JP2000054052A - High strength 6000 series aluminum alloy excellent in stress corrosion cracking resistance and heat treatment - Google Patents

High strength 6000 series aluminum alloy excellent in stress corrosion cracking resistance and heat treatment

Info

Publication number
JP2000054052A
JP2000054052A JP10226041A JP22604198A JP2000054052A JP 2000054052 A JP2000054052 A JP 2000054052A JP 10226041 A JP10226041 A JP 10226041A JP 22604198 A JP22604198 A JP 22604198A JP 2000054052 A JP2000054052 A JP 2000054052A
Authority
JP
Japan
Prior art keywords
aluminum alloy
corrosion cracking
stress corrosion
treatment
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10226041A
Other languages
Japanese (ja)
Inventor
Yasushi Nakazawa
靖 中沢
Yoshitomo Kato
良知 加藤
Hisanaga Hashimoto
久永 橋本
Kenji Tomita
賢二 冨田
Masashi Sakaguchi
雅司 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Showa Aluminum Can Corp
Original Assignee
Honda Motor Co Ltd
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Showa Aluminum Corp filed Critical Honda Motor Co Ltd
Priority to JP10226041A priority Critical patent/JP2000054052A/en
Publication of JP2000054052A publication Critical patent/JP2000054052A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the stress corrosion cracking resistance in a 6000 series aluminum alloy while maintaining its high strength. SOLUTION: In an Al-Mg-Si alloy or an Al-Mg-Si-Cu alloy, intergranular precipitates are present at the intervals of >=110 nm, and, furthermore, the dimensions of the precipitates in the intergranular direction are controlled to >=70 nm. Moreover, this precipitating form can be obtd. by subjecting a 6000 series aluminum alloy ingot to primary aging treatment of holding it at 150 to 200 deg.C for 3 to 80 hr after solution treatment, next executing restoring treatment of performing heating at a temp. rising rate of >=300 deg.C/min, holding it at 200 to 270 deg.C for 5 to 20 min and thereafter performing cooling at a rate of >=500 deg.C/min and moreover executing reaging treatment of holding it at 150 to 190 deg.C for 8 to 80 hr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、高強度でありか
つ耐応力腐食割れ性に優れた6000系アルミニウム合
金、およびその熱処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a 6000 series aluminum alloy having high strength and excellent stress corrosion cracking resistance, and a heat treatment method thereof.

【0002】[0002]

【従来の技術】アルミニウム合金は、近年、その軽量性
を生かして車両、建築等の各種構造部材として用途が拡
大しつつある。一般に、構造部材として用いられる高強
度アルミニウム合金としては、Al−Cu系、Al−C
u−Mg系、Al−Mg系、Al−Zn−Mg系、Al
−Mg−Si系のものがある。この種のアルミニウム合
金は、高強度になるに従って応力腐食割れを生じやすい
傾向を示し、特に最大強度の得られるT6調質状態にお
いて応力腐食割れ感受性が高くなるという問題点があ
る。そのため、高強度、高耐応力腐食割れ性、加工性が
要求される用途においては満足のいく合金はなかった。
2. Description of the Related Art In recent years, applications of aluminum alloys have been expanding as various structural members for vehicles, buildings, and the like by utilizing its light weight. Generally, as a high-strength aluminum alloy used as a structural member, Al-Cu-based, Al-C
u-Mg system, Al-Mg system, Al-Zn-Mg system, Al
-Mg-Si type is available. This kind of aluminum alloy tends to cause stress corrosion cracking as the strength increases, and there is a problem that the stress corrosion cracking susceptibility increases particularly in the T6 tempered state where the maximum strength is obtained. Therefore, there was no satisfactory alloy in applications requiring high strength, high stress corrosion cracking resistance, and workability.

【0003】このような状況にあって、上述の合金系に
おいて諸性質を改善するために、従来は合金組成の面か
ら検討が重ねられてきたが、強度を向上すべく合金組成
を調節すると耐応力腐食割れ性が劣化するため、時効処
理条件としてT76,T73を採用し、耐応力腐食割れ
性を改善しようという試みがある。しかしながら、耐応
力腐食割れ性が改善されると強度が低下してしまい、強
度と耐応力腐食割れ性の両立が困難であった。
Under these circumstances, in order to improve various properties of the above-mentioned alloy system, studies have conventionally been made from the viewpoint of alloy composition. Since the stress corrosion cracking property is deteriorated, there is an attempt to improve the stress corrosion cracking resistance by adopting T76 and T73 as aging treatment conditions. However, when the stress corrosion cracking resistance is improved, the strength is reduced, and it is difficult to achieve both the strength and the stress corrosion cracking resistance.

【0004】このような問題点に対し、米国特許3,8
56,584号において、7075等の7000系アル
ミニウム合金について、容体化処理後、約121℃で約
24時間のT6処理を施し、次いで200〜260℃×
2〜3秒ないし2〜3分の復元熱処理を行い、さらに1
15〜125℃で16〜48時間の再時効処理を行うこ
とにより、T6材相当の強度を維持しながらT7材と同
等の耐応力腐食割れ性が得られるという報告がなされて
いる。復元再時効(RRA)処理と呼ばれるこの熱処理
方法は、耐応力腐食割れ性に対して影響する因子の中
で、特に組織中の粒界および粒内析出形態の制御、具体
的には熱処理後材料組織において、粒内ではG.P.ゾ
ーン等強度に寄与する微細析出の促進、また粒界では粒
界割れ感受性を低下させるための析出物の凝集粗大化を
目的としている。しかし、現在実験レベルではその有効
性が認められているものの、強度と耐応力腐食割れ性の
両者を十分に向上させるには足りず、いまだ実用化はな
されていない。また、特開昭62−142753号や特
開平6−41669号においては、RRA処理の2段目
の復元処理時間を長時間化した処理方法が開示されてい
る。
In order to solve such a problem, US Pat.
No. 56,584, a 7000 series aluminum alloy such as 7075 is subjected to a T6 treatment at about 121 ° C. for about 24 hours after the soaking treatment, and then at 200 to 260 ° C.
Perform a restorative heat treatment for 2-3 seconds to 2-3 minutes, and
It has been reported that by performing re-aging treatment at 15 to 125 ° C. for 16 to 48 hours, stress corrosion cracking resistance equivalent to that of T7 material can be obtained while maintaining strength equivalent to T6 material. This heat treatment method, called reversion reaging (RRA) treatment, is one of the factors affecting stress corrosion cracking resistance, in particular, control of grain boundary and intragranular precipitation morphology in the structure, specifically, the material after heat treatment. In the structure, G. P. The purpose is to promote fine precipitation contributing to the strength of zones and the like, and to coarsen precipitates at the grain boundaries to reduce the susceptibility to grain boundary cracking. However, although its effectiveness has been recognized at the experimental level, it is not enough to improve both the strength and the stress corrosion cracking resistance, and it has not been put to practical use yet. Further, Japanese Patent Application Laid-Open Nos. 62-142753 and 6-41669 disclose processing methods in which the restoration processing time of the second stage of the RRA processing is lengthened.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
熱処理方法は、いずれも7000系あるいは2000系
のアルミニウム合金に適用される方法であり、他の合金
系への適用に関しては報告がない。例えば、6000系
アルミニウム合金でも高強度化に伴うMg、Si添加量
の増加、特にSi添加量の増加に伴い、耐応力腐食割れ
性の低下が指摘されているが、T6材強度と耐応力腐食
割れ性の両立には有効な手段が見出だされていない。
However, any of the above-mentioned heat treatment methods is a method applied to a 7000 series or 2000 series aluminum alloy, and there is no report on application to other alloy systems. For example, it has been pointed out that, even in a 6000 series aluminum alloy, the addition of Mg and Si due to the increase in strength, particularly the decrease in stress corrosion cracking resistance with the increase in the addition of Si, is pointed out. No effective means has been found for balancing cracking.

【0006】この発明は、このような技術背景に鑑み、
高い強度と優れた耐応力腐食割れ性の両者を具備する、
6000系アルミニウム合金ならびにその熱処理方法の
提供を目的とする。
The present invention has been made in view of such technical background,
Equipped with both high strength and excellent stress corrosion cracking resistance,
An object of the present invention is to provide a 6000 series aluminum alloy and a heat treatment method thereof.

【0007】[0007]

【課題を解決するための手段】本願発明者は、上記RR
A処理の6000系アルミニウム合金への適用を試みて
鋭意研究の結果、高い強度と優れた耐応力腐食割れ性の
両者を具有する粒界析出形態を見出だすとともに、両者
を具有するための熱処理条件を見出した。
Means for Solving the Problems The present inventor has proposed the above-mentioned RR.
As a result of diligent research into the application of the A treatment to the 6000 series aluminum alloy, a grain boundary precipitation morphology having both high strength and excellent stress corrosion cracking resistance has been found, and a heat treatment for having both. I found a condition.

【0008】即ち、この発明の6000系アルミニウム
合金は、Al−Mg−Si系合金おるいはAl−Mg−
Si−Cu系合金において、粒界析出物が110nm以上
の間隔で存在するとともに、析出物の粒界方向における
寸法が70nm以上であることを特徴とするものである。
[0008] That is, the 6000 series aluminum alloy of the present invention is an Al-Mg-Si based alloy or Al-Mg-
In the Si-Cu alloy, the grain boundary precipitates are present at intervals of 110 nm or more, and the size of the precipitates in the grain boundary direction is 70 nm or more.

【0009】また、この発明の熱処理方法は、6000
系アルミニウム合金鋳塊に対し、容体化処理後に150
〜200℃で3〜80時間保持する一次時効処理を行
い、次いで300℃/分以上の昇温速度で加熱し、20
0〜270℃で0.5〜20分保持したのち500℃/
分以上の速度で冷却する復元処理を行い、さらに150
〜190℃で8〜80時間保持する再時効処理を行うこ
とを特徴とするものである。
Further, the heat treatment method of the present invention has
150% after incorporation treatment
A primary aging treatment is carried out at a temperature of 200 to 200 ° C. for 3 to 80 hours.
After holding at 0 to 270 ° C for 0.5 to 20 minutes, 500 ° C /
Perform a restoration process to cool at a speed of at least
The present invention is characterized in that a re-aging treatment is performed in which the temperature is kept at -190 ° C for 8-80 hours.

【0010】合金組織では、結晶粒界における析出物の
析出形態が耐応力腐食割れ性に関与している。粒界にお
ける析出物は、大きくかつ析出間隔が大きくなるほど割
れ感受性が低くなる傾向にある。この発明では、析出物
の粒界の長さ方向における長さを70nm以上に成長さ
せ、かつ析出物同士の間隔が110nm以上となるように
析出させることにより、最も応力腐食割れが起きにくい
状態にして高い耐応力腐食割れ性を確保している。耐応
力腐食割れ性を向上させるために、粒界析出物の大きさ
の好ましい下限値は90nmであり、析出間隔の好ましい
下限値は130nmである。
[0010] In the alloy structure, the precipitation form of the precipitates at the crystal grain boundaries contributes to the stress corrosion cracking resistance. The precipitates at the grain boundaries tend to be large and the cracking susceptibility decreases as the precipitation interval increases. In the present invention, the precipitates are grown so that the length in the length direction of the grain boundary is 70 nm or more, and the precipitates are separated so that the interval between the precipitates is 110 nm or more, so that stress corrosion cracking is most unlikely to occur. High stress corrosion cracking resistance. In order to improve the stress corrosion cracking resistance, a preferred lower limit of the size of the grain boundary precipitate is 90 nm, and a preferred lower limit of the precipitation interval is 130 nm.

【0011】また、Al−Mg−Si系合金あるいはA
l−Mg−Si−Cu系合金において、次の組成が好ま
しく、各元素の含有量の限定理由は次のとおりである。
An Al-Mg-Si alloy or A
The following composition is preferable in the l-Mg-Si-Cu alloy, and the reasons for limiting the content of each element are as follows.

【0012】Mg、Si、Cuは、ともに合金の強度向
上に寄与する元素である。Si含有量は0.8〜1.5
%が好ましい。0.8%未満では強度向上効果に乏し
く、1.5%を超えると熱間加工性が著しく低下するた
めである。Si含有量の特に好ましい下限値は0.9
%、特に好ましい上限値は1.2%である。また、Mg
含有量は0.8〜1.4%が好ましい。0.8%未満で
は強度向上効果に乏しく、1.4%を超えると熱間加工
性が低下するとともに伸びが低下するためである。Mg
含有量の特に好ましい下限値は1.0%、特に好ましい
上限値は1.2%である。また、Cu含有量は0.4〜
0.8%が好ましい。0.4%未満では強度向上効果に
乏しく、0.8%を超えると耐食性が劣化するとともに
熱間加工性が低下するためである。
Mg, Si, and Cu are all elements that contribute to improving the strength of the alloy. Si content is 0.8 to 1.5
% Is preferred. If it is less than 0.8%, the effect of improving strength is poor, and if it exceeds 1.5%, hot workability is significantly reduced. A particularly preferred lower limit of the Si content is 0.9.
%, A particularly preferred upper limit is 1.2%. In addition, Mg
The content is preferably 0.8 to 1.4%. If it is less than 0.8%, the effect of improving the strength is poor, and if it exceeds 1.4%, the hot workability decreases and the elongation decreases. Mg
A particularly preferred lower limit of the content is 1.0%, and a particularly preferred upper limit is 1.2%. The Cu content is 0.4 to
0.8% is preferred. If it is less than 0.4%, the strength improving effect is poor, and if it exceeds 0.8%, the corrosion resistance is deteriorated and the hot workability is reduced.

【0013】Fe、Mn、Cr、Zn、Tiは、これら
のうちから2種以上を任意に選択して合金の諸性質を向
上させる元素である。即ち、Feは再結晶を抑制する効
果があり、含有量は0.1〜0.3%が好ましく、特に
好ましい下限値は0.2%、特に好ましい上限値は0.
3%である。Mnは再結晶を抑制するとともに強度を向
上させる効果があり、含有量は0.2%以下が好まし
く、特に好ましい上限値は0.1%である。Crは再結
晶を抑制する効果があり、含有量は0.2%以下が好ま
しく、特に好ましい上限値は0.1%である。Znは固
溶強化により強度を向上させる効果があり、含有量は
0.1%以下が好ましく、特に好ましい上限値は0.0
8%である。Tiは固溶強化あるいは析出強化により強
度を向上させる効果があり、含有量は0.03%以下が
好ましく、特に好ましい上限値は0.02%である。
Fe, Mn, Cr, Zn, and Ti are elements that arbitrarily select two or more of them to improve various properties of the alloy. That is, Fe has an effect of suppressing recrystallization, the content is preferably 0.1 to 0.3%, a particularly preferred lower limit is 0.2%, and a particularly preferred upper limit is 0.1%.
3%. Mn has an effect of suppressing recrystallization and improving strength, and its content is preferably 0.2% or less, and a particularly preferred upper limit is 0.1%. Cr has an effect of suppressing recrystallization, and its content is preferably 0.2% or less, and a particularly preferred upper limit is 0.1%. Zn has an effect of improving the strength by solid solution strengthening, and the content is preferably 0.1% or less, and particularly preferably the upper limit is 0.0%.
8%. Ti has the effect of improving strength by solid solution strengthening or precipitation strengthening, and its content is preferably 0.03% or less, and a particularly preferred upper limit is 0.02%.

【0014】この発明の熱処理方法において、1段目の
一次時効処理は、容体化処理後に時効処理を行って硬化
させ強度を高める。容体化処理の方法は特に限定され
ず、例えば押出等の熱間加工後に続いて行われるT5処
理、または押出後再容体化を施すT6処理を挙示でき
る。また、時効処理条件は最大強度を得られることが好
ましく、150〜200℃で3〜80時間とする。処理
温度の特に好ましい下限値は165℃、特に好ましい上
限値は180℃であり、処理時間の特に好ましい下限値
は6時間、特に好ましい上限値は24時間である。ただ
し、Mg2Si量が1%以上である合金については、高
温時効が強度が負の効果をもたらすので、容体化処理後
の自然時効時間は短い方が良く、1〜72時間程度が好
ましい。
In the heat treatment method of the present invention, in the first-stage primary aging treatment, the aging treatment is carried out after the soaking treatment to harden and increase the strength. The method of the encapsulation treatment is not particularly limited, and for example, T5 treatment performed after hot working such as extrusion or T6 treatment for reconstitution after extrusion can be mentioned. The aging condition is preferably such that a maximum strength is obtained, and the aging treatment is performed at 150 to 200 ° C. for 3 to 80 hours. A particularly preferred lower limit of the treatment temperature is 165 ° C, a particularly preferred upper limit is 180 ° C, a particularly preferred lower limit of the treatment time is 6 hours, and a particularly preferred upper limit is 24 hours. However, for alloys having an Mg 2 Si content of 1% or more, the high-temperature aging has a negative effect on the strength, so that the natural aging time after the embedding treatment is preferably short, and is preferably about 1 to 72 hours.

【0015】2段目の復元処理は、材料中の析出相の一
部を固溶させる温度まで昇温して所定時間保持し、続い
て一旦固溶した析出相が析出してこない温度で冷却する
ことにより、前段の一次時効処理により硬化した組織を
復元して硬度を低下させる。昇温速度が遅すぎると、析
出相の固溶速度よりも析出速度の方が速いことが原因と
なって復元としての硬化低下が起こらなくなる。このた
め、昇温速度は300℃/分以上とする必要があり、特
に600℃/分以上が好ましい。続いて行う加熱保持
は、200〜270℃で0.5〜20分間行う。200
℃未満では復元硬化を得るための析出相の固溶自体が起
こりにくくなり、270℃を超えると粗大析出が促進さ
れて、後段に再時効処理しても強度の回復が期待できな
くなる。処理温度の特に好ましい下限値は220℃、特
に好ましい上限値は260℃であり、処理時間の特に好
ましい下限値は2分、特に好ましい上限値は7分であ
る。また、復元処理後の冷却は、冷却中に時として起こ
る粗大析出により強度が低下するために、500℃/分
以上の速度で行うことが必要があり、特に900℃/分
以上が好ましい。この段の復元処理工程間に結晶粒界の
析出物は粗大化し、前述したように、長さが70nm以上
の大きな析出物が110nm以上の間隔で析出する。
In the second stage of the restoration treatment, the temperature is raised to a temperature at which a part of the precipitated phase in the material is dissolved, held for a predetermined time, and then cooled at a temperature at which the precipitated phase once dissolved does not precipitate. By doing so, the structure hardened by the primary aging treatment at the preceding stage is restored and the hardness is reduced. If the rate of temperature rise is too slow, the rate of precipitation is faster than the rate of solid solution of the precipitated phase. For this reason, the temperature raising rate needs to be 300 ° C./min or more, and particularly preferably 600 ° C./min or more. The subsequent heating and holding is performed at 200 to 270 ° C. for 0.5 to 20 minutes. 200
If the temperature is lower than ℃, solid solution itself of the precipitated phase for obtaining restoration hardening hardly occurs. If the temperature is higher than 270 ° C, coarse precipitation is promoted, and the recovery of strength cannot be expected even if re-aging treatment is performed at a later stage. A particularly preferred lower limit of the treatment temperature is 220 ° C., a particularly preferred upper limit is 260 ° C., a particularly preferred lower limit of the treatment time is 2 minutes, and a particularly preferred upper limit is 7 minutes. Cooling after the restoration treatment needs to be performed at a rate of 500 ° C./min or more, particularly 900 ° C./min or more, because the strength is reduced due to coarse precipitation sometimes occurring during the cooling. During this restoration process, the precipitates at the grain boundaries are coarsened, and as described above, large precipitates having a length of 70 nm or more precipitate at intervals of 110 nm or more.

【0016】3段目の再時効処理は、前段の復元処理に
より固溶させておいた析出相を再析出させて1段目の硬
度にまで回復させる再時効処理である。再時効処理条件
は1段目の時効処理条件に準ずるが、十分な強度に復元
させるためには処理時間は少なくとも8時間は必要であ
る。そのため、150〜190℃で8〜80時間保持す
るものとする。処理温度の特に好ましい下限値は160
℃、特に好ましい上限値は180℃であり、処理時間の
特に好ましい下限値は6時間、特に好ましい上限値は2
4時間である。
The third-stage re-aging treatment is a re-aging treatment for re-precipitating the precipitate phase dissolved in the solid solution by the previous restoration treatment to restore the first-stage hardness. The re-aging condition is based on the first-stage aging condition, but the processing time is at least 8 hours in order to restore to a sufficient strength. Therefore, the temperature is kept at 150 to 190 ° C. for 8 to 80 hours. A particularly preferred lower limit of the processing temperature is 160
° C, a particularly preferred upper limit is 180 ° C, a particularly preferred lower limit of the treatment time is 6 hours, and a particularly preferred upper limit is 2 hours.
4 hours.

【0017】6000系アルミニウム合金に対し、以上
のような3段階の熱処理を行うことにより、2段目で得
た粒界析出状態を維持しつつ強度を回復することがで
き、高い強度と優れた耐応力腐食割れ性の両者を得るこ
とができる。
By performing the above-described three-stage heat treatment on the 6000 series aluminum alloy, the strength can be recovered while maintaining the grain boundary precipitation state obtained in the second stage, and high strength and excellent strength can be obtained. Both stress corrosion cracking resistance can be obtained.

【0018】[0018]

【実施例】次に、この発明の具体的実施例について説明
する。
Next, specific embodiments of the present invention will be described.

【0019】Al−Mg−Si系合金供試材およびAl
−Mg−Si−Cu系合金供試材として、表1に示す組
成のものを使用した。
Al-Mg-Si alloy test material and Al
As the test material for the -Mg-Si-Cu-based alloy, one having the composition shown in Table 1 was used.

【0020】[0020]

【表1】 [Table 1]

【0021】これらの組成の供試材について、550℃
×1時間の容体化焼入後、室温で24時間放置し、さら
に、表2(Al−Mg−Si系合金)および表3(Al
−Mg−Si−Cu系合金)に示す各条件で熱処理を行
った。熱処理は、一段目一次時効処理、2段目復元処
理、3段目再時効処理とし、各合金について、1段目一
次時効処理のみを行ったものを比較例とした。そして、
処理材について、常法により引張強度、耐力、伸びを測
定するとともに、耐応力腐食割れ試験を行った。耐応力
腐食割れ試験は、CrO3:36g/l、K2Cr27
30g/l、NaCl:3g/lを含有する試験液を用
い、試験温度95℃、3点曲げの要領で材料耐力の10
0%負荷を与える条件で行った。評価基準は、実体顕微
鏡にて40倍で観察し、材料表面に亀裂が入るまでの時
間とした。また、各処理材について、結晶粒界における
析出物の間隔および寸法を調べた。これらの結果を表2
および表3に併せて示す。
For the test materials having these compositions, 550 ° C.
× 1 hour, and then left at room temperature for 24 hours. Further, Table 2 (Al-Mg-Si alloy) and Table 3 (Al
-Mg-Si-Cu-based alloy). The heat treatment was a first-stage primary aging treatment, a second-stage restoration treatment, and a third-stage re-aging treatment, and each alloy was subjected to only the first-stage primary aging treatment as a comparative example. And
For the treated material, the tensile strength, proof stress, and elongation were measured by an ordinary method, and a stress corrosion cracking test was performed. The stress corrosion cracking test was as follows: CrO 3 : 36 g / l, K 2 Cr 2 O 7 :
Using a test solution containing 30 g / l and NaCl: 3 g / l, a test temperature of 95 ° C. and a material strength of 10 in the manner of three-point bending were used.
The test was performed under the condition of giving 0% load. The evaluation criterion was a time until the material surface was cracked by observation with a stereoscopic microscope at a magnification of 40 times. In addition, the spacing and size of precipitates at the grain boundaries were examined for each treatment material. Table 2 shows these results.
And Table 3 together.

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】表2および表3の結果から、本願発明の結
晶粒界の析出形態は、2段目の復元処理によって得ら
れ、このような析出形態により耐応力腐食割れ性が向上
することが確認できた。また、3段目の再時効処理を行
うことにより、1段目の一次時効材と同等あるいはそれ
以上の強度が得られ、かつ復元処理で得られた2段目の
耐応力腐食割れ性を維持し、高い強度と耐応力腐食割れ
性の両者を具備する6000系合金を得ることができ
た。
From the results shown in Tables 2 and 3, it was confirmed that the precipitation form of the crystal grain boundaries of the present invention was obtained by the second-stage restoration treatment, and the stress corrosion cracking resistance was improved by such a precipitation form. did it. In addition, by performing the re-aging treatment in the third stage, the strength equal to or higher than that of the primary aging material in the first stage is obtained, and the stress corrosion cracking resistance in the second stage obtained by the restoration process is maintained. Thus, a 6000 series alloy having both high strength and resistance to stress corrosion cracking was obtained.

【0025】[0025]

【発明の効果】以上説明したように、この発明の耐応力
腐食割れ性に優れた高強度6000系アルミニウム合金
は、Al−Mg−Si系合金あるいはAl−Mg−Si
−Cu系合金において、粒界析出物が110nm以上の間
隔で存在するとともに、析出物の粒界方向における寸法
が70nm以上であるから、応力腐食割れ感受性が低く、
6000系アルミニウム合金の高い強度と優れた耐応力
腐食割れ性を兼ね備えている。特に、前記Al−Mg−
Si系合金の組成が、Si:0.8〜1.5%、Mg:
0.8〜1.4%を含有し、さらにFe:0.1〜0.
3%、Mn:0.2%以下、Cr:0.2%以下、Z
n:0.1%以下、Ti:0.035%以下のうちの2
種以上の元素を含有し、残部Alおよび不可避不純物か
らなる場合は、高い強度と優れた耐応力腐食割れ性が得
られる。また、Al−Mg−Si−Cu系合金において
は、上述の組成に加えてCu含有量が0.4〜0.8%
のときに、特に高い強度と優れた耐応力腐食割れ性が得
られる。
As described above, the high-strength 6000 series aluminum alloy excellent in stress corrosion cracking resistance according to the present invention is an Al--Mg--Si series alloy or an Al--Mg--Si alloy.
-In the Cu-based alloy, the grain boundary precipitates are present at intervals of 110 nm or more, and since the size of the precipitates in the grain boundary direction is 70 nm or more, the sensitivity to stress corrosion cracking is low,
It has both the high strength of a 6000 series aluminum alloy and excellent stress corrosion cracking resistance. In particular, the Al-Mg-
The composition of the Si-based alloy is as follows: Si: 0.8 to 1.5%, Mg:
0.8-1.4%, and further Fe: 0.1-0.4%.
3%, Mn: 0.2% or less, Cr: 0.2% or less, Z
n: 0.1% or less, Ti: 2 out of 0.035% or less
When it contains more than one kind of element and the balance is made of Al and inevitable impurities, high strength and excellent stress corrosion cracking resistance can be obtained. Further, in the Al-Mg-Si-Cu alloy, the Cu content is 0.4 to 0.8% in addition to the above composition.
In this case, particularly high strength and excellent stress corrosion cracking resistance can be obtained.

【0026】また、上述の粒界における析出形態は、こ
の発明の熱処理方法、即ち、高い強度と耐応力腐食割れ
性は、6000系アルミニウム合金鋳塊に対し、容体化
処理後に150〜200℃で3〜80時間保持する一次
時効処理を行い、次いで300℃/分以上の昇温速度で
加熱し、200〜270℃で0.5〜20分保持したの
ち500℃/分以上の速度で冷却する復元処理を行い、
さらに150〜190℃で8〜80時間保持する再時効
処理を行うことにより得られ、高い強度と優れた耐応力
腐食割れ性を兼ね備えたものとなし得る。
Further, the above-mentioned precipitation form at the grain boundary is determined by the heat treatment method of the present invention, that is, the high strength and the stress corrosion cracking resistance of the 6000 series aluminum alloy ingot at 150 to 200 ° C. Perform primary aging treatment for 3 to 80 hours, then heat at a heating rate of 300 ° C / min or more, hold at 200 to 270 ° C for 0.5 to 20 minutes, and then cool at a rate of 500 ° C / min or more. Perform the restoration process,
Furthermore, it can be obtained by performing re-aging treatment at a temperature of 150 to 190 ° C. for 8 to 80 hours, and can have both high strength and excellent stress corrosion cracking resistance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 630 C22F 1/00 630A 640 640A 691 691B 691C 691A 692 692A (72)発明者 加藤 良知 堺市海山町6丁224番地 昭和アルミニウ ム株式会社内 (72)発明者 橋本 久永 堺市海山町6丁224番地 昭和アルミニウ ム株式会社内 (72)発明者 冨田 賢二 堺市海山町6丁224番地 昭和アルミニウ ム株式会社内 (72)発明者 坂口 雅司 堺市海山町6丁224番地 昭和アルミニウ ム株式会社内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 630 C22F 1/00 630A 640 640A 691 691B 691C 691A 692 692A (72) Inventor Yoshitomo Kato Sakai City 6,224, Showa Aluminum Co., Ltd., Showa Aluminum Co., Ltd. (72) Inventor Masashi Sakaguchi 6,224 Kaiyamacho, Sakai City Showa Aluminum Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Al−Mg−Si系合金において、粒界
析出物が110nm以上の間隔で存在するとともに、析出
物の粒界方向における寸法が70nm以上であることを特
徴とする耐応力腐食割れ性に優れた高強度6000系ア
ルミニウム合金。
1. An Al—Mg—Si based alloy in which grain boundary precipitates are present at intervals of 110 nm or more, and the size of the precipitates in the grain boundary direction is 70 nm or more. High strength 6000 series aluminum alloy with excellent properties.
【請求項2】 前記アルミニウム合金は、Si:0.8
〜1.5%およびMg:0.8〜1.4%を含有し、さ
らにFe:0.1〜0.3%、Mn:0.2%以下、C
r:0.2%以下、Zn:0.1%以下、Ti:0.0
35%以下のうちの2種以上の元素を含有し、残部Al
および不可避不純物からなることを特徴とする耐応力腐
食割れ性に優れた高強度6000系アルミニウム合金。
2. The method according to claim 1, wherein the aluminum alloy is Si: 0.8.
-1.5% and Mg: 0.8-1.4%, Fe: 0.1-0.3%, Mn: 0.2% or less, C
r: 0.2% or less, Zn: 0.1% or less, Ti: 0.0
Contains at least two elements of 35% or less, with the balance being Al
And a high-strength 6000 series aluminum alloy having excellent resistance to stress corrosion cracking, comprising an unavoidable impurity.
【請求項3】 Al−Mg−Si−Cu系合金におい
て、粒界析出物が110nm以上の間隔で存在するととも
に、析出物の粒界方向における寸法が70nm以上である
ことを特徴とする耐応力腐食割れ性に優れた高強度60
00系アルミニウム合金。
3. An Al—Mg—Si—Cu alloy in which grain boundary precipitates are present at intervals of 110 nm or more, and the size of the precipitates in the grain boundary direction is 70 nm or more. High strength 60 with excellent corrosion cracking
00 aluminum alloy.
【請求項4】 前記アルミニウム合金は、Si:0.8
〜1.5%、Mg:0.8〜1.4%およびCu:0.
4〜0.8%を含有し、さらにFe:0.1〜0.3
%、Mn:0.2%以下、Cr:0.2%以下、Zn:
0.1%以下、Ti:0.035%以下のうちの2種以
上の元素を含有し、残部Alおよび不可避不純物からな
ることを特徴とする耐応力腐食割れ性に優れた高強度6
000系アルミニウム合金。
4. The method according to claim 1, wherein the aluminum alloy is Si: 0.8.
1.51.5%, Mg: 0.8-1.4% and Cu: 0.
4 to 0.8%, and further Fe: 0.1 to 0.3
%, Mn: 0.2% or less, Cr: 0.2% or less, Zn:
0.1% or less, Ti: 0.035% or less of two or more elements, and the balance consists of Al and inevitable impurities. High strength 6 excellent in stress corrosion cracking resistance.
000 series aluminum alloy.
【請求項5】 6000系アルミニウム合金鋳塊に対
し、容体化処理後に150〜200℃で3〜80時間保
持する一次時効処理を行い、次いで300℃/分以上の
昇温速度で加熱し、200〜270℃で0.5〜20分
保持したのち500℃/分以上の速度で冷却する復元処
理を行い、さらに150〜190℃で8〜80時間保持
する再時効処理を行うことを特徴とする耐応力腐食割れ
性に優れた高強度6000系アルミニウム合金の熱処理
方法。
5. A 6000 series aluminum alloy ingot is subjected to a primary aging treatment at a temperature of 150 to 200 ° C. for 3 to 80 hours after the soaking process, and then heated at a rate of 300 ° C./min or more. It is characterized by performing a restoring process of cooling at a rate of 500 ° C./min or more after holding at 270 ° C. for 0.5 to 20 minutes, and further performing a re-aging process of holding at 150 to 190 ° C. for 8 to 80 hours. A heat treatment method for a high-strength 6000 series aluminum alloy having excellent stress corrosion cracking resistance.
JP10226041A 1998-08-10 1998-08-10 High strength 6000 series aluminum alloy excellent in stress corrosion cracking resistance and heat treatment Pending JP2000054052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10226041A JP2000054052A (en) 1998-08-10 1998-08-10 High strength 6000 series aluminum alloy excellent in stress corrosion cracking resistance and heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10226041A JP2000054052A (en) 1998-08-10 1998-08-10 High strength 6000 series aluminum alloy excellent in stress corrosion cracking resistance and heat treatment

Publications (1)

Publication Number Publication Date
JP2000054052A true JP2000054052A (en) 2000-02-22

Family

ID=16838863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10226041A Pending JP2000054052A (en) 1998-08-10 1998-08-10 High strength 6000 series aluminum alloy excellent in stress corrosion cracking resistance and heat treatment

Country Status (1)

Country Link
JP (1) JP2000054052A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305779A (en) * 2013-06-18 2013-09-18 常州大学 Thermomechanical treatment method of 6000-series aluminum alloy
CN103343304A (en) * 2013-06-18 2013-10-09 常州大学 Deformation heat-treatment method for improving tensile properties of 6000-series aluminum alloy thin plate
CN103436754A (en) * 2013-07-16 2013-12-11 安徽省天马泵阀集团有限公司 High anti-corrosion casting Mg-Al alloy for pump bodies and manufacturing method thereof
CN108504973A (en) * 2018-04-27 2018-09-07 中南大学 A kind of heat treatment method of naval vessel Al-Mg-Si alloy
CN108531759A (en) * 2018-04-27 2018-09-14 中南大学 A kind of casting technique of naval vessel aluminium alloy cast ingot
CN115786782A (en) * 2022-12-07 2023-03-14 吉林大学 Low-cost corrosion-resistant high-toughness cast aluminum-silicon alloy and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305779A (en) * 2013-06-18 2013-09-18 常州大学 Thermomechanical treatment method of 6000-series aluminum alloy
CN103343304A (en) * 2013-06-18 2013-10-09 常州大学 Deformation heat-treatment method for improving tensile properties of 6000-series aluminum alloy thin plate
CN103436754A (en) * 2013-07-16 2013-12-11 安徽省天马泵阀集团有限公司 High anti-corrosion casting Mg-Al alloy for pump bodies and manufacturing method thereof
CN108504973A (en) * 2018-04-27 2018-09-07 中南大学 A kind of heat treatment method of naval vessel Al-Mg-Si alloy
CN108531759A (en) * 2018-04-27 2018-09-14 中南大学 A kind of casting technique of naval vessel aluminium alloy cast ingot
CN108504973B (en) * 2018-04-27 2022-05-20 中南大学 Heat treatment method of Al-Mg-Si alloy for ships
CN115786782A (en) * 2022-12-07 2023-03-14 吉林大学 Low-cost corrosion-resistant high-toughness cast aluminum-silicon alloy and preparation method thereof
CN115786782B (en) * 2022-12-07 2024-01-26 吉林大学 Low-cost corrosion-resistant high-strength and high-toughness cast aluminum-silicon alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5343333B2 (en) Method for producing high-strength aluminum alloy material with excellent resistance to stress corrosion cracking
JP3638188B2 (en) Manufacturing method of high strength aluminum alloy extruded tube for front fork outer tube of motorcycle with excellent stress corrosion cracking resistance
JP2003518557A (en) Heat treatment of age hardenable aluminum alloy
JP3721020B2 (en) High strength, high toughness aluminum alloy forging with excellent corrosion resistance
JP3891705B2 (en) High-strength 6000 series aluminum alloy excellent in stress corrosion cracking resistance and heat treatment method
JP2000054052A (en) High strength 6000 series aluminum alloy excellent in stress corrosion cracking resistance and heat treatment
WO2002063059A1 (en) High strenght aluminum alloy
EP0960218A1 (en) Method of making an aa7000 series aluminum wrought product having a modified solution heat treatment
JPS6257704B2 (en)
JP3843363B2 (en) Heat treatment type 7000 series aluminum alloy having high strength and excellent corrosion resistance and method for producing the same
JPH0641623B2 (en) Controlled expansion alloy
JPS58167757A (en) Preparation of al-mg-si alloy for processing excellent in corrosion resistance, weldability and hardenability
JP5279119B2 (en) Partially modified aluminum alloy member and manufacturing method thereof
JP4179737B2 (en) Method for producing high-strength Al-Mg-Si-based aluminum alloy extruded material and its processing method
JP4528109B2 (en) Low elastic β-titanium alloy having an elastic modulus of 65 GPa or less and method for producing the same
JPH06293929A (en) Beta titanium alloy wire and its production
JPH05132745A (en) Production of aluminum alloy excellent in formability
JPH0259859B2 (en)
JP3246940B2 (en) Heat treatment of high strength aluminum alloy
JPH08232051A (en) Production of aluminum alloy forged product
JPH0570910A (en) Production of soft aluminum alloy material for welded structure
JP2849965B2 (en) Thermomechanical treatment of β-type titanium alloy
JPH06287670A (en) Al-mg alloy having high corrosion resistance and high strength and its production
JP2003268514A (en) Method of producing brass
JPH0559502A (en) Manufacture of aluminum alloy