JP2000048810A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2000048810A
JP2000048810A JP10217265A JP21726598A JP2000048810A JP 2000048810 A JP2000048810 A JP 2000048810A JP 10217265 A JP10217265 A JP 10217265A JP 21726598 A JP21726598 A JP 21726598A JP 2000048810 A JP2000048810 A JP 2000048810A
Authority
JP
Japan
Prior art keywords
nmr
negative electrode
battery
chemical
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10217265A
Other languages
Japanese (ja)
Other versions
JP2000048810A5 (en
JP4085479B2 (en
Inventor
Yoshiaki Nitta
芳明 新田
Masatoshi Nagayama
雅敏 永山
Hajime Miyake
肇 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21726598A priority Critical patent/JP4085479B2/en
Publication of JP2000048810A publication Critical patent/JP2000048810A/en
Publication of JP2000048810A5 publication Critical patent/JP2000048810A5/ja
Application granted granted Critical
Publication of JP4085479B2 publication Critical patent/JP4085479B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the safety of a nonaqueous electrolyte secondary battery. SOLUTION: The surface of a negative electrode is coated with one of amorphous compounds containing at least C, F, P, Li and at least one kind from among transition metal elements, and it is desirable that the transition metal element of the amorphous compound is Mn and that a divalent oxidation state should be exist. Furthermore, an amorphous coat is formed on the negative electrode, which coat has such a chemical property that the chemical shift with H3P04 as reference has a signal in the vicinity of 10 ppm under the condition that chemical condition of P be in a solid NMR (31P-NMR) of P, and similarly a chemical shift with LiCl as reference has a signal in the vicinity of 0 ppm under the condition that the chemical condition of Li be in a solid NMR (7Li-NMR) of Li, among the amorphous compounds mentioned.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池の、特に安全性の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, particularly to an improvement in safety.

【0002】[0002]

【従来の技術】非水電解質二次電池は、小型、軽量で、
かつ高エネルギー密度を有するため、機器のポータブル
化、コードレス化が進む中で、その期待は高まってい
る。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries are small, lightweight,
In addition, due to the high energy density, the expectation is increasing as portable and cordless devices are progressing.

【0003】従来、非水電解質二次電池用の正極活物質
として4V級のLiCoO2、LiNiO2、LiMn24
などのリチウム含有金属酸化物が提案され、一部が実用
化されている。一方、負極としては金属リチウム、リチ
ウムを吸蔵・放出することのできる炭素材料などが提案
され、炭素材料は実用化されている。
Conventionally, 4V-class LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 have been used as positive electrode active materials for non-aqueous electrolyte secondary batteries.
Such lithium-containing metal oxides have been proposed and some of them have been put to practical use. On the other hand, as the negative electrode, metallic lithium, a carbon material capable of inserting and extracting lithium, and the like have been proposed, and the carbon material has been put to practical use.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
電池構成においては内部短絡時あるいは電池破壊時に瞬
時に多量の熱を発生することがあった。これを回避する
ため、熱発散を速やかに行わせる機構的あるいは電池構
成上での工夫などが種々考案され実用化されている。た
とえば、電池作動中に異常な高温が生じた場合に熱伝導
性の優れた金属部を予め電池内に設けることによる熱を
電池外に発散させる機構的な回避措置あるいは同じく電
池内での異常な高温状況が発生してもセパレータ等を熱
溶融させ正負極間の急激な電気化学反応を停止し発熱を
抑えるような電池構成上での回避措置が挙げられる。
However, in the conventional battery configuration, a large amount of heat may be instantaneously generated when an internal short circuit occurs or the battery is destroyed. In order to avoid this, various measures such as mechanical or battery arrangements for rapidly dissipating heat have been devised and put to practical use. For example, when an abnormally high temperature occurs during operation of a battery, a mechanical avoidance measure for dissipating heat outside the battery by providing a metal part having excellent heat conductivity in the battery in advance or an abnormal inside of the battery is also used. Even when a high-temperature condition occurs, there is a measure to avoid the battery configuration such that the separator and the like are thermally melted to stop the rapid electrochemical reaction between the positive and negative electrodes to suppress heat generation.

【0005】しかしながら、これらの手法では化学エネ
ルギーから電気エネルギーに変換され、さらにこの電気
エネルギーがエネルギーロスの代償として一部熱エネル
ギーに変換されるエネルギー源を熱発散あるいは発熱の
収束化という二次的な措置により熱暴走回避をさせよう
とする思想であり、活性な化学エネルギーを不活化さ
せ、電気エネルギーへの変換を未然に阻止しようとする
ものではない。そのため、本質的な解決策にあたるもの
ではなかった。
However, in these methods, an energy source which is converted from chemical energy into electric energy and which partially converts the electric energy into heat energy in exchange for energy loss is a secondary method such as heat dissipation or heat convergence. The idea is to avoid thermal runaway by taking appropriate measures, but not to inactivate active chemical energy and prevent conversion to electrical energy. Therefore, it was not an essential solution.

【0006】本発明は、このような課題を解決するもの
で、安全性に優れた非水電解質二次電池を提供するもの
である。
The present invention has been made to solve such problems, and provides a non-aqueous electrolyte secondary battery having excellent safety.

【0007】[0007]

【課題を解決するための手段】これらの問題を解決する
ために本発明では、非水電解質と、正極と、リチウムを
吸蔵,放出することができる負極から構成される非水電
解質二次電池であって、負極の表面が少なくともC、
F、P、Liと遷移金属元素の少なくとも1種を含む非
晶質の化合物で被覆され、好ましくはその非晶質化合物
の遷移金属元素がMnであって、酸化状態が2価で存在す
るようにしたものである。また、上記非晶質化合物のう
ち、Pの化学状態がPの固体NMR(31P-NMR)においてH
3PO4を基準とする化学シフトが10ppm付近にシグナルを
有し、同様にLiの化学状態がLiの固体NMR(7Li-N
MR)においてLiClを基準とする化学シフトが0ppm付近に
シグナルを有するような化学的性質を持つようにしたも
のである。
In order to solve these problems, the present invention provides a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte, a positive electrode, and a negative electrode capable of inserting and extracting lithium. The surface of the negative electrode has at least C,
It is coated with an amorphous compound containing at least one of F, P, Li and a transition metal element. Preferably, the transition metal element of the amorphous compound is Mn and the oxidation state is divalent. It was made. Further, among the above amorphous compounds, the chemical state of P is P in solid-state NMR (31P-NMR).
The chemical shift based on 3PO4 has a signal around 10 ppm, and the chemical state of Li is the solid state NMR of Li (7Li-N
In MR), the chemical property is such that the chemical shift based on LiCl has a signal near 0 ppm.

【0008】[0008]

【発明の実施の形態】炭素、フッ素、リチウム、リンと
遷移金属元素を含む化合物は非晶質な結晶形態であり、
高い電子伝導性を持たない。これは電子伝導性に与る可
能性の高い金属元素の配列に周期性がなく、また金属元
素間の最近接距離が通常の酸化物などよりも長く軌道間
のオーバーラッピングや熱振動による伝導性が得にくい
こと、同様に炭素原子も繰り返し周期性に欠けsp2混
成軌道はもちろん十分な共役結合に与れず、連続した電
子伝導性が得られない。このような非晶質化合物を電子
伝導性の良好な炭素負極上に被膜形成すると内部短絡時
あるいは電池破壊時での正負極間に瞬時に流れる大電流
を被膜の非導電性作用により阻止することができるので
多量の熱の発生を未然に防ぐことが可能になる。
BEST MODE FOR CARRYING OUT THE INVENTION A compound containing carbon, fluorine, lithium, phosphorus and a transition metal element is in an amorphous crystalline form,
Does not have high electronic conductivity. This is because there is no periodicity in the arrangement of metal elements that are likely to have an effect on electron conductivity, and the closest distance between metal elements is longer than that of ordinary oxides. In addition, the carbon atom lacks repetitive periodicity, and the sp2 hybrid orbital does not participate in a sufficient conjugate bond, so that continuous electron conductivity cannot be obtained. When a film of such an amorphous compound is formed on a carbon negative electrode having good electron conductivity, a large current that flows instantaneously between the positive and negative electrodes when an internal short circuit occurs or the battery is destroyed is prevented by the non-conductive action of the film. Therefore, generation of a large amount of heat can be prevented.

【0009】また、被膜の非晶質化合物に含まれる遷移
金属元素がMnであって、しかも酸化状態が2価で存在す
れば3d軌道の電子配置はd5となり、ハイスピン状態で
最も安定に存在できる。本発明者らがESRなどの方法に
より被膜固体中のマンガン原子の原子価を鋭意検討を重
ねたところ、2価で存在することを見いだした。他の遷
移金属であって、d軌道がd5ハイスピンの電子配置を
採りやすい遷移金属元素であれば同様の安定性が得られ
その効果が発現するが、d電子が持つ機能性からd3〜d7
の電子配置においても安定性が得られる。好ましくは遷
移金属元素としてMnが望ましい。
If the transition metal element contained in the amorphous compound of the film is Mn and the oxidation state is divalent, the electron configuration of the 3d orbital is d5, and it can exist most stably in the high spin state. . The present inventors have conducted intensive studies on the valency of manganese atoms in the coating solid by a method such as ESR and found that the manganese atom exists in a divalent state. If the transition metal element is another transition metal and the d-orbit is a transition metal element that can easily adopt the electron configuration of d5 high spin, the same stability can be obtained and the effect can be obtained, but d3 to d7 due to the functionality of the d electron.
Stability can be obtained also in the electron configuration of Preferably, Mn is desirable as the transition metal element.

【0010】また、リンの化学状態は通常LiPF6のよう
にリンを含む電解液においては電池構成材料中に容易に
存在する元素であるが先述のようにリン以外に炭素、遷
移金属元素などを含む非晶質化合物であるのでリンも周
りの配位子が異なる環境にある理由から上記LiPF6とし
て存在する化学状態とは異なった化学状態を持つ。
The chemical state of phosphorus is usually an element which is easily present in a battery constituent material in an electrolyte containing phosphorus such as LiPF6, but contains carbon, a transition metal element and the like in addition to phosphorus as described above. Since it is an amorphous compound, phosphorus has a chemical state different from the chemical state existing as LiPF6 because the surrounding ligands are in different environments.

【0011】すなわち、H3PO4を基準とする31P-NMRの固
体NMRおいて電解液に溶解している通常のLiPF6では観測
されないはずの新たなシグナルが10ppm付近に現れるか
らである。これは非晶質化合物中のリンが通常のLiPF6
とは異なる化学結合を有する所以であり、このような非
晶質性の被膜に効果がある。
That is, in the solid-state NMR of 31P-NMR based on H3PO4, a new signal which should not be observed with ordinary LiPF6 dissolved in the electrolytic solution appears at around 10 ppm. This is because phosphorus in amorphous compound is normal LiPF6
The reason for this is that it has a chemical bond different from that described above, and is effective for such an amorphous film.

【0012】また、この非晶質化合物に含まれるリチウ
ムはLiの化学状態がLiの固体NMR(7Li-NMR)にお
いてLiClを基準とする化学シフトが0ppm付近にシグナル
を有するような極めてイオン性の強い性質を持つことが
特徴であることを見い出した。
The lithium contained in the amorphous compound has an extremely ionic property such that the chemical state of Li has a signal near 0 ppm in the chemical shift of LiCl in the solid state NMR (7Li-NMR) of Li (7Li-NMR). It has been found that it has a strong property.

【0013】このほか、非晶質性の被膜の中には極めて
電気陰性度の大きいフッ素が含有されており、遷移金属
元素、リン、リチウムなどとイオン性の結合を作って存
在している可能性がある。この被膜は非晶質性であるた
め、構造解析が十分に行え得ないが、このように電気陰
性度の大きいアニオン元素と電子供与性の化学種が結晶
構造的に配列の周期性を持たず、しかも低い電子伝導性
を持った化合物として形成されているものと推察され
る。
In addition, the amorphous film contains fluorine having a very high electronegativity, and may exist by forming an ionic bond with a transition metal element, phosphorus, lithium and the like. There is. Since this film is amorphous, structural analysis cannot be performed sufficiently. However, such an anion element having a large electronegativity and an electron-donating species do not have periodicity in arrangement in a crystal structure. Further, it is presumed that the compound is formed as a compound having low electron conductivity.

【0014】本発明はこのような事実に基づくものであ
り、以下実施例で詳細に本発明の具体的な内容を説明す
る。
The present invention is based on such a fact, and specific examples of the present invention will be described in detail in the following examples.

【0015】[0015]

【実施例】以下、図面とともに本発明の実施例を説明す
る。実施例においては円筒形の電池を構成して評価を行
った。
Embodiments of the present invention will be described below with reference to the drawings. In the examples, a cylindrical battery was constructed and evaluated.

【0016】図1に本実施例に用いた円筒形電池の縦断
面図を示す。図において1は負極で、黒鉛を主材料と
し、これとアクリル系結着剤とを重量比で100:6の割合
で混合したものを銅箔の両面に塗着、乾燥し、圧延した
後所定の大きさに切断したものである。これに2のニッ
ケル製の負極リード板をスポット溶接している。この炭
素負極上で非晶質性被膜を形成するため、次のような方
法を行った。たとえば、フッ化リチウム、フッ化マンガ
ンあるいはリン酸を予め上記負極極板を形成する前に混
入させ、ついで電解液を注入する際に電池構成上必要な
電解液全量に対し5〜10ppmの水を同時に添加し電池内へ
投入する、あるいは上記無機塩を予め電解液に溶解させ
ておき、水と同時に電池内へ注液する方法などを施行し
た。
FIG. 1 is a longitudinal sectional view of a cylindrical battery used in this embodiment. In the figure, reference numeral 1 denotes a negative electrode, which is mainly composed of graphite, and a mixture of this and an acrylic binder in a weight ratio of 100: 6 is applied to both surfaces of a copper foil, dried, rolled, and then rolled. It is cut to the size of A nickel negative electrode lead plate is spot-welded to this. The following method was used to form an amorphous coating on the carbon negative electrode. For example, lithium fluoride, manganese fluoride or phosphoric acid is mixed in advance before forming the negative electrode plate, and then, when injecting the electrolytic solution, 5 to 10 ppm of water is added to the total amount of the electrolytic solution necessary for the battery configuration. Simultaneous addition and introduction into the battery, or a method of previously dissolving the inorganic salt in the electrolytic solution and injecting into the battery at the same time as water were carried out.

【0017】ここで、加えるべきリチウム、フッ素、マ
ンガンの各元素を含む塩はそれぞれ電解液全量に対し40
〜80ppmとした。安全性を得る本発明の非晶質性被膜の
特質効果を十分に発揮させるためには最低限40ppm程度
が必要であり、また80ppmを越えると電池の長期保存特
性に支障を来すことが確認された。好ましくは電池構成
上必要な電解液全量に対し40〜80ppmとすべきである。
添加する水の量は5ppm以下では本発明の効果が得られ
ず、また10ppm以上では電池の長期保存中にガスが電池
内より発生し漏液する恐れがあるため、好ましくは必要
電解液全量に対し5〜10ppmとすべきである。
Here, the salt containing each element of lithium, fluorine and manganese to be added is 40% of the total amount of the electrolyte.
8080 ppm. At least 40 ppm is required in order to fully exhibit the characteristic effects of the amorphous coating of the present invention that obtains safety, and it has been confirmed that if it exceeds 80 ppm, the long-term storage characteristics of the battery will be affected. Was done. Preferably, it should be 40 to 80 ppm based on the total amount of the electrolyte required for the battery configuration.
If the amount of water to be added is 5 ppm or less, the effect of the present invention is not obtained, and if it is 10 ppm or more, gas may be generated from the inside of the battery and leaked during long-term storage of the battery. On the other hand, it should be 5-10 ppm.

【0018】3は正極を示し、本実施例ではLiMn2O4を活
物質とし導電材としてカーボンブラックを、結着剤とし
てポリ四フッ化エチレンの水性ディスバージョンを重量
比で100:3:3の割合で混合したものをアルミニウム箔の
両面に塗着、乾燥し、圧延した後、所定の大きさに切断
したものである。これに4のチタン製の正極リード板を
スポット溶接している。なお結着剤のポリ四フッ化エチ
レンの水性ディスバージョンの混合比率は、その固形分
で計算している。5はポリエチレン製の微孔性フィルム
からなるセパレータで、正極1と負極3との間に介在し、
全体が渦巻状に捲回されて極板群を構成している。この
極板群の上下のはしにはそれぞれポリプロピレン性の上
部絶縁板6、下部絶縁板7を配して鉄にニッケルメッキし
たケース8に挿入する。そして正極リード板2をチタン製
の封口板10に、負極リード板4をケース8の底部にそれぞ
れスポット溶接した後、所定量の電解液をケース内に注
入し、ガスケット9を介して電池を封口板10で封口して
完成電池とする。この電池の寸法は直径14mm、高さ50mm
である。電解液はエチレンカーボネートとジエチルカー
ボネートを等体積で混合し、1Mの六フッ化リン酸リチウ
ムを溶解したものを用いた。このようにして作製した電
池を、充放電電流100mA、充電終止電圧4.3V、放電終止
電圧3.0V、環境温度20℃とし、数回充放電を行った。
Reference numeral 3 denotes a positive electrode. In this embodiment, LiMn 2 O 4 is used as an active material, carbon black is used as a conductive material, and an aqueous dispersion of polytetrafluoroethylene is used as a binder in a weight ratio of 100: 3: 3. Is coated on both sides of an aluminum foil, dried, rolled, and then cut into a predetermined size. The titanium positive lead plate of 4 is spot-welded to this. The mixing ratio of the aqueous dispersion of polytetrafluoroethylene as the binder is calculated by its solid content. 5 is a separator made of a polyethylene microporous film, interposed between the positive electrode 1 and the negative electrode 3,
The whole is spirally wound to form an electrode plate group. An upper insulating plate 6 and a lower insulating plate 7 made of polypropylene are arranged on the upper and lower steps of the electrode plate group, respectively, and inserted into a case 8 plated with nickel on iron. After the positive electrode lead plate 2 is spot-welded to the titanium sealing plate 10 and the negative electrode lead plate 4 is spot-welded to the bottom of the case 8, a predetermined amount of electrolyte is injected into the case, and the battery is sealed via the gasket 9. The battery is sealed with a plate 10 to obtain a completed battery. The dimensions of this battery are 14mm in diameter and 50mm in height
It is. The electrolytic solution was prepared by mixing ethylene carbonate and diethyl carbonate in equal volumes and dissolving 1 M lithium hexafluorophosphate. The battery thus prepared was charged and discharged several times at a charge / discharge current of 100 mA, a charge end voltage of 4.3 V, a discharge end voltage of 3.0 V, and an environmental temperature of 20 ° C.

【0019】数回の充放電を繰り返すと、負極は電気化
学的な酸化還元により、負極表面に非晶質性の化合物の
被膜が形成される。これは予め添加した種々の無機塩が
極少の水により溶解する作用と電解酸化還元の電気化学
的な作用による再析出などの現象が相乗され、負極表面
に非晶質性の被膜が形成されたと考えている。また、一
般的に負極を炭素材とした場合、初期の充電で有機電解
液が一部変成し負極表面に部分的に被膜を形成すること
が知られているが、本発明の場合においても負極に炭素
を用いる範囲においてこの現象は例外ではなく、初回の
充電により炭素を含む被膜が生成する。したがって、無
機性の化合物と電解液変成による有機性の被膜を含む複
雑な形態を持つ新たな被膜が得られる。
When charge and discharge are repeated several times, the negative electrode forms a film of an amorphous compound on the surface of the negative electrode by electrochemical redox. This is because the action of dissolving various inorganic salts added in advance with a minimum amount of water and the phenomenon of re-deposition due to the electrochemical action of electrolytic oxidation-reduction are synergized, and an amorphous film was formed on the negative electrode surface. thinking. It is generally known that when the negative electrode is made of a carbon material, the organic electrolyte partially transforms at the initial charge and partially forms a film on the negative electrode surface. This phenomenon is not an exception in the range where carbon is used for the first time, and a film containing carbon is generated by the first charging. Therefore, a new film having a complicated morphology including an inorganic compound and an organic film formed by the modification of an electrolytic solution can be obtained.

【0020】こうして得られた試験電池20個を4.5Vま
で充電し、電池側面に釘を刺し発火の確認を行う実験を
行ったところ、全数において漏液は認められなかった。
An experiment was conducted in which 20 test batteries thus obtained were charged to 4.5 V, and a nail was inserted into the side of the battery to check for ignition. As a result, no liquid leakage was observed in all the test batteries.

【0021】しかしながら、非晶質性の被膜を負極上に
形成しない従来の作成方法で得た試験電池20個におい
て同様の試験を行った結果、3個の漏液が確認された。
However, the same test was conducted on 20 test batteries obtained by a conventional method in which an amorphous film was not formed on the negative electrode. As a result, three liquid leaks were confirmed.

【0022】このように、本発明の非晶質性の被膜を負
極上に形成すれば、釘刺しによる漏液の回避が可能にな
り、安全性が向上する。
As described above, if the amorphous film of the present invention is formed on the negative electrode, it is possible to avoid liquid leakage due to nail penetration and improve safety.

【0023】これは、本発明を実施した負極上からESR
解析で2価のマンガンを確認したこと、またH3PO4を基
準とする31P-NMRの固体NMRにおいて通常のLiPF6では観
測されない新たなシグナルが10ppm付近に観測されたこ
と、さらに非晶質化合物に含まれるリチウムの化学状態
がLiの固体NMR(7Li-NMR)においてLiClを基準とす
る化学シフトが0ppm付近にシグナルを有していたこと、
そしてEPMAによる表面解析でフッ素が確認されたことな
どから、明らかに負極炭素上に被膜が存在しており、こ
れが内部短絡あるいは電池破壊時での正負極間に瞬時に
流れる大電流を被膜の非導電性作用により阻止し、多量
の熱の発生を未然に防いだものと考えている。
This is due to the fact that the ESR
Analysis confirmed divalent manganese, and a new signal not observed with ordinary LiPF6 was observed at around 10 ppm in solid-state NMR of 31P-NMR based on H3PO4, and it was included in amorphous compounds. The chemical state of lithium had a signal in the solid state NMR of Li (7Li-NMR) in which the chemical shift based on LiCl had a signal near 0 ppm,
From the surface analysis by EPMA, it was confirmed that fluorine was present.Therefore, a coating was clearly present on the negative electrode carbon, which caused a large current to flow instantaneously between the positive and negative electrodes in the event of an internal short circuit or battery breakdown. It is believed that this was prevented by the conductive action, thereby preventing a large amount of heat from being generated.

【0024】なお、上記遷移金属フッ化物としてはフッ
化マンガンのほかに、フッ化チタン、フッ化ニッケル、
フッ化コバルトなどが挙げられ、リン酸塩はリン酸以外
の各種遷移金属のリン酸塩を用いても良い。正極活物質
としては、本実施例のLiMn2O4以外のコバルト酸リチウ
ム、ニッケル酸リチウムなど他のリチウムを吸蔵・放出
できる遷移金属酸化物においても同様の効果が得られ
る。
The above-mentioned transition metal fluorides include, in addition to manganese fluoride, titanium fluoride, nickel fluoride,
Cobalt fluoride and the like may be mentioned, and phosphates of various transition metals other than phosphoric acid may be used. As the positive electrode active material, a similar effect can be obtained with a transition metal oxide capable of occluding and releasing other lithium such as lithium cobaltate and lithium nickelate other than LiMn2O4 of the present example.

【0025】また、本発明の正極材料を非水電解質二次
電池に用いる場合、負極活物質にはリチウム金属あるい
はリチウムをを含有する窒化物、酸化物、合金などを用
いることができる。
When the positive electrode material of the present invention is used for a non-aqueous electrolyte secondary battery, lithium metal or a nitride, oxide, alloy, or the like containing lithium can be used as the negative electrode active material.

【0026】さらに、本発明の非水電解質の溶媒として
は、EC(エチレンカーボネート),PC(プロピレン
カーボネート),DMC(ジメチルカーボネート),E
MC(エチルメチルカーボネート),DEC(ジエチル
カーボネート)等の鎖状エステル類,γ−ブチロラクト
ン等のγ−ラクトン類,DME(1,2−ジメトキシエ
タン),DEE(1,2−ジエトキシエタン),EME
(エトキシメトキシエタン)等の鎖状エーテル類,テト
ラヒドロフラン等の環状エーテル類,アセトニトリル等
のニトリル類等から選ばれた溶媒もしくは2種類以上の
混合溶媒を用いることができる。特にEC(エチレンカ
ーボネート)を必須成分として含む混合溶媒を使用する
ことが好適である。そして非水電解質の溶質としては、
LiAsF6,LiPF6,LiAlCl4,LiCl
4,LiCF3SO3,LiSbF6,LiSCN,Li
Cl,LiC6HSO3,Li(CF3SO22,LiC
(CF3SO23,C46SO3Li等のリチウム塩及び
これらのこれらの混合物を用いることができる。これら
溶液系の他に、PVDF、PEO,PAN系などの高分
子材料を用いた固体状電解質あるいはゲル状電解質を含
む固体−ゲル電解質を用いた電解質においても同様の効
果が得られる。
Further, as the solvent of the non-aqueous electrolyte of the present invention, EC (ethylene carbonate), PC (propylene carbonate), DMC (dimethyl carbonate), E
Chain esters such as MC (ethyl methyl carbonate) and DEC (diethyl carbonate), γ-lactones such as γ-butyrolactone, DME (1,2-dimethoxyethane), DEE (1,2-diethoxyethane), EME
A solvent selected from a chain ether such as (ethoxymethoxyethane), a cyclic ether such as tetrahydrofuran, a nitrile such as acetonitrile, or a mixed solvent of two or more kinds can be used. In particular, it is preferable to use a mixed solvent containing EC (ethylene carbonate) as an essential component. And as a non-aqueous electrolyte solute,
LiAsF 6 , LiPF 6 , LiAlCl 4 , LiCl
O 4 , LiCF 3 SO 3 , LiSbF 6 , LiSCN, Li
Cl, LiC 6 HSO 3 , Li (CF 3 SO 2 ) 2 , LiC
Lithium salts such as (CF 3 SO 2 ) 3 and C 4 F 6 SO 3 Li, and mixtures thereof can be used. In addition to these solution systems, a similar effect can be obtained in a solid electrolyte using a polymer material such as PVDF, PEO, or PAN or an electrolyte using a solid-gel electrolyte including a gel electrolyte.

【0027】また、電池の形状に関しては、本実施例で
は円筒形電池を用いたが角形、その他いかなる形状の電
池でも使用できる。
As for the shape of the battery, a cylindrical battery is used in this embodiment, but a battery having a rectangular shape or any other shape can be used.

【0028】[0028]

【発明の効果】本発明は、負極の表面が少なくともC、
F、P、Liと遷移金属元素の少なくとも1種を含む非
晶質の化合物で被覆され、好ましくはその非晶質化合物
の遷移金属元素がMnであって、酸化状態が2価で存在す
るようにしたものである。また、上記非晶質化合物のう
ち、Pの化学状態がPの固体NMR(31P-NMR)においてH
3PO4を基準とする化学シフトが10ppm付近にシグナルを
有し、同様にLiの化学状態がLiの固体NMR(7Li-N
MR)においてLiClを基準とする化学シフトが0ppm付近に
シグナルを有するような化学的性質を持つ非晶質性の被
膜を負極上に形成すれば、安全性に優れた電池を提供す
ることができる。
According to the present invention, the surface of the negative electrode has at least C,
It is coated with an amorphous compound containing at least one of F, P, Li and a transition metal element. Preferably, the transition metal element of the amorphous compound is Mn and the oxidation state is divalent. It was made. Further, among the above amorphous compounds, the chemical state of P is P in solid-state NMR (31P-NMR).
The chemical shift based on 3PO4 has a signal around 10 ppm, and the chemical state of Li is the solid state NMR of Li (7Li-N
(MR) By forming an amorphous film having a chemical property such that a chemical shift based on LiCl has a signal near 0 ppm on the negative electrode, a battery with excellent safety can be provided. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における円筒形電池の縦断面図FIG. 1 is a longitudinal sectional view of a cylindrical battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 負極 2 負極リード板 3 正極 4 正極リード板 5 セパレータ 6 上部絶縁板 7 下部絶縁板 8 ケース 9 ガスケット 10 封口板 DESCRIPTION OF SYMBOLS 1 Negative electrode 2 Negative electrode lead plate 3 Positive electrode 4 Positive electrode lead plate 5 Separator 6 Upper insulating plate 7 Lower insulating plate 8 Case 9 Gasket 10 Sealing plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三宅 肇 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H014 AA02 CC01 EE05 EE07 HH00 5H029 AJ12 AK03 AL07 AM03 AM05 AM06 BJ02 BJ12 BJ13 BJ14 DJ08 DJ12 DJ16 DJ17 EJ01 EJ04 HJ13  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hajime Miyake 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. F term (reference) 5H014 AA02 CC01 EE05 EE07 HH00 5H029 AJ12 AK03 AL07 AM03 AM05 AM06 BJ02 BJ12 BJ13 BJ14 DJ08 DJ12 DJ16 DJ17 EJ01 EJ04 HJ13

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】非水電解質と、正極と、リチウムを吸蔵,
放出することができる負極から構成される非水電解質二
次電池において、該負極の表面が少なくともC、P、
F、Liと遷移金属元素の少なくとも1種を含む非晶質
の化合物で被覆され、電池構成されていることを特徴と
する非水電解質二次電池。
1. A non-aqueous electrolyte, a positive electrode, and occlusion of lithium.
In a non-aqueous electrolyte secondary battery composed of a negative electrode capable of releasing, the surface of the negative electrode has at least C, P,
A non-aqueous electrolyte secondary battery, wherein the battery is configured by being coated with an amorphous compound containing at least one of F and Li and a transition metal element.
【請求項2】上記非晶質化合物の遷移金属元素がMnであ
って、酸化状態が2価で存在することを特徴とする請求
項1記載の非水電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the transition metal element of the amorphous compound is Mn and the oxidation state is divalent.
【請求項3】上記非晶質化合物のうち、Pの化学状態が
Pの固体NMR(31P-NMR)においてH3PO4を基準とする化
学シフトが10ppm付近にシグナルを有することを特徴と
する請求項1記載の非水電解質二次電池。
3. The amorphous compound according to claim 1, wherein the chemical shift of P relative to H3PO4 has a signal in the vicinity of 10 ppm in solid-state NMR (31P-NMR) of P. The non-aqueous electrolyte secondary battery according to the above.
【請求項4】上記非晶質化合物のうち、Liの化学状態
がLiの固体NMR(7Li-NMR)においてLiClを基準とす
る化学シフトが0ppm付近にシグナルを有することを特徴
とする請求項1記載の非水電解質二次電池。
4. The amorphous compound according to claim 1, wherein the chemical state of Li has a signal in the vicinity of 0 ppm of the chemical shift based on LiCl in solid state NMR (7Li-NMR) of Li. The non-aqueous electrolyte secondary battery according to the above.
JP21726598A 1998-07-31 1998-07-31 Nonaqueous electrolyte secondary battery Expired - Lifetime JP4085479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21726598A JP4085479B2 (en) 1998-07-31 1998-07-31 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21726598A JP4085479B2 (en) 1998-07-31 1998-07-31 Nonaqueous electrolyte secondary battery

Publications (3)

Publication Number Publication Date
JP2000048810A true JP2000048810A (en) 2000-02-18
JP2000048810A5 JP2000048810A5 (en) 2005-10-13
JP4085479B2 JP4085479B2 (en) 2008-05-14

Family

ID=16701439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21726598A Expired - Lifetime JP4085479B2 (en) 1998-07-31 1998-07-31 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4085479B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249058A (en) * 2010-05-25 2011-12-08 Toyota Central R&D Labs Inc Anode for lithium ion secondary battery, lithium ion secondary battery and method of manufacturing anode for lithium ion secondary battery
US9444120B2 (en) * 2005-12-21 2016-09-13 Samsung Sdi Co., Ltd. Rechargeable lithium battery and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06251764A (en) * 1993-02-22 1994-09-09 Fuji Elelctrochem Co Ltd Lithium secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06251764A (en) * 1993-02-22 1994-09-09 Fuji Elelctrochem Co Ltd Lithium secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9444120B2 (en) * 2005-12-21 2016-09-13 Samsung Sdi Co., Ltd. Rechargeable lithium battery and method for manufacturing the same
JP2011249058A (en) * 2010-05-25 2011-12-08 Toyota Central R&D Labs Inc Anode for lithium ion secondary battery, lithium ion secondary battery and method of manufacturing anode for lithium ion secondary battery

Also Published As

Publication number Publication date
JP4085479B2 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
US8313866B2 (en) Non-aqueous electrolytes and electrochemical devices including the same
JP4992923B2 (en) Nonaqueous electrolyte secondary battery
EP1174940A1 (en) Non-aqueous electrochemical apparatus
JP2009048981A (en) Nonaqueous electrolyte secondary battery
JPWO2002054524A1 (en) Non-aqueous electrolyte secondary battery
KR20020002200A (en) Charging method for charging nonaqueous electrolyte secondary battery
JP2011034893A (en) Nonaqueous electrolyte secondary battery
CN103210531A (en) Battery electrode and manufacturing method thereof, non-aqueous electrolyte battery, battery pack, and active material
CN104956514A (en) Battery system
JP4572602B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery and their production method
KR20160091864A (en) Nonaqueous electrolyte secondary battery
JP2001256997A (en) Lithium secondary battery
CN103367804A (en) Non-aqueous electrolyte for lithium ion battery and lithium ion battery using same
KR20200082557A (en) An Electrolyte for a lithium ion secondary battery and a lithium ion secondary battery comprising the same
JP2009238387A (en) Nonaqueous electrolyte secondary battery
JP2000040526A (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
JP2010186689A (en) Nonaqueous electrolyte secondary battery
JP2000348759A (en) Nonaqueous electrolytic solution and secondary battery using it
WO2014181447A1 (en) Lithium-ion secondary battery
JP2004030939A (en) Manufacturing method of lithium secondary battery
KR20040080929A (en) Nonaqueous electrolyte secondary cell
JP2018133284A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
JP4085479B2 (en) Nonaqueous electrolyte secondary battery
JP6222389B1 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP2011249152A (en) Lithium battery electrode active material composition and lithium battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050607

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5