JP2000051678A - Manufacture of cubic carbon nitride substance - Google Patents

Manufacture of cubic carbon nitride substance

Info

Publication number
JP2000051678A
JP2000051678A JP22587498A JP22587498A JP2000051678A JP 2000051678 A JP2000051678 A JP 2000051678A JP 22587498 A JP22587498 A JP 22587498A JP 22587498 A JP22587498 A JP 22587498A JP 2000051678 A JP2000051678 A JP 2000051678A
Authority
JP
Japan
Prior art keywords
substance
carbon
graphite
nitrogen
dynamic high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22587498A
Other languages
Japanese (ja)
Other versions
JP4225608B2 (en
Inventor
Tamikuni Komatsu
民邦 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP22587498A priority Critical patent/JP4225608B2/en
Publication of JP2000051678A publication Critical patent/JP2000051678A/en
Application granted granted Critical
Publication of JP4225608B2 publication Critical patent/JP4225608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B1/00Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
    • B30B1/001Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by explosive charges

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a substance which is as hard as diamond and is chemically highly stable by subjecting a mixture of a graphite-like substance composed mainly of carbon and nitrogen, a simulated graphite-like substance or an amorphous carbon structural substance and metallic powder to a dynamic high temperature and a dynamic high pressure. SOLUTION: A graphite-like substance composed mainly of carbon and nitrogen, a simulated graphite-like substance or an amorphous carbon structural substance is used as a starting substance. Above all, a triazine polymerization substance, a condensation polycyclic heterocyclic compound composed of nitrogen and carbon and the like are preferably used. The starting substance and the metallic powder are mixed and this mixture is subjected to a dynamic high temperature and a dynamic high pressure by an impact wave. The metallic powder is, for example, copper, aluminum, cobalt, nickel, tungsten or an alloy thereof. The copper which is insert to the starting substance and a formed substance is one of the preferable metals as its heat conductivity is high. An average temperature and an average pressure to be imparted to the starting substance by the impact wave are to be set within the range of 1,000-3,000 deg.C and 10-50 GPa respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い硬度と耐熱性
が必要な研磨剤や切削材として用いることのできる炭素
及び窒素からなる硬質物質の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hard substance comprising carbon and nitrogen, which can be used as an abrasive or a cutting material requiring high hardness and heat resistance.

【0002】[0002]

【従来の技術】ダイヤモンドやこれと同様な結晶構造を
有する等軸晶系窒化硼素(以下、c−BNと記す。)
は、極めて硬く、高性能の研磨剤や切削材として、産業
上不可欠の物質となっており、また、近年は優れた半導
体としての利用が注目されている。
2. Description of the Related Art Diamond and equiaxed boron nitride having a similar crystal structure (hereinafter referred to as c-BN).
Has become an industrially indispensable substance as an extremely hard and high-performance abrasive or cutting material, and has recently attracted attention for its use as an excellent semiconductor.

【0003】ダイヤモンドは最も硬い物質であるが、空
気中で燃焼する事実が示すように、高温下では酸化雰囲
気中で酸化されること、また、鉄系統の材料には浸食さ
れやすいという欠点を持つ。c−BNは、上記のような
ダイヤモンドの有する欠点を持たないのが利点であり、
鉄系材料の優れた切削・研磨剤として注目されている
が、硬度はダイヤモンドの約1/2程度であるため、硬
質材料の切削には向かない。従って、近年、ダイヤモン
ドと同程度の硬度を有し、なおかつ化学的安定性に優れ
た物質が期待されるようになった。そのような物質とし
てベーター構造の窒化炭素(β−C3 4 )がLiuらに
よって提案された(A. Y. Liu and M. L. Cohen, Phys.
Rev.B41,10727(1990))。最近、この物質は、特殊な物
理蒸着法によって、膜の微小部分に生成することが確認
されたが(E. E. Haller, M. L. Cohen and W. L. Hans
en, U. S . Patent 5110679)、純粋な物質として多量
に得る方法は、いまだなされていない。
[0003] Diamond is the hardest substance, but as shown by the fact that it burns in air, it has the disadvantage that it is oxidized in an oxidizing atmosphere at high temperatures and that it is easily eroded by iron-based materials. . c-BN has the advantage that it does not have the disadvantages of diamond as described above,
Although it is attracting attention as an excellent cutting and polishing agent for iron-based materials, it is not suitable for cutting hard materials because its hardness is about 1/2 that of diamond. Therefore, in recent years, a substance having the same hardness as diamond and having excellent chemical stability has been expected. As such a substance, carbon nitride having a beta structure (β-C 3 N 4 ) was proposed by Liu et al. (AY Liu and ML Cohen, Phys.
Rev. B41, 10727 (1990)). Recently, it has been confirmed that this material is formed in a small part of the film by a special physical vapor deposition method (EE Haller, ML Cohen and WL Hans
en, U.S. Patent 5110679), and there is no method for obtaining a large amount as a pure substance.

【0004】一方、合成ダイヤモンドの製造方法とし
て、黒鉛に火薬を利用した衝撃圧縮力を作用させる方法
が知られている。この方法は、純度の比較的高い粉末状
のダイヤモンドを多量に合成するのに適した方法であ
る。従って、β−C3 4 についても同様な方法による
合成の試みが行われたが、ダイヤモンドの生成以外には
痕跡量のβ−C3 4 も生成しなかった。(M. R. Wixo
m, J. Am. Ceram. Soc. 73,1973(1990))。
On the other hand, as a method for producing synthetic diamond, there is known a method in which an impact compressive force using an explosive is applied to graphite. This method is suitable for synthesizing a large amount of powdered diamond with relatively high purity. Therefore, an attempt was made to synthesize β-C 3 N 4 by the same method, but no trace of β-C 3 N 4 was produced except for the production of diamond. (MR Wixo
m, J. Am. Ceram. Soc. 73, 1973 (1990)).

【0005】[0005]

【発明が解決しようとする課題】本発明は、ダイヤモン
ドと同程度の硬度を有し、なおかつ化学的安定性に優れ
た物質である立方晶窒化炭素物質の製造方法を提供する
ことを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a cubic carbon nitride material having a hardness comparable to that of diamond and having excellent chemical stability. .

【0006】[0006]

【課題を解決するための手段】本発明者は鋭意検討の結
果、適切な出発物質に適切な動的圧力処理を施すことに
よって、本発明を成すに至った。すなわち、本発明は、
(1) 炭素及び窒素を主成分とする黒鉛状物質、黒鉛
類似状物質もしくは無定型炭素構造物質と金属粉の混合
物に動的高温・高圧力を作用させることを特徴とする立
方晶窒化炭素物質の製造方法、(2) 炭素及び窒素を
主成分とする黒鉛状物質、黒鉛類似状物質もしくは無定
型炭素構造物質が、トリアジン系重合物質、もしくは窒
素と炭素からなる縮合多環複素環式化合物であることを
特徴とする(1)記載の立方晶窒化炭素物質の製造方
法、(3) 動的高温・高圧力が、それぞれ、1000
〜3000℃及び10〜50GPaの範囲であることを特
徴とする(1)記載の立方晶窒化炭素物質の製造方法、
を提供するものである。
As a result of intensive studies, the present inventors have accomplished the present invention by subjecting appropriate starting materials to appropriate dynamic pressure treatment. That is, the present invention
(1) A cubic carbon nitride material characterized by applying a dynamic high temperature and high pressure to a mixture of a graphite-like material, a graphite-like material, or an amorphous carbon structure material and a metal powder containing carbon and nitrogen as main components. (2) a graphite-like substance, a graphite-like substance or an amorphous carbon structural substance containing carbon and nitrogen as main components is a triazine-based polymer substance or a condensed polycyclic heterocyclic compound composed of nitrogen and carbon. (1) The method for producing a cubic carbon nitride material according to (1), wherein (3) the dynamic high temperature and high pressure are 1000
(1) The method for producing a cubic carbon nitride material according to (1), wherein
Is provided.

【0007】本発明における出発物質として、炭素及び
窒素を主成分とする黒鉛状物質、黒鉛類似状物質もしく
は無定型炭素構造物質が用いられる。中でもトリアジン
系重合物質、及び窒素と炭素からなる縮合多環複素環式
化合物等が好ましく用いられる。該トリアジン系重合物
質としては、実質的にトリアジン環だけからなるポリト
リアジン、トリアジン環がイミノ基を介して重合した構
造を有するポリ(イミノトリアジン)、トリアジン環が
ヒドラジン基を介して重合したポリ(ヒドラジルトリア
ジン)、トリアジン環が窒素原子を介して重合した構造
を有するポリ(窒化トリアジン)、トリアジン環がカル
ボジイミド基を介して重合した構造を有するポリ(カル
ボジイミドトリアジン)等が挙げられ、また、窒素と炭
素からなる縮合多環複素環式化合物としては、例えば、
トリクロロイソシアヌール酸をアンモニアで縮合して得
られるトリアジン骨格の複素環式重合物質等が挙げられ
る。
As a starting material in the present invention, a graphite-like substance containing carbon and nitrogen as main components, a graphite-like substance or an amorphous carbon structural substance is used. Among them, a triazine-based polymer substance, a condensed polycyclic heterocyclic compound composed of nitrogen and carbon, and the like are preferably used. Examples of the triazine-based polymer include a polytriazine having substantially only a triazine ring, a poly (iminotriazine) having a structure in which a triazine ring is polymerized through an imino group, and a poly (iminotriazine) in which a triazine ring is polymerized through a hydrazine group. Hydrazyl triazine), poly (triazine nitride) having a structure in which a triazine ring is polymerized via a nitrogen atom, and poly (carbodiimide triazine) having a structure in which a triazine ring is polymerized via a carbodiimide group. As a fused polycyclic heterocyclic compound consisting of and carbon, for example,
Examples include a heterocyclic polymer having a triazine skeleton obtained by condensing trichloroisocyanuric acid with ammonia.

【0008】これらの重合物質は、化学構造的に安定な
トリアジン骨格を主成分として重合していることが重要
であり、実質的に炭素及び窒素を主成分とするが、支障
のない程度ならば、少量の水素、酸素、ハロゲン、その
他の元素が含まれていてもよい。また、結晶学的構造
は、黒鉛構造、黒鉛類似構造、もしくは無定型炭素構造
であることが好ましい。
It is important that these polymer substances are polymerized with a triazine skeleton that is chemically stable as a main component, and substantially contain carbon and nitrogen as main components. , A small amount of hydrogen, oxygen, halogen, and other elements. The crystallographic structure is preferably a graphite structure, a graphite-like structure, or an amorphous carbon structure.

【0009】次に上記出発物質と金属粉を混合し、衝撃
波による動的高温・高圧力を作用させる。該金属粉は通
常、粒径0.01〜1mmの範囲のものが用いられる。
該金属粉の混合は、出発物質に対して効果的に高圧力を
与えるためと、生成した立方晶物質の構造を急速凍結す
るためであり、本発明にとって必須の条件である。金属
粉の混合割合は、全重量の80〜99重量%の範囲に設
定するのが収率上好ましい。金属粉としては、黒鉛その
ものより衝撃インピーダンスの大きいものであれば特に
限定するものではないが、例えば、銅、アルミニウム、
コバルト、ニッケル、タングステンもしくはそれらの合
金であり、出発物質及び生成物質に対して不活性な銅
は、熱伝導率も高いので、好ましい金属の1つである。
Next, the starting material and the metal powder are mixed, and a dynamic high temperature and high pressure by a shock wave are applied. The metal powder usually has a particle size in the range of 0.01 to 1 mm.
The mixing of the metal powder is necessary for effectively applying a high pressure to the starting material and for rapidly freezing the structure of the formed cubic material, which is an essential condition for the present invention. It is preferable in terms of yield that the mixing ratio of the metal powder be set in the range of 80 to 99% by weight of the total weight. The metal powder is not particularly limited as long as it has a larger impact impedance than graphite itself. For example, copper, aluminum,
Copper, which is cobalt, nickel, tungsten or an alloy thereof, and which is inert to the starting material and the product, is also one of the preferred metals because of its high thermal conductivity.

【0010】また、衝撃波によって出発物質に与えられ
る平均温度と圧力は、それぞれ1000〜3000℃、
及び、10〜50GPaの範囲に設定するのが好ましい。
1000℃未満及び10GPa未満では、出発物質の立方
晶構造への変換が困難であり、3000℃を超える温度
では、生成物質の相分離が起きるので好ましくない。ま
た、圧力は通常20〜40GPaの範囲であれば立方晶へ
の構造変換が効果的に起きるので、50GPaを超える高
圧力は殆どの場合必要としない。
[0010] The average temperature and pressure given to the starting material by the shock wave are 1000 to 3000 ° C, respectively.
And it is preferable to set in the range of 10 to 50 GPa.
If the temperature is less than 1000 ° C. and less than 10 GPa, it is difficult to convert the starting material into a cubic structure, and if the temperature exceeds 3000 ° C., phase separation of the product occurs, which is not preferable. Further, if the pressure is usually in the range of 20 to 40 GPa, the structure conversion to cubic crystal effectively occurs, so that a high pressure exceeding 50 GPa is not needed in most cases.

【0011】[0011]

【発明の実施の形態】以下、本発明を実施例により具体
的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described specifically with reference to examples.

【0012】[0012]

【実施例1】トリクロロメラミンを、ジメチルホルム溶
媒中でDBU(1,8-diazabicyclo[5,4,0]undec-7-ene)を
用いて脱塩酸し、ポリ(アミノイミノトリアジン)を
得、これをさらに、10-3〜10-6torrの真空中、
350〜400℃で数時間熱処理して、ポリトリアジン
を得た。得られたポリトリアジンと平均粒径0.1mm
の銅粉とをポリトリアジン:銅粉=2:98の重量比で
混合し、混合物を金型に入れ、プレス成形することによ
り、直径20mm、厚さ5mmの円板状成形体を得た。
成形体は最密充填時の値の70%の密度を有している。
この成形体を試料として図1に示す装置で衝撃処理を行
った。主爆薬はシクロテトラメチレンテトラミンと過塩
素酸ナトリウムの66%水溶液を重量にして約200g
用いた。金属飛翔板4は、径及び肉厚がそれぞれ76m
m、3mmの銅板を用いた。試料容器は内径20mm、
外径30mm、高さ20mmのステンレス製で、これを
包む保持容器は内径、外径、高さがそれぞれ30mm、
50mm、40mmのしんちゅう製であり、さらにその
外側をスチール製の管及び運動量捕獲材である鉛で取り
巻いた。本実施例で試料内に発生する衝撃波は約27GP
a、温度は約2000℃と推定された。爆発処理後、試
料容器を回収し、機械加工によって試料を取り出し、硝
酸と塩酸を用いて金属粉を溶解させ、さらに、過塩素酸
を用いて、未反応の出発物質を分解除去し、不溶物の分
離、乾燥操作を行い、最終的に一次粒子径約10nmの
微粒粉末を得た。この粉末を粉末X線回折法で分析した
結果、等軸晶系の回折パターンを示し、その回折位置
は、推定された立方晶窒化炭素C34 の回折位置(A.
Y. Liu and R. M. Wentzcovitch, Phys. Rev. B50, 103
62(1994))に非常に接近していることがわかった。ま
た、元素分析によって、炭素と窒素の比率はおよそ1:
1であった。
Example 1 Trichloromelamine was subjected to dehydrochlorination using DBU (1,8-diazabicyclo [5,4,0] undec-7-ene) in a dimethylform solvent to obtain poly (aminoiminotriazine). This is further reduced in a vacuum of 10 -3 to 10 -6 torr,
Heat treatment was performed at 350 to 400 ° C. for several hours to obtain a polytriazine. Obtained polytriazine and average particle size 0.1 mm
Was mixed in a weight ratio of polytriazine: copper powder = 2: 98, and the mixture was placed in a mold and press-molded to obtain a disk-shaped compact having a diameter of 20 mm and a thickness of 5 mm.
The compact has a density of 70% of the value at close packing.
Using this molded body as a sample, an impact treatment was performed using the apparatus shown in FIG. The main explosive is about 200 g by weight of a 66% aqueous solution of cyclotetramethylenetetramine and sodium perchlorate.
Using. The metal flying plate 4 has a diameter and a thickness of 76 m each.
A 3 mm copper plate was used. The sample container has an inner diameter of 20 mm,
The outer container is made of stainless steel with an outer diameter of 30 mm and a height of 20 mm.
It was made of brass of 50 mm and 40 mm, and the outside thereof was surrounded by a steel tube and lead which was a momentum capturing material. The shock wave generated in the sample in this embodiment is about 27 GP.
a, The temperature was estimated to be about 2000 ° C. After the explosion treatment, collect the sample container, take out the sample by machining, dissolve the metal powder using nitric acid and hydrochloric acid, further decompose and remove unreacted starting materials using perchloric acid, And a drying operation were performed to finally obtain a fine powder having a primary particle diameter of about 10 nm. As a result of analyzing this powder by powder X-ray diffraction, it showed an equiaxed crystal diffraction pattern, and the diffraction position was the estimated diffraction position of cubic carbon nitride C 3 N 4 (A.
Y. Liu and RM Wentzcovitch, Phys. Rev. B50, 103
62 (1994)). According to elemental analysis, the ratio of carbon to nitrogen was about 1:
It was one.

【0013】[0013]

【実施例2】等モルのトリクロロメラミンと塩化シアヌ
ールを環流キシレン溶媒中、6倍量のナトリウム金属を
用いてカップリング反応を行い、イミノ基で縮合したポ
リトリアジンを得た。これを出発物質として、試料に与
える衝撃圧が20GPa、温度が1000℃である他は、
実施例1と同様な操作を行い、最終的に実施例1で得ら
れたものと同様な微粒粉末を得た。この物質の粉末X線
回折の結果は、実施例1と同様なパターンであった。ま
た、元素分析の結果は、炭素と窒素の比率がおよそ1:
1.1であった。
Example 2 Equimolar amounts of trichloromelamine and cyanuric chloride were subjected to a coupling reaction in a refluxing xylene solvent using 6 times the amount of sodium metal to obtain polytriazine condensed with imino groups. Using this as a starting material, except that the impact pressure applied to the sample is 20 GPa and the temperature is 1000 ° C.
The same operation as in Example 1 was performed, and finally, a fine powder similar to that obtained in Example 1 was obtained. The result of powder X-ray diffraction of this substance was a pattern similar to that of Example 1. In addition, the result of elemental analysis shows that the ratio of carbon to nitrogen is approximately 1:
1.1.

【0014】[0014]

【発明の効果】本発明の製造方法によって得られた立方
晶窒化炭素物質は、研磨剤、切削材、もしくは優れた半
導体材料として利用でき、産業上大いに有用である。
The cubic carbon nitride material obtained by the production method of the present invention can be used as an abrasive, a cutting material, or an excellent semiconductor material, and is very useful in industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いられた平面型衝撃圧縮装置の縦断
面図を示す。
FIG. 1 is a longitudinal sectional view of a flat type impact compression device used in the present invention.

【符号の説明】[Explanation of symbols]

1 雷管 2 平面状爆轟波発生装置 3 主爆薬 4 金属飛翔板 5 プラスチック筒 6 空隙 7、7’ 管(スチール製) 8 保持容器 9 試料容器 10 試料 11 運動量捕獲材 DESCRIPTION OF SYMBOLS 1 Detonator 2 Planar detonation wave generator 3 Main explosive 4 Metal flying plate 5 Plastic cylinder 6 Air gap 7, 7 'tube (made of steel) 8 Holding container 9 Sample container 10 Sample 11 Momentum capture material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素及び窒素を主成分とする黒鉛状物
質、黒鉛類似状物質もしくは無定型炭素構造物質と金属
粉の混合物に動的高温・高圧力を作用させることを特徴
とする立方晶窒化炭素物質の製造方法。
1. A cubic nitride characterized in that a dynamic high temperature and high pressure are applied to a mixture of a graphite-like substance, a graphite-like substance or an amorphous carbon structure substance and a metal powder containing carbon and nitrogen as main components. Method for producing carbon material.
【請求項2】 炭素及び窒素を主成分とする黒鉛状物
質、黒鉛類似状物質もしくは無定型炭素構造物質が、ト
リアジン系重合物質、もしくは窒素と炭素からなる縮合
多環複素環式化合物であることを特徴とする請求項1記
載の立方晶窒化炭素物質の製造方法。
2. The graphite-like substance, graphite-like substance or amorphous carbon-structure substance containing carbon and nitrogen as main components is a triazine polymer or a condensed polycyclic heterocyclic compound comprising nitrogen and carbon. The method for producing a cubic carbon nitride material according to claim 1, wherein
【請求項3】 動的高温・高圧力が、それぞれ、100
0〜3000℃及び10〜50GPaの範囲であることを
特徴とする請求項1記載の立方晶窒化炭素物質の製造方
法。
3. The dynamic high temperature / high pressure is 100
The method for producing a cubic carbon nitride material according to claim 1, wherein the temperature is in the range of 0 to 3000C and 10 to 50 GPa.
JP22587498A 1998-08-10 1998-08-10 Method for producing cubic carbon nitride material Expired - Fee Related JP4225608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22587498A JP4225608B2 (en) 1998-08-10 1998-08-10 Method for producing cubic carbon nitride material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22587498A JP4225608B2 (en) 1998-08-10 1998-08-10 Method for producing cubic carbon nitride material

Publications (2)

Publication Number Publication Date
JP2000051678A true JP2000051678A (en) 2000-02-22
JP4225608B2 JP4225608B2 (en) 2009-02-18

Family

ID=16836219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22587498A Expired - Fee Related JP4225608B2 (en) 1998-08-10 1998-08-10 Method for producing cubic carbon nitride material

Country Status (1)

Country Link
JP (1) JP4225608B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112547105A (en) * 2020-12-02 2021-03-26 中科院合肥技术创新工程院 Copper (I) doped graphitized carbon nitride nanosheet catalyst and preparation method and application thereof
CN114345394A (en) * 2022-01-27 2022-04-15 中原工学院 Visible light response boron nitride/carbon nitride composite photocatalyst and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112547105A (en) * 2020-12-02 2021-03-26 中科院合肥技术创新工程院 Copper (I) doped graphitized carbon nitride nanosheet catalyst and preparation method and application thereof
CN112547105B (en) * 2020-12-02 2024-03-05 中科院合肥技术创新工程院 Copper (I) -doped graphitized carbon nitride nanosheet catalyst and preparation method and application thereof
CN114345394A (en) * 2022-01-27 2022-04-15 中原工学院 Visible light response boron nitride/carbon nitride composite photocatalyst and preparation method and application thereof
CN114345394B (en) * 2022-01-27 2023-07-14 中原工学院 Visible light response boron nitride/carbon nitride composite photocatalyst and preparation method and application thereof

Also Published As

Publication number Publication date
JP4225608B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
Suri et al. Synthesis and consolidation of boron carbide: a review
Khabashesku et al. Powder synthesis and characterization of amorphous carbon nitride
US6783745B1 (en) Fullene based sintered carbon materials
JPH06505694A (en) Artificial diamond-containing material and its manufacturing method
Buerki et al. Homogeneous nucleation of diamond powder by CO2‐laser‐driven gas‐phase reactions
CN108358645A (en) A method of preparing high-compactness hafnium boride ceramics
JP2010254529A (en) Method for producing diamond and shock compression apparatus
JP4225608B2 (en) Method for producing cubic carbon nitride material
WO2000015548A2 (en) Fullerene based sintered carbon materials
JP4677665B2 (en) Method for producing high-pressure phase material
IE46406B1 (en) Hard materials
US5011639A (en) Method for the preparation of a sintered body of silicon carbide
JP2019131442A (en) Method for manufacturing cubic crystal or hexagonal crystal boron nitride
JPS5855316A (en) Manufacture of silicon nitride powder
KR20170074013A (en) Bi-Te-Se based thermoelectric powder and materials with improved thermostability and manufacturing methods thereof
JPH0510282B2 (en)
JP2017154960A (en) Diamond sintered body with excellent thermal conductivity, and method for producing same
JP3750156B2 (en) Manufacturing method of iron disilicide
JPH1029814A (en) Production of bcn based material having crystal structure at high pressure phase
JP2004168555A (en) Translucent ultrafine diamond particle sintered compact and its manufacturing process
FR2684090A1 (en) Use of fullerenes as starting materials in of diamond manufacture
US5306320A (en) Stoichiometric B1-type tantalum nitride and a sintered body thereof and method of synthesizing the B1-type tantalum nitride
JPH0477612B2 (en)
JPH05221730A (en) Cubic boron nitride sintered body and production thereof
Dolmatov Modified method for synthesis of detonation nanodiamonds and their real elemental composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081125

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

LAPS Cancellation because of no payment of annual fees