JP2000058039A - Evaluation method for battery constituting material, and battery material selected in the method - Google Patents

Evaluation method for battery constituting material, and battery material selected in the method

Info

Publication number
JP2000058039A
JP2000058039A JP10254485A JP25448598A JP2000058039A JP 2000058039 A JP2000058039 A JP 2000058039A JP 10254485 A JP10254485 A JP 10254485A JP 25448598 A JP25448598 A JP 25448598A JP 2000058039 A JP2000058039 A JP 2000058039A
Authority
JP
Japan
Prior art keywords
ion battery
lithium ion
binder
electrolyte
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10254485A
Other languages
Japanese (ja)
Inventor
Masaru Sugita
勝 杉田
Masayuki Yoshio
真幸 芳尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10254485A priority Critical patent/JP2000058039A/en
Publication of JP2000058039A publication Critical patent/JP2000058039A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve the performance of a lithium ion battery in short term by improving evaluation relying on experience in prior arts, when selecting and evaluating electrode material of the lithium ion battery and establishing a theoretically selecting method, in order to improve charging/discharging characteristic. SOLUTION: Surface free energy of a material constituting a lithium ion battery is measured, wettability value between both materials of active material and binder and an electrolyte is calculated from the values of the surface free energy, a contact angle between the electrolyte and the binder, and a contact angle between the electrolyte and the active material, and thereby optimization of combination of electrode materials affecting charging/discharging characteristic of lithium ion battery can be estimated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,リチウムイオン二
次電池,リチウム電池,およびその他の電池構造を有す
るものであって,結着材料いわゆるバインダーと称され
る材料が使用される分野.ここに,電解液は,電解質と
溶剤からなりたっているか,若しくは,電解質と高分
子,若しくは電解質と高分子と溶剤からなりたってい
る.電極材料とは,活物質等を含む材料と結着剤からな
りたっている.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field having a lithium ion secondary battery, a lithium battery and other battery structures, wherein a material called a binder is used. Here, the electrolyte solution consists of an electrolyte and a solvent, or an electrolyte and a polymer, or an electrolyte, a polymer, and a solvent. The electrode material consists of a material containing an active material and a binder.

【0002】[0002]

【従来の技術】近年,電子機器のポータブル化,コード
レス化が急速に進んでおり,これらの駆動用電源として
小型軽量で,高エネルギー密度を有する二次電池への要
望が高い.このような点で,非水系二次電池,特にリチ
ウムイオン二次電池は,とりわけ高電圧,高エネルギー
密度を有する電池として期待が大きい.
2. Description of the Related Art In recent years, portable and cordless electronic devices have been rapidly advancing, and there is a high demand for a small and lightweight secondary battery having a high energy density as a power supply for driving these devices. In this respect, non-aqueous secondary batteries, especially lithium ion secondary batteries, are expected to have high voltage and high energy density.

【0003】特に,最近LiCoO2,LiNiO2な
どのリチウム複合酸化物を正極活物質とし,負極物質に
炭素材料を用いた電池系が,高エネルギー密度のリチウ
ムイオン二次電池として注目を集めている.この電池系
の特徴は,電池電圧がたかいことと,正負極ともにイン
ターカーレーション反応を利用していることである.す
でに,LiCoO2を正極に,炭素材料を負極に用いた
電池が商品化されている.このようなリチウムイオン二
次電池の場合には,充放電反応を均一に行なうことが重
要な要素でであるため,おおくの場合,正極も負極も金
属箔の集電体に活物質を含む合剤層を塗布したシート状
の極板を用いている.また集電体の素材は,電池に使用
される場合の各々の作動電位で電気化学的に安定である
という理由で,正極の集電用金属箔にはアルミニウム,
負極の金属箔には銅などが使用されている.このような
金属箔上に塗布することにより合剤層を作成する極板の
場合,活物質と導電材料と結着剤を含む合剤を塗布に適
したペーストにする必要があり,これまで,いくつかの
塗布に適したペースト技術が報告されている.例えば,
LiNiO2と導電剤を有機溶剤に混ぜて混練した合剤
ペーストを金属箔に塗布するためには,従来結着剤とし
てPVDF樹脂を使用している.このPVDF樹脂は,
活物質や導電剤粒子間にPVDF樹脂の塊上粒子が介在
する形で結着性を発揮しているが,電解液を吸収すると
膨潤する度合が大きいため,活物質,導電剤の各物質間
の距離を拡げてしまい,その結果,活物質および導電剤
と集電体との密着性を低下させて集電効率が低下してし
まう.一方,例えばPTFE樹脂は活物質や導電剤の粒
子にPTFE樹脂の繊維状粒子が網目状に絡み会う形で
結着性を発揮している.PTFE樹脂は電解液を吸収し
ても,膨潤しにくいため,活物質や導電剤の各粒子間を
拡げることなく,活物質や集電体との密着性を良好に保
つことが出来るとも報告されている.
In particular, a battery system using a lithium composite oxide such as LiCoO2 or LiNiO2 as a positive electrode active material and a carbon material as a negative electrode material has recently attracted attention as a high energy density lithium ion secondary battery. The features of this battery system are that the battery voltage is high and that both the positive and negative electrodes use an intercalation reaction. A battery using LiCoO2 as a positive electrode and a carbon material as a negative electrode has already been commercialized. In such a lithium-ion secondary battery, it is an important element to perform a uniform charge / discharge reaction, and therefore, in most cases, both the positive electrode and the negative electrode contain a metal foil collector containing an active material. A sheet-shaped electrode plate coated with an agent layer is used. The material of the current collector is made of aluminum or aluminum for the current-collecting metal foil of the positive electrode because it is electrochemically stable at each operating potential when used in batteries.
Copper is used for the metal foil of the negative electrode. In the case of an electrode plate in which a mixture layer is formed by coating on such a metal foil, a mixture containing an active material, a conductive material, and a binder must be formed into a paste suitable for coating. Some paste techniques suitable for coating have been reported. For example,
In order to apply a mixture paste obtained by mixing and kneading LiNiO2 and a conductive agent in an organic solvent, a PVDF resin has conventionally been used as a binder. This PVDF resin is
The active material and the conductive agent particles exhibit binding properties in the form of PVDF resin agglomerates interposed between the active material and conductive agent particles. As a result, the adhesion between the active material and the conductive agent and the current collector is reduced, and the current collection efficiency is reduced. On the other hand, for example, the PTFE resin exhibits binding properties in a form in which fibrous particles of the PTFE resin are entangled with the particles of the active material or the conductive agent in a network. It is also reported that PTFE resin does not easily swell even when it absorbs the electrolytic solution, so that it can maintain good adhesion to the active material and the current collector without expanding between the particles of the active material and the conductive agent. ing.

【0004】今まで,数多くの特許が出願されており,
経験的に不活性な結着剤を使用したリチウムイオン電池
の出願特許には枚挙にいとまがない.特に従来のPVD
F樹脂の使用を参考にして改良された特許は,特開平8
−250127,特開平9−82314,特開平9−1
99132,特開平9−199133等が出願されてお
り,また結着剤の性能が評価されている特許は,特開平
8−106897,特開平8−172452,特開平8
−130016,特開平5−182692等が出願され
ている.
[0004] Many patents have been filed,
There are many patent applications for lithium-ion batteries using empirically inert binders. Especially the conventional PVD
A patent improved with reference to the use of F resin is disclosed in
-250127, JP-A-9-82314, JP-A-9-19-1
No. 99132, Japanese Patent Application Laid-Open No. 9-199133, and the like, and the performances of the binder are evaluated in Japanese Patent Application Laid-Open Nos. 8-106897, 8-172452, and 8-1996.
-130016, and Japanese Patent Application Laid-Open No. 5-182692 have been filed.

【0005】[0005]

【発明が解決しようとする課題】しかし,結着剤の選定
方法または結着剤の評価方法について,原理的に検討さ
れた出願特許はなく,また他の技術報告書も無いといえ
る.その理由は,例えば,正極の場合,活物質や集電体
や導電剤の組み合わせが多く,今までは,活物質を決
め,集電体決め,その次に結着剤を各種選定して,電池
構造を形成して,充電放電サイクルテストを行ない,再
び粗データから結着剤の添加量を決め,さらに結着剤の
改良を行なうというめんどうな作業を伴うからである.
そこで正極の活物質,集電体,電解液等を決めることに
より使用される結着剤が決定できれば好ましい.
However, it can be said that there is no application patent examined in principle regarding the method of selecting the binder or the method of evaluating the binder, and there is no other technical report. The reason is, for example, in the case of a positive electrode, there are many combinations of active materials, current collectors, and conductive agents. Until now, active materials, current collectors, and binders have been selected. This is because it involves the troublesome work of forming a battery structure, conducting a charge / discharge cycle test, again determining the amount of binder to be added from the crude data, and further improving the binder.
Therefore, it is preferable that the binder to be used can be determined by determining the active material, the current collector, the electrolyte, and the like of the positive electrode.

【0006】[0006]

【課題を解決するための手段】リチウムイオン二次電池
の性能は,最終的に充放電サイクルテストを行なって,
そのデータから判断出来るが,せめて結着剤の関与する
リチウムイオン二次電池の性能は,活物質と結着剤との
間に微細な毛細管ができ, そこを電解液が浸入するこ
とにより,充電放電サイクルにおける電池容量に影響を
与えるものと考えれば,その毛細管の濡れ性(濡れやす
さ)を評価することにより,電解液の浸入のしやすさを
表現出来ると考えられる.電解液の浸入前後の自由エネ
ルギー変化が濡れ性の尺度とされているが,活物質と結
着剤との隙間などの2つの異なるまたは同一の材料から
なる壁面の表面自由エネルギーがそれぞれ異なるまたは
同一の場合の電解液の浸入前後の表面自由エネルギー変
化を,表面張力,接触角などを測定し,その得られた値
から数値を計算しすることにより数値化して,相対的に
その数値の大小を比較する事にすれば,異なる活物質,
結着剤および電解液から構成れるリチウムイオン電池の
電池放電容量の多少を推定することが可能になる.
[Means for Solving the Problems] The performance of a lithium ion secondary battery is finally determined by conducting a charge / discharge cycle test.
As can be seen from the data, at least the performance of a lithium-ion secondary battery involving a binder can be determined by forming a fine capillary tube between the active material and the binder, and allowing the electrolyte to penetrate there. If it is considered that this will affect the battery capacity in the discharge cycle, it is considered that the ease of penetration of the electrolyte can be expressed by evaluating the wettability (ease of wetting) of the capillary. The change in free energy before and after infiltration of the electrolyte is a measure of wettability, but the surface free energy of two different or identical materials, such as the gap between the active material and the binder, is different or the same. The change in surface free energy before and after the infiltration of the electrolyte in the case of is measured by measuring the surface tension, contact angle, etc., and calculating the numerical value from the obtained value. In comparison, different active materials,
It is possible to estimate the battery discharge capacity of a lithium-ion battery composed of a binder and an electrolyte.

【0007】本来の密着を表わす,物質Aと物質Bとの
接着仕事Waは, Wa=2(γ *γ 1/2 または,2(γ
*γ 1/2+2(γ *γ 1/2また
は,2(γ *γ 1/2+2(γ *,γ
1/2 +2(γ *γ 1/2 または, 2(γ *γ 1/2+WAB ここに,γ は,物質iの表面自由エネルギーの分散
力を表し,γ は,物質iの表面自由エネルギーの双
極子力を表し,γ は,物質iの表面自由エネルギー
の水素結合力を表している (引用文献;接着と材料,日本材料学会編,裳華房) また,WABは,Fowkes提唱の酸塩基反応による
接着仕事を表す.一方,電解液のような溶剤(S)の浸
入にともなう,物質Aと物質Bとの界面自由エネルギー
の変化(▲G)は, ▲G = γ(COSθ+COSθ)と表すことが
出来る.ここに, COSθは,物質Aの溶剤Sとの
接触角度を表し,COSθは,物質Bの溶剤Sとの接
触角度を表す. (引用文献;Colloids and Surfac
es,vol 9,(1984)のAdhesion
Model andExperimental Ver
ificationFor Polymer−SiO2
System.) そうして,▲G の値が,相対的大きい値であれば
溶剤(電解液)が,界面に浸透しやすく,相対的小さい
値であれば,界面に溶剤が浸透しにくいことが述べられ
ている.
[0007] represents the intrinsic adhesion, adhesion work Wa between the substance A and the substance B is, Wa = 2 (γ A d * γ B d) 1/2 or, 2 (gamma A
d * γ B d) 1/2 +2 (γ A p * γ B p) 1/2 or, 2 (γ A d * γ B d) 1/2 +2 (γ A p *, γ B
p) 1/2 p +2 (γ A h * γ B h) 1/2 or, 2 (γ A d * γ B d) here 1/2 + W AB, γ i d, the surface free energy of substance i Γ i p represents the dipole force of the surface free energy of the substance i, and γ i h represents the hydrogen bonding force of the surface free energy of the substance i. , Japan Society of materials Science, ed., Mohanabo) in addition, W AB represents the work of adhesion by the acid-base reaction of Fowkes proposed. On the other hand, the change in the free energy at the interface between the substance A and the substance B due to the intrusion of the solvent (S) such as the electrolytic solution (G) can be expressed as G = γ (COS θ A + COS θ B ). Here, COS .theta A represents the contact angle between the solvent S of substances A, COS .theta B represents the contact angle between the solvent S of the material B. (References: Colloids and Surfac
Adhesion in es, vol 9, (1984)
Model and Experimental Ver
informationFor Polymer-SiO2
System. If the value of ▲ G is a relatively large value, the solvent (electrolyte) easily permeates the interface, and if the value is relatively small, it is difficult for the solvent to permeate the interface. ing.

【0008】[0008]

【発明の実施の形態】次に好ましい実施の形態を列挙し
て,本発明を更に詳細に説明する.本発明の非水電解液
二次電池用電解液は,正極材料を集電材料上に構成する
方法とその方法により選定された正極材料を特徴として
いる.
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in more detail with reference to preferred embodiments. The electrolyte for a non-aqueous electrolyte secondary battery of the present invention is characterized by a method of forming a positive electrode material on a current collecting material and a positive electrode material selected by the method.

【0009】本発明に使用される集電体としては,例え
ばアルミニウム,銅等の金属箔が挙げられる.金属箔の
厚さとしては,10から30ミクロンメートル程度のも
のを用いる.
The current collector used in the present invention includes, for example, metal foils such as aluminum and copper. The thickness of the metal foil is about 10 to 30 μm.

【0010】本発明の金属箔集電体に塗布した正極層の
乾燥厚みとしては,0.001から5ミクロンメートル
の範囲が好ましい.
The dry thickness of the positive electrode layer applied to the metal foil current collector of the present invention is preferably in the range of 0.001 to 5 μm.

【0011】本発明で用いられる正極活物質としては,
例えば,LiCoO2,LiNiO2,LiMn2O4
等のリチウム酸化物,TiO2,MnO2,MoO3,
V2O5等のカルコゲン化合物のうちの一種,あるいは
複数種が組み合わせて用いられる.一方,負極活物質と
しては,金属リチウム,リチウム合金,あるいはグラフ
ァイト,カーボンブラック,アセチレンブラック等の炭
素材料,又はリチウムイオンをインターカレートする材
料が好ましく用いられる.特に,LiCoO2を正極活
物質として,そして炭素質材料を負極材料として用いる
ことにより,4V程度のの高い放電電圧のリチウム系二
次電池が得られる.
The positive electrode active material used in the present invention includes:
For example, LiCoO2, LiNiO2, LiMn2O4
Such as lithium oxide, TiO2, MnO2, MoO3
One or a plurality of chalcogen compounds such as V2O5 are used in combination. On the other hand, as the negative electrode active material, metal materials such as lithium metal, lithium alloy, graphite, carbon black, and acetylene black, or materials intercalating lithium ions are preferably used. In particular, by using LiCoO2 as a positive electrode active material and a carbonaceous material as a negative electrode material, a lithium secondary battery having a high discharge voltage of about 4 V can be obtained.

【0012】特に本発明においては,上記の集電体とし
てアルミニウム箔を用い,活物質としてリチウム金属酸
化物を用いる場合には,アルミニウム箔およびリチウム
金属酸化物の両方に対して優れた結合能力を発揮し,そ
の結果,正極活物質層のアルミニウム箔集電体に対する
密着性が著しく優れ,電池の組み立て工程および充電放
電時に,活物質層が剥離したり,脱落したり,ひび割れ
したりすることがない非水電解液二次電池用電極板を提
供することが出来る.しかも,電解液が活物質表面への
濡れ性に優れており,したがって優れた充電放電性能の
非水電解液二次電池用電極板を提供することが出来る.
In particular, in the present invention, when an aluminum foil is used as the current collector and a lithium metal oxide is used as the active material, excellent bonding ability to both the aluminum foil and the lithium metal oxide is obtained. As a result, the adhesion of the positive electrode active material layer to the aluminum foil current collector is remarkably excellent, and the active material layer may peel, fall off, or crack during the battery assembly process and during charging and discharging. It is possible to provide an electrode plate for non-aqueous electrolyte secondary batteries. In addition, the electrolyte has excellent wettability to the surface of the active material, and therefore an electrode plate for a non-aqueous electrolyte secondary battery having excellent charge / discharge performance can be provided.

【0013】これらの活物質は形成される塗布層中に均
一に分散されることが好ましい.上記活物質を含む塗布
液の調製に用いられる結着剤は,本発明の方法により選
定されるポリオレフィン樹脂,環状ジエン高分子,セル
ロース繊維,ポリベンズシクロブテン,ポリフェニレン
スルフィド,フッソ系高分子および当該高分子とその他
の高分子との共重合体または当該高分子とその他の高分
子との混合物を使用することが出来る.しかし,選定さ
れる高分子は,上記の当該高分子に制限されるものでは
ない.
It is preferable that these active materials are uniformly dispersed in the formed coating layer. The binder used in the preparation of the coating solution containing the active material may be a polyolefin resin, a cyclic diene polymer, a cellulose fiber, a polybenzcyclobutene, a polyphenylene sulfide, a fluorinated polymer, or the like selected by the method of the present invention. A copolymer of a polymer and another polymer or a mixture of the polymer and another polymer can be used. However, the selected polymer is not limited to the above-mentioned polymer.

【0014】本発明で使用する活物質が含有された塗布
液の具体的な調製方法について説明する.先ず,上記に
挙げたような材料から適宜に選定された粒子状結着剤と
粉末状活物質とを,NMP,水等の溶媒からなる分散媒
体中に入れ,更に必要に応じて導電剤を混合させた組成
物を,従来公知のホモジナイザー,ボールミル,サンド
ミル,ロールミル等の分散機を用いて混合分散すること
により調製する.この際,結着剤と活物質との配合割合
は,従来行なわれているのと同様でよい,
A specific method for preparing a coating solution containing an active material used in the present invention will be described. First, a particulate binder and a powdered active material appropriately selected from the above-mentioned materials are put into a dispersion medium composed of a solvent such as NMP, water, and the like. The mixed composition is prepared by mixing and dispersing using a conventionally known dispersing machine such as a homogenizer, a ball mill, a sand mill, and a roll mill. At this time, the mixing ratio of the binder and the active material may be the same as that conventionally used.

【0015】この活物質塗布液を前記金属箔集電体の面
上に,各種塗布方法を用いて,乾燥厚みで10−200
ミクロンメートル,好ましくは50−180ミクロンメ
ートルの範囲で塗布した後,加熱乾燥させる.
The active material coating solution is applied on the surface of the metal foil current collector in a dry thickness of 10-200 by using various coating methods.
After coating in the range of microns, preferably 50-180 microns, heat dry.

【0016】更に,上記のようにして塗布および乾燥処
理により形成された塗布層の均質性をより向上させるた
めに,当該塗布層に金属ロール,加熱ロール,シートプ
レス機等を用いてプレス処理を施し,本発明の電極板を
形成することか好ましい.更に,上記の電極板を用いて
電池の組み立て工程に移る前に,電極板の活物質層中の
水分を除去するために,更に加熱処理や減圧処理等を行
なうことが好ましい.
Further, in order to further improve the homogeneity of the coating layer formed by the coating and drying processes as described above, the coating layer is subjected to a press treatment using a metal roll, a heating roll, a sheet press or the like. To form the electrode plate of the present invention. Further, before the process of assembling the battery using the above-described electrode plate, it is preferable to further perform a heat treatment, a pressure reduction treatment, or the like in order to remove moisture in the active material layer of the electrode plate.

【0017】以上のようにして作製した本発明の正極の
非水電解液二次電池用電極板を用いて,例えば,リチウ
ム系二次電池を作製する場合には,電解液として,溶質
のリチウム塩を有機溶剤に溶解させた非水電解液が用い
られる.非水電解液を形成する溶質のリチウム塩として
は,例えば, LiCLO4,LiBF4,LiPF
6,LiAsF6,LiCL,LiBr等の無機チウム
塩,およびLiB(C6H5)4,LiN(SO2CF
3)2,LiC(SO2CF3)3,LiOSO2CF
3,LiOSO2C2F5,LiOSO2C3F7,L
iOSO2C4F9,LiOSO2C5F11,LiO
SO2C6F13,LiOSO2C7F15等の有機チ
ウム塩等が使用される.
When a positive electrode non-aqueous electrolyte secondary battery electrode plate of the present invention prepared as described above is used, for example, when a lithium secondary battery is manufactured, the solute lithium is used as the electrolyte. A non-aqueous electrolyte in which a salt is dissolved in an organic solvent is used. Examples of the solute lithium salt forming the non-aqueous electrolyte include LiCLO4, LiBF4, and LiPF.
Inorganic salts such as 6, LiAsF6, LiCL, LiBr, and LiB (C6H5) 4, LiN (SO2CF
3) 2, LiC (SO2CF3) 3, LiOSO2CF
3, LiOSO2C2F5, LiOSO2C3F7, L
iOSO2C4F9, LiOSO2C5F11, LiO
Organic titanium salts such as SO2C6F13 and LiOSO2C7F15 are used.

【0018】この際に使用される有機溶媒としては,環
状エステル類,鎖状エステル類,環状エーテル類,鎖状
エーテル類等挙げられる.環状エステル類としては,例
えば,プロピレンカーボネート,ブチレンカーボネー
ト.ガンマブチロラクトン,ビニレンカーボネート,2
−メチル−ガンマブチロラクトン,アセチル−ガンマブ
チロラクトン,ガンマバレロラクトン等挙げられる.
Examples of the organic solvent used at this time include cyclic esters, chain esters, cyclic ethers, and chain ethers. As cyclic esters, for example, propylene carbonate, butylene carbonate. Gamma-butyrolactone, vinylene carbonate, 2
-Methyl-gamma-butyrolactone, acetyl-gamma-butyrolactone, gamma-valerolactone and the like.

【0019】鎖状エステル類としては,例えば,ジメチ
ルカーボネート,ジエチルカーボネート,ジブチルカー
ボネート,ジプロピルカーボネート,メチルエチルカー
ボネート,メチルブチルカーボネート,メチルプロピル
カーボネート,エチルブチルカーボネート,エチルプロ
ピルカーボネート,ブチルプロピルカーボネート,プロ
ピオン酸アルキルエステル,マロン酸ジアルキルエステ
ル,酢酸アルキルエステル等が挙げられる.
Examples of the chain ester include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, methyl butyl carbonate, methyl propyl carbonate, ethyl butyl carbonate, ethyl propyl carbonate, butyl propyl carbonate, and propion. And alkyl esters of malonic acid, alkyl esters of acetic acid, and the like.

【0020】環状エーテル類としては,例えばテトラハ
イドロフラン,アルキルテトラハイドロフラン,ジアル
キルアルキルテトラハイドロフラン,アルコキシテトラ
ハイドロフラン,ジアルコキシテトラハイドロフラン,
1,3−ジオキソラン,アルキル−1,3−ジオキソラ
ン,1,4−ジオキソラン等が挙げられる,鎖状−テル
類としては,例えば,1,2−ジメトキシエタン,1,
2−ジエトキシエタン,ジエチルエーテル,エチレング
ルコールジアルキルエーテル、ジエチレングリコールジ
アルキルエーテル,トリエチレングリコールジアルキル
エーテル,テトラエチレングリコールジアルキルエーテ
ル等が挙げられる.
Examples of the cyclic ethers include tetrahydrofuran, alkyltetrahydrofuran, dialkylalkyltetrahydrofuran, alkoxytetrahydrofuran, dialkoxytetrahydrofuran,
Examples of chain-ters include 1,3-dioxolan, alkyl-1,3-dioxolan, 1,4-dioxolan and the like, for example, 1,2-dimethoxyethane, 1,1
Examples thereof include 2-diethoxyethane, diethyl ether, ethylene glycol dialkyl ether, diethylene glycol dialkyl ether, triethylene glycol dialkyl ether, and tetraethylene glycol dialkyl ether.

【0021】[0021]

【実施例】【Example】

【0022】実施例1) 電池構造の構成材料を,先ず
以下に決めた. 正極;活物資;LiCoO2,導電剤;アセチレンブラック,黒鉛 結着剤;PE, PVDF, 負極;金属リチウム セパレーター;ポリオレフィン系のセパレーター 電解液;EC(エチレンカーボネート)/DMC(ジメチルカーボネート); 1L(比率;1/2)に,電解質 LiPF6( 6フッ化燐酸リチ ウムの1モルを配合の溶液. 集電体;正極:アルミニウム ,負極;ステンレススチール
Example 1) The constituent materials of the battery structure were first determined as follows. LiCoO2, conductive agent; acetylene black, graphite binder; PE, PVDF, negative electrode; lithium metal separator; polyolefin-based separator electrolyte; EC (ethylene carbonate) / DMC (dimethyl carbonate); 1 L (ratio) ; 1/2) and 1 mol of electrolyte LiPF6 (lithium hexafluorophosphate). Current collector; positive electrode: aluminum; negative electrode: stainless steel

【0023】実施例2)次に,各種素材の表面の接触角
を測定した.活物質LiCoO2をスパッタリング法に
よりガラス基板に形成し,測定用正極とし,電解液,ア
ルファブロモナフタレン,n−ドデカン,ヨウ化メチレ
ン,水によるLiCoO2の表面接触角を,所定の温度
(18度および22度)にて測定し,接触角,およびそ
れらの接触角から計算された表面自由エネルギーを計算
し,数値を得た.同様にして,結着剤のPE,およびP
VDF の数値を得た.その結果を(表1)に
示す.ここに,電解液は,当該接触角から計算される表
面自由エネルギーの数値の相対的な比較を出すため,E
C( エチレンカーボネート)/DMC(ジメチルカー
ボネート);1L(比率;1/2)に,LiPF6の1
モルを配合の溶液とした.
Example 2) Next, the contact angles of the surfaces of various materials were measured. An active material LiCoO2 was formed on a glass substrate by a sputtering method, and used as a positive electrode for measurement. The surface contact angle of LiCoO2 with an electrolyte, alpha bromonaphthalene, n-dodecane, methylene iodide, and water was measured at a predetermined temperature (18 degrees and 22 degrees). Degrees), the contact angles and the surface free energy calculated from those contact angles were calculated to obtain numerical values. Similarly, the binders PE and P
VDF values were obtained. The results are shown in (Table 1). Here, in order to give a relative comparison of the values of the surface free energy calculated from the contact angle,
C (ethylene carbonate) / DMC (dimethyl carbonate); 1 L (ratio; 1/2)
The mole was used as the compounding solution.

【0024】それらの得られた数値から,本来の密着性
(Wa)と電解液の浸入という現象を伴う表面自由エネ
ルギー変化(▲G)との比較の数値(Wb)を検討し
た.その結果を(表2)の示す.
From the obtained values, a comparison value (Wb) between the original adhesion (Wa) and the change in surface free energy (G) accompanied by the phenomenon of infiltration of the electrolyte was examined. The results are shown in (Table 2).

【表1】 [Table 1]

【表2】 [Table 2]

【0025】実施例3)上記の実施例1)と同じ構成材
料を用いてリチウムイオン電池のコインセルを構成し
,充電放電サイクルテストを行なった. 構成材料; 正極;活物質に,粉状LiCoO2(本庄ケミカル社
製),導電剤にアセチレンブラック(電気化学工業社
製)および黒鉛(日本黒鉛社製SP−300H),結着
剤にPVDF(ダイキン社製),PE(住友精化製)を
使用. 負極;金属リチウム, セパレーター;ポリオレフィン系セパレーター, 電解液;上記実施例1)と同じLiPF6/EC/DM
C(1モル/1L(1/2)) 正極集電体;アルミニウム, 負極集電体;ステンレススチール,
Example 3) A coin cell of a lithium ion battery was formed using the same constituent materials as in Example 1), and a charge / discharge cycle test was performed. Constituent materials; Positive electrode; powdered LiCoO2 (manufactured by Honjo Chemical Co., Ltd.) as active material, acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) and graphite (SP-300H manufactured by Nippon Graphite Co., Ltd.) as conductive agents, and PVDF (Daikin as binder) Using PE (manufactured by Sumitomo Seika). Negative electrode; metallic lithium; separator; polyolefin-based separator, electrolytic solution; LiPF6 / EC / DM same as in Example 1) above
C (1 mol / 1 L (1/2)) positive electrode current collector; aluminum; negative electrode current collector; stainless steel;

【0026】充電放電試験条件;Charge / discharge test conditions;

【0027】先ず,活物質とアセチレンブラックおよび
黒鉛を結着剤と混合した.
First, the active material, acetylene black and graphite were mixed with a binder.

【0028】結着剤がポリエチレン(PE)の場合,水
に分散させて,集電体のアルミニウムに塗布し,110
度にて乾燥させ,10トンプレスにて加圧し,直径15
mmの円板に切り出し,再び1トンプレスにて加圧した
ものを正極とした.
When the binder is polyethylene (PE), the binder is dispersed in water and applied to the aluminum of the current collector.
Dried with a 10-ton press and a diameter of 15
The plate was cut out into a disk having a diameter of 1 mm and pressed again with a 1-ton press to obtain a positive electrode.

【0029】結着剤がPVDFの場合,溶剤としてN−
メチルピロリドン(NMP)に溶解させて集電体のアル
ミニウムに塗布し,160度にて乾燥させ,10トンプ
レスにて加圧し,直径15mmの円板に切り出し,再び
1トンプレスにて加圧したものを正極とした.
When the binder is PVDF, N-
Dissolved in methylpyrrolidone (NMP), applied to the aluminum of the current collector, dried at 160 ° C., pressed with a 10 ton press, cut into a 15 mm diameter disc, and pressed again with a 1 ton press This was used as the positive electrode.

【0030】上記の構成材料にてリチウムイオン二次電
池を構成して,室温(摂氏20度)にて,正極に対し
て,0.4mA/cmの定電流で充電させ,終止電圧
を4.3ボルト,放電終止電圧を3.7ボルトとして行
なった.
A lithium ion secondary battery was constructed using the above-mentioned constituent materials, and was charged at a constant current of 0.4 mA / cm 2 with respect to the positive electrode at room temperature (20 degrees Celsius). 0.3 volts and the discharge end voltage was 3.7 volts.

【0031】各サイクルにおける放電容量を比較した.The discharge capacity in each cycle was compared.

【表3】 [Table 3]

【発明の効果】以上説明したように,本発明によれば電
解液が正極活物質及び結着剤に対し濡れ性に優れている
非水電解液二次電池用電極板を提供することが出来る.
As described above, according to the present invention, it is possible to provide an electrode plate for a non-aqueous electrolyte secondary battery in which an electrolyte has excellent wettability with respect to a positive electrode active material and a binder. .

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA01 BB11 BB12 BD00 5H014 AA02 AA06 EE02 EE03 HH00 5H029 AJ02 AK02 AK03 AK05 AL07 AL08 AL12 AM03 AM04 AM05 AM07 DJ08 DJ15 EJ11 EJ12 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H003 AA01 BB11 BB12 BD00 5H014 AA02 AA06 EE02 EE03 HH00 5H029 AJ02 AK02 AK03 AK05 AL07 AL08 AL12 AM03 AM04 AM05 AM07 DJ08 DJ15 EJ11 EJ12

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】結着剤と活物質と電解液の表面自由エネル
ギーを計算することにより電池構成材料を評価する方
法.
1. A method for evaluating battery constituent materials by calculating surface free energies of a binder, an active material, and an electrolyte.
【請求項2】次の計算式の値が相対的に大きい結着剤,
活物質,電解液を使用したリチウムイオン電池 電解液の表面自由エネルギー;γ 電解液の結着剤との接触角 ;θ 電解液の活物質との接触角 ;θ γ(COSθ+COSθ) ここに,θ,θは,θ,θ,のいずれかであ
る.
2. A binder having a relatively large value of the following formula:
Lithium ion battery using active material and electrolyte solution Surface free energy of electrolyte solution; γ Contact angle of electrolyte solution with binder; θ B Contact angle of electrolyte solution with active material; θ M γ (COS θ P + COS θ Q Here, θ P and θ Q are either θ S or θ M.
【請求項3】 電極の結着剤がポリオレフィンと他の高
分子である請求項2のリチウムイオン電池
3. The lithium ion battery according to claim 2, wherein the binder for the electrode is a polyolefin and another polymer.
【請求項4】 電極の結着剤がジエン高分子と他の高分
子である請求項2のリチウムイオン電池
4. The lithium ion battery according to claim 2, wherein the binder for the electrode is a diene polymer and another polymer.
【請求項5】 電極の結着剤がセルロース繊維と他の高
分子である請求項2のリチウムイオン電池
5. The lithium ion battery according to claim 2, wherein the binder of the electrode is a cellulose fiber and another polymer.
【請求項6】 電極の結着剤がポリベンズシクロブテン
と他の高分子である請求項2のリチウムイオン電池
6. The lithium ion battery according to claim 2, wherein the binder for the electrode is polybenzcyclobutene and another polymer.
【請求項7】 電極の結着剤がポリフェニレンサルファ
イドである請求項2のリチウムイオン電池
7. The lithium ion battery according to claim 2, wherein the binder for the electrode is polyphenylene sulfide.
【請求項8】 電極の結着剤がフッソ系高分子と他の高
分子である請求項2のリチウムイオン電池
8. The lithium ion battery according to claim 2, wherein the binder of the electrode is a fluoropolymer and another polymer.
【請求項9】 電極の結着剤がポリイミド系高分子と他
の高分子である請求項2のリチウムイオン電池
9. The lithium ion battery according to claim 2, wherein the binder for the electrode is a polyimide polymer and another polymer.
【請求項10】 ポリオレフィンがポリエチレンである
請求項3のリチウムイオン電池
10. The lithium ion battery according to claim 3, wherein the polyolefin is polyethylene.
【請求項11】 ポリオレフィンがポリプロピレンであ
る請求項3のリチウムイオン電池
11. The lithium ion battery according to claim 3, wherein the polyolefin is polypropylene.
【請求項12】 ジエン高分子が環化イソプレン高分子
である請求項4のリチウムイオン電池
12. The lithium ion battery according to claim 4, wherein the diene polymer is a cyclized isoprene polymer.
【請求項13】 ジエン高分子が環化ブタジエン高分子
である請求項4のリチウムイオン電池
13. The lithium ion battery according to claim 4, wherein the diene polymer is a cyclized butadiene polymer.
【請求項14】 他の高分子がポリオレフィンである請
求項4のリチウムイオン電池
14. The lithium ion battery according to claim 4, wherein the other polymer is a polyolefin.
【請求項15】 電解液が高分子電解質である請求項2
のリチウムイオン電池
15. The electrolyte according to claim 2, wherein the electrolyte is a polymer electrolyte.
Lithium-ion battery
JP10254485A 1998-08-06 1998-08-06 Evaluation method for battery constituting material, and battery material selected in the method Pending JP2000058039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10254485A JP2000058039A (en) 1998-08-06 1998-08-06 Evaluation method for battery constituting material, and battery material selected in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10254485A JP2000058039A (en) 1998-08-06 1998-08-06 Evaluation method for battery constituting material, and battery material selected in the method

Publications (1)

Publication Number Publication Date
JP2000058039A true JP2000058039A (en) 2000-02-25

Family

ID=17265717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10254485A Pending JP2000058039A (en) 1998-08-06 1998-08-06 Evaluation method for battery constituting material, and battery material selected in the method

Country Status (1)

Country Link
JP (1) JP2000058039A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1294040A2 (en) * 2001-09-14 2003-03-19 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery and production method thereof
JP2003203637A (en) * 2001-12-28 2003-07-18 Sanyo Electric Co Ltd Lithium secondary battery negative electrode and lithium secondary battery
WO2004001880A1 (en) * 2002-06-20 2003-12-31 Sony Corporation Electrode and cell comprising the same
CN110504409A (en) * 2019-08-15 2019-11-26 天津市捷威动力工业有限公司 A kind of positive plate and lithium ion battery improving penetrating power

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1294040A2 (en) * 2001-09-14 2003-03-19 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery and production method thereof
EP1294040A3 (en) * 2001-09-14 2007-06-27 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery and production method thereof
US7767339B2 (en) 2001-09-14 2010-08-03 Panasonic Corporation Production method of non-aqueous electrolyte secondary battery
JP2003203637A (en) * 2001-12-28 2003-07-18 Sanyo Electric Co Ltd Lithium secondary battery negative electrode and lithium secondary battery
WO2004001880A1 (en) * 2002-06-20 2003-12-31 Sony Corporation Electrode and cell comprising the same
US7229713B2 (en) 2002-06-20 2007-06-12 Sony Corporation Electrode and battery using the same
CN110504409A (en) * 2019-08-15 2019-11-26 天津市捷威动力工业有限公司 A kind of positive plate and lithium ion battery improving penetrating power

Similar Documents

Publication Publication Date Title
KR100958651B1 (en) Anode of Rechargeable Lithium Battery and Rechargeable Lithium Battery Employing the Same
US20090169992A1 (en) Lithium Secondary Battery Using Ionic Liquid
JP4433329B2 (en) Positive electrode of lithium secondary battery and method for producing the same
JPH0997625A (en) Nonaqueous electrolytic secondary battery and manufacture thereof
WO2005089391A2 (en) Battery and method of manufacturing the same
JP2000348730A (en) Nonaqueous electrolyte secondary battery
CN109845005A (en) Positive electrode active materials pre-dispersion composition, anode of secondary cell and the lithium secondary battery comprising the anode
JP3652769B2 (en) Electrode plate for non-aqueous electrolyte secondary battery
JP6805374B2 (en) Electrodes for lithium-ion secondary batteries, their manufacturing methods, and lithium-ion secondary batteries
WO2020162598A1 (en) Lithium-ion secondary battery electrode and lithium-ion secondary battery
JP2002117851A (en) Carbon material, negative electrode for secondary lithium ion battery, and secondary lithium ion battery
JP5169181B2 (en) Non-aqueous electrolyte secondary battery
KR100600632B1 (en) Electrode for nonaqueous electrolyte battery
CN102437369A (en) Lithium ion battery
CN112615111A (en) High-liquid-retention self-repairing diaphragm, preparation method thereof and lithium ion battery
JP4357857B2 (en) Slurries for electrode mixture layers, electrode plates, and non-aqueous electrolyte batteries
KR102209653B1 (en) Anode with improved swelling phenomenon and Lithium secondary battery comprising the anode
JP3503697B2 (en) Non-aqueous electrolyte battery
JPH09289022A (en) Nonaqueous electrolyte secondary battery
JP2012216500A (en) Lithium secondary battery
JP2020126733A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
JP2000058039A (en) Evaluation method for battery constituting material, and battery material selected in the method
JP2007095641A (en) Battery constructing material
KR101623637B1 (en) Slurry composition for electrode and lithium-ion Battery
JPH11219708A (en) Evaluating method for battery component and battery material selected by this method