape and dried to form catalyst layers on both surfaces of the multilayer electrolyte membrane A. The catalyst dispersion was applied so that the content of the platinum catalyst in this catalyst layer was about 0.5 mg / cm 2 .

【0052】つぎに、この両面に触媒層を形成した複層
電解質膜Aにガス拡散層として直径3cmに裁断した撥
水性を有するカーボンペーパーを両側に配置して加熱圧
接(120kg/cm2、135℃、5分間)により一
体に接合してガス拡散電極−複層電解質膜接合体Aを作
製した。
Next, water-repellent carbon paper cut to a diameter of 3 cm as a gas diffusion layer was placed on both sides of the multilayer electrolyte membrane A having a catalyst layer formed on both surfaces thereof, and heated and pressed (120 kg / cm 2 , 135 kg). (5 ° C., 5 minutes) to form a gas diffusion electrode-multilayer electrolyte membrane assembly A.

【0053】このようにして作製したガス拡散電極−複
層電解質膜接合体Aをガス供給路が形成された金属製の
セパレータで挟持して本発明の固体高分子電解質型燃料
電池Aを構成した。
The solid polymer electrolyte fuel cell A of the present invention was constructed by sandwiching the gas diffusion electrode-multilayer electrolyte membrane assembly A thus produced between metal separators having gas supply passages formed therebetween. .

【0054】この固体高分子電解質型燃料電池をつぎに
条件で作動させて、電流−電圧特性を測定した.燃料ガ
スには純水素を用いて、利用率が70%になる流量で電
池に供給した。酸化ガスには純酸素を用いて、利用率が
50%になる流量で電池に供給した。酸素および水素の
反応ガスはそれぞれ大気圧で供給し、いずれの反応ガス
も加湿しなかった。電池には65℃のクーラントを循環
して、電池温度を一定に保った。
This solid polymer electrolyte fuel cell was operated under the following conditions, and the current-voltage characteristics were measured. Pure hydrogen was used as a fuel gas and supplied to the battery at a flow rate at which the utilization factor became 70%. Pure oxygen was used as the oxidizing gas and supplied to the battery at a flow rate at which the utilization factor became 50%. Oxygen and hydrogen reactant gases were each supplied at atmospheric pressure and none of the reactant gases was humidified. Coolant at 65 ° C. was circulated through the battery to keep the battery temperature constant.

【0055】[実施例2]市販のナフィオン112膜を
精製水で3回洗浄してから3%濃度の過酸化水素水で1
時間煮沸して精製水で回洗浄し、つぎに0.5Mの希硫
酸1時間煮沸してプロトン型に置換した後、精製水で5
回洗浄した。これを電解質膜Bとする。
Example 2 A commercially available Nafion 112 membrane was washed three times with purified water and then washed with a 3% hydrogen peroxide solution.
After boiling for 1 hour and washing with purified water twice, then boiling for 1 hour with 0.5 M diluted sulfuric acid to replace the proton type, then purify with purified water for 5 hours.
Washed twice. This is referred to as an electrolyte membrane B.

【0056】この電解質膜Bを備える固体高分子電解質
型燃料電池を以下のようにして作製した。
A solid polymer electrolyte fuel cell equipped with the electrolyte membrane B was manufactured as follows.

【0057】はじめに、スプレーにより実施例1で調製
した触媒分散液を直径3cmの円形状に電解質膜Bの両
面に塗布し、乾燥して電解質膜Bの両面に触媒層を形成
した。この触媒層の白金触媒の含有量が約0.5mg/
cm2になるように触媒分散物を塗布した。
First, the catalyst dispersion prepared in Example 1 was applied to both sides of the electrolyte membrane B in a circular shape having a diameter of 3 cm by spraying, and dried to form catalyst layers on both sides of the electrolyte membrane B. The platinum layer content of this catalyst layer was about 0.5 mg /
cm 2 of the catalyst dispersion was applied.

【0058】つぎに、この両面に触媒層を形成した電解
質膜Bにガス拡散層として直径3cmに裁断した撥水性
を有するカーボンペーパーを両側に配置して加熱圧接
(120kg/cm2、135℃、5分間)により一体
に接合してガス拡散電極−電解質膜接合体Bを作製し
た。
Next, water-repellent carbon paper cut to a diameter of 3 cm as a gas diffusion layer was placed on both sides of the electrolyte membrane B having a catalyst layer formed on both sides thereof, and heated and pressed (120 kg / cm 2 , 135 ° C., (5 minutes) to form a gas diffusion electrode-electrolyte membrane assembly B.

【0059】このようにして作製したガス拡散電極−電
解質膜接合体Bをガス供給路が形成された金属製のセパ
レータで挟持して本発明の固体高分子電解質型燃料電池
Bを構成した。
The solid polymer electrolyte fuel cell B of the present invention was constructed by sandwiching the gas diffusion electrode-electrolyte membrane assembly B thus produced between metal separators provided with gas supply passages.

【0060】この固体高分子電解質型燃料電池Bを実施
例1と同じ条件で作動させて、電流−電圧特性を測定し
た。
This solid polymer electrolyte fuel cell B was operated under the same conditions as in Example 1, and the current-voltage characteristics were measured.

【0061】実施例1および2で作製した固体高分子電
解質型燃料電池の電流−電圧特性を図6に示す。図6か
ら明らかであるように、本発明の複層電解質膜Aを備え
る固体高分子電解質型燃料電池Aは、通常の電解質膜を
備える固体高分子電解質型燃料電池Bより電池電圧が高
い。反応ガスを無加湿運転で作動しているにもかかわら
ず、本発明の複層電解質膜を備える固体高分子電解質型
燃料電池は高出力である。
FIG. 6 shows the current-voltage characteristics of the solid polymer electrolyte fuel cells produced in Examples 1 and 2. As is clear from FIG. 6, the solid polymer electrolyte fuel cell A including the multilayer electrolyte membrane A of the present invention has a higher cell voltage than the solid polymer electrolyte fuel cell B including the ordinary electrolyte membrane. Despite operating the reaction gas in a non-humidifying operation, the solid polymer electrolyte fuel cell including the multilayer electrolyte membrane of the present invention has a high output.

【0062】内部抵抗計(TSURUGA MODE
L 3562)を用いて、これらの固体高分子電解質型
燃料電池の作動している状態での内部抵抗を測定した。
電流−内部抵抗の関係を図7に示す。固体高分子電解質
型燃料電池Bは電流が増大すると内部抵抗も増大する
が、固体高分子電解質型燃料電池Aは電流が増大しても
内部抵抗の増大はほとんどみられない。固体高分子電解
質型燃料電池Aが備える複層電解質膜は、三次元連通性
の孔を有する多孔質電解質の空孔部分に水が保持されて
電解質膜の含水量が高くなる。このために電解質膜の含
水量の低下に起因する電解質膜の抵抗の増大が抑制され
るものと思われる。
Internal resistance meter (TSURUGA MODE)
L 3562), the internal resistance of these solid polymer electrolyte fuel cells in the operating state was measured.
FIG. 7 shows the relationship between the current and the internal resistance. Although the internal resistance of the solid polymer electrolyte fuel cell B increases as the current increases, the internal resistance of the solid polymer electrolyte fuel cell A hardly increases even when the current increases. In the multi-layer electrolyte membrane provided in the polymer electrolyte fuel cell A, water is retained in pores of the porous electrolyte having three-dimensionally connected pores, and the water content of the electrolyte membrane is increased. Therefore, it is considered that the increase in the resistance of the electrolyte membrane due to the decrease in the water content of the electrolyte membrane is suppressed.

【0063】すなわち、本発明の複層電解質膜を用いる
と、電解質膜の保水性が向上するので電解質膜の膜抵抗
の増大に起因する抵抗過電圧が小さくなり、かつ燃料や
酸化剤のガスを加湿しないで供給しても安定に作動する
固体高分子電解質型燃料電池を提供することができる。
That is, when the multilayer electrolyte membrane of the present invention is used, the water retention of the electrolyte membrane is improved, so that the resistance overvoltage caused by the increase in the membrane resistance of the electrolyte membrane is reduced, and the fuel or oxidant gas is humidified. Thus, a solid polymer electrolyte fuel cell that operates stably even when supplied without supply can be provided.

【0064】[0064]

【発明の効果】本発明の複層電解質膜は、三次元連通性
の孔を有する多孔質電解質を形成することにより電解質
の保水性が増大する。このために固体高分子電解質型燃
料電池にこの複層電解質膜を用いた場合、無加湿の反応
ガスで作動しても電解質膜の含水量の低減に起因する膜
抵抗の増大を抑制することができ、もって固体高分子電
解質型燃料電池の抵抗過電圧の低減による高出力化を達
成できる。
According to the multilayer electrolyte membrane of the present invention, the water retention of the electrolyte is increased by forming a porous electrolyte having three-dimensionally connected pores. For this reason, when this multilayer electrolyte membrane is used in a solid polymer electrolyte fuel cell, it is possible to suppress an increase in membrane resistance due to a decrease in the water content of the electrolyte membrane even when operated with a non-humidified reaction gas. As a result, high output can be achieved by reducing the resistance overvoltage of the polymer electrolyte fuel cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の中間層に三次元連通性の孔を有する多
孔質電解質層を備えた複層電解質膜の断面を示す模式図
である。
FIG. 1 is a schematic diagram showing a cross section of a multilayer electrolyte membrane provided with a porous electrolyte layer having three-dimensionally communicating pores in an intermediate layer of the present invention.

【図2】本発明の三次元連通性の孔を有する多孔質電解
質層の表面性状を示す図である。(電子顕微鏡写真)
FIG. 2 is a view showing the surface properties of a porous electrolyte layer having three-dimensionally connected pores of the present invention. (Electron micrograph)

【図3】本発明の三次元連通性の孔を有する多孔質電解
質の単位胞を示す模式図である。
FIG. 3 is a schematic diagram showing a unit cell of a porous electrolyte having three-dimensionally connected pores of the present invention.

【図4】本発明の無孔性の電解質層と三次元連通性の孔
を有する多孔質電解質層とが交互に繰り返す構造を有す
る複層電解質膜の断面を示す模式図である。
FIG. 4 is a schematic view showing a cross section of a multilayer electrolyte membrane having a structure in which a nonporous electrolyte layer and a porous electrolyte layer having three-dimensionally communicating pores of the present invention are alternately repeated.

【図5】本発明の中間層に三次元連通性の孔を有する多
孔質電解質層を備えた複層電解質膜の作製工程を示す図
である。
FIG. 5 is a diagram illustrating a process for producing a multilayer electrolyte membrane including a porous electrolyte layer having three-dimensionally communicating pores in an intermediate layer according to the present invention.

【図6】本発明の複層電解質膜A備えた固体高分子電解
質型燃料電池Aおよび公知の電解質膜Bを備えた固体高
分子電解質型燃料電池Bとの電流−電圧特性を示す図で
ある。
FIG. 6 is a diagram showing current-voltage characteristics of a solid polymer electrolyte fuel cell A having a multilayer electrolyte membrane A of the present invention and a solid polymer electrolyte fuel cell B having a known electrolyte membrane B. .

【図7】本発明の複層電解質膜A備えた固体高分子電解
質型燃料電池Aおよび公知の電解質膜Bを備えた固体高
分子電解質型燃料電池Bとの電流−内部抵抗の関係を示
す図である。
FIG. 7 is a diagram showing a current-internal resistance relationship between a solid polymer electrolyte fuel cell A having a multilayer electrolyte membrane A of the present invention and a solid polymer electrolyte fuel cell B having a known electrolyte membrane B. It is.

【符号の説明】[Explanation of symbols]

1 三次元連通性の孔を有する多孔質電解質層の電解質
部分 2 三次元連通性の孔を有する多孔質電解質層の空孔部
分 3 三次元連通性の孔を有する多孔質電解質層の空孔部
分の開口径 4 三次元連通性の孔を有する多孔質電解質層の電解質
部分の径 5 三次元連通性の孔を有する多孔質電解質層 6 無孔性の電解質層 7 本発明の複層電解質膜
1 electrolyte portion of porous electrolyte layer having three-dimensionally communicating pores 2 pore portion of porous electrolyte layer having three-dimensionally communicating pores 3 pore portion of porous electrolyte layer having three-dimensionally communicating pores 4 Diameter of electrolyte part of porous electrolyte layer having three-dimensionally communicating pores 5 Porous electrolyte layer having three-dimensionally communicating pores 6 Nonporous electrolyte layer 7 Multilayer electrolyte membrane of the present invention

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 両側の電解質層を除く少なくともひとつ
の電解質層が三次元連通性の孔を有する多孔質電解質で
あることを特徴とする複層電解質膜。
1. A multi-layer electrolyte membrane, characterized in that at least one electrolyte layer except for the electrolyte layers on both sides is a porous electrolyte having three-dimensionally communicating pores.
【請求項2】 少なくとも一方の面に三次元連通性の孔
を有する多孔質電解質層を形成した電解質膜を多孔質電
解質層が接するように電解質膜に配置して一体にするこ
とにより、両側の電解質層を除く少なくともひとつの電
解質層が三次元連通性の孔を有する多孔質電解質である
ことを特徴とする複層電解質膜の製造方法。
2. An electrolyte membrane having a porous electrolyte layer having three-dimensionally communicating pores formed on at least one surface thereof is arranged on the electrolyte membrane so that the porous electrolyte layer is in contact with the electrolyte membrane, and is integrally formed. A method for producing a multilayer electrolyte membrane, characterized in that at least one electrolyte layer other than the electrolyte layer is a porous electrolyte having three-dimensionally connected pores.
【請求項3】 請求項1および請求項2記載の複層電解
質膜を備えることを特徴とする固体高分子電解質型燃料
電池。
3. A solid polymer electrolyte fuel cell comprising the multilayer electrolyte membrane according to claim 1.
【請求項4】 燃料もしくは酸化剤あるいはその両方が
無加湿で供給されることを特徴とする請求項3記載の固
体高分子電解質型燃料電池の運転方法。
4. The method for operating a solid polymer electrolyte fuel cell according to claim 3, wherein the fuel and / or the oxidizing agent are supplied without humidification.
JP23494798A 1998-08-05 1998-08-05 ELECTROLYTE MEMBRANE, PROCESS FOR PRODUCING THE SAME, AND SOLID POLYMER ELECTROLYTE FUEL CELL USING THE SAME Expired - Lifetime JP4045661B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP23494798A JP4045661B2 (en) 1998-08-05 1998-08-05 ELECTROLYTE MEMBRANE, PROCESS FOR PRODUCING THE SAME, AND SOLID POLYMER ELECTROLYTE FUEL CELL USING THE SAME
US09/369,143 US6562446B1 (en) 1998-08-05 1999-08-05 Multi-layer polymer electrolyte-membrane, electrochemical apparatus and process for the preparation of multi-layer polymer electrolyte membrane
CNB991112830A CN1163998C (en) 1998-08-05 1999-08-05 Polymer dielectric membrne, electrochemical unit and manufacture of polymer dielectric membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23494798A JP4045661B2 (en) 1998-08-05 1998-08-05 ELECTROLYTE MEMBRANE, PROCESS FOR PRODUCING THE SAME, AND SOLID POLYMER ELECTROLYTE FUEL CELL USING THE SAME

Publications (3)

Publication Number Publication Date
JP2000058085A true JP2000058085A (en) 2000-02-25
JP2000058085A5 JP2000058085A5 (en) 2005-10-27
JP4045661B2 JP4045661B2 (en) 2008-02-13

Family

ID=16978763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23494798A Expired - Lifetime JP4045661B2 (en) 1998-08-05 1998-08-05 ELECTROLYTE MEMBRANE, PROCESS FOR PRODUCING THE SAME, AND SOLID POLYMER ELECTROLYTE FUEL CELL USING THE SAME

Country Status (1)

Country Link
JP (1) JP4045661B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030014895A (en) * 2001-08-13 2003-02-20 와우텍 주식회사 Portable fuel cell system
EP1345280A1 (en) * 2002-03-07 2003-09-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Solid electrolyte with nanometre size pores
US7341799B2 (en) 2002-08-09 2008-03-11 Toyota Shatai Kabushiki Kaisha Separator from a fuel cell having first and second portions of different materials
US8936887B2 (en) 2011-06-15 2015-01-20 Samsung Electronics Co., Ltd. Composite electrolyte membrane for fuel cell, method of manufacturing the membrane, and fuel cell including the membrane
CN110383553A (en) * 2018-01-10 2019-10-25 株式会社Lg化学 The manufacturing method for enhancing diaphragm, the enhancing diaphragm and redox flow batteries manufactured using the manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030014895A (en) * 2001-08-13 2003-02-20 와우텍 주식회사 Portable fuel cell system
EP1345280A1 (en) * 2002-03-07 2003-09-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Solid electrolyte with nanometre size pores
US8034509B2 (en) 2002-03-07 2011-10-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Polymer electrolyte membrane with an inorganic backbone
US7341799B2 (en) 2002-08-09 2008-03-11 Toyota Shatai Kabushiki Kaisha Separator from a fuel cell having first and second portions of different materials
US8936887B2 (en) 2011-06-15 2015-01-20 Samsung Electronics Co., Ltd. Composite electrolyte membrane for fuel cell, method of manufacturing the membrane, and fuel cell including the membrane
CN110383553A (en) * 2018-01-10 2019-10-25 株式会社Lg化学 The manufacturing method for enhancing diaphragm, the enhancing diaphragm and redox flow batteries manufactured using the manufacturing method
US11309564B2 (en) 2018-01-10 2022-04-19 Lg Chem, Ltd. Method for manufacturing reinforced separator, reinforced separator manufactured using the same and redox flow battery
CN110383553B (en) * 2018-01-10 2022-10-04 株式会社Lg化学 Method for manufacturing reinforced membrane, reinforced membrane manufactured by using method, and redox flow battery

Also Published As

Publication number Publication date
JP4045661B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
US8323848B2 (en) Membrane-electrode assembly for fuel cell, preparation method, and fuel cell comprising the same
KR101135479B1 (en) A polymer electrolyte membrane for fuel cell, a method for preparing the same, and a fuel cell system comprising the same
JP5151074B2 (en) Solid polymer electrolyte membrane, membrane electrode assembly, and fuel cell using the same
KR20110001022A (en) Polymer electrolyte membrane for fuel cell and method of manufacturing the same
KR101877753B1 (en) Composite electrolyte membrane for fuel cell, membrane-electrode assembly including thereof, fuel cell including thereof, and manufacturing method thereof
JP2000285933A (en) Fuel cell
KR101135477B1 (en) A porous membrane and method for preparing thereof, polymer electrode membrane for fuel cell using the same, and fuel cell system comprising the same
US20110097651A1 (en) Membrane Electrode Assembly (MEA) Fabrication Procedure on Polymer Electrolyte Membrane Fuel Cell
CN1181585C (en) Process for preparing self-humidifying composite proton exchange film for fuel cell
US20100107404A1 (en) Method of producing fuel cell catalyst layer
WO2007074616A1 (en) Membrane electrode joint product and fuel cell using the same
KR100599813B1 (en) Membrane/electrode assembly for fuel cell and fuel cell system comprising same
KR100696680B1 (en) Polymer membrane for fuel cell and method for preparating the same
KR101312262B1 (en) Polymer membrane, a method for preparing the polymer membrane and a fuel cell employing the same
JP4045661B2 (en) ELECTROLYTE MEMBRANE, PROCESS FOR PRODUCING THE SAME, AND SOLID POLYMER ELECTROLYTE FUEL CELL USING THE SAME
JP3978757B2 (en) Gas diffusion electrode-electrolyte membrane assembly for fuel cell and method for producing the same
JP3965666B2 (en) Gas diffusion electrode and manufacturing method thereof
JP4403634B2 (en) Composite catalyst for solid polymer electrolyte fuel cell.
JP4117430B2 (en) Gas diffusion electrode and fuel cell having the same
JP2008269847A (en) Ink for fuel cell catalyst layer, its manufacturing method, and membrane electrode assembly for fuel cell
KR20070095001A (en) Preparation of membrane electrode assembly(mea) for polymer electrolyte fuel cell using hydrocarbon based polymers
JPWO2006064542A1 (en) ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME, MEMBRANE / ELECTRODE ASSEMBLY AND FUEL CELL
JP4815651B2 (en) Gas diffusion electrode for polymer electrolyte fuel cell
JP2008166202A (en) Manufacturing method of membrane-electrode assembly for fuel cell
JP2000106200A (en) Gas diffused electrode-electrolyte film joint body and fuel cell

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050802

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

EXPY Cancellation because of completion of term