JP2000045062A - Electromagnetic preventing molding - Google Patents

Electromagnetic preventing molding

Info

Publication number
JP2000045062A
JP2000045062A JP21225798A JP21225798A JP2000045062A JP 2000045062 A JP2000045062 A JP 2000045062A JP 21225798 A JP21225798 A JP 21225798A JP 21225798 A JP21225798 A JP 21225798A JP 2000045062 A JP2000045062 A JP 2000045062A
Authority
JP
Japan
Prior art keywords
layer coating
plasma
plastic molded
electromagnetic
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21225798A
Other languages
Japanese (ja)
Inventor
Shinichi Okabe
信一 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP21225798A priority Critical patent/JP2000045062A/en
Publication of JP2000045062A publication Critical patent/JP2000045062A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic preventing molding high in electromagnetic shielding characteristics and excellent in adhesion force and corrosion resistance. SOLUTION: This electromagnetic molding is composed of a plastic molding, a primary layer film of Cu formed on the surface of this plastic molding to a film thickness of 0.5 to 2.0 μm and a secondary layer film thickness of Ni formed on the primary layer film to a film thickness of 0.2 to 1.0 μm, and the surface of the plastic molding is exposed to the inside of the plasma of gaseous Ar and is successively exposed to the inside of the plasma of gaseous O2, and then, the primary layer film and the secondary layer film are formed by a vacuum method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プラスチック成形
体に金属被膜を成膜した電磁防止成形体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic prevention molded article in which a metal film is formed on a plastic molded article.

【0002】[0002]

【従来の技術】近年、パソコン、携帯電話、PHSなど
の機器が広く使用されているが、放射された電磁波が、
他の電子機器に誤動作を与えることや、人体に影響を与
えることが考えられる。そのため、それらの機器に電磁
防止(電磁波シールド)の処理が必要になる。電磁波シ
ールドの効果に優れ、低コストで、量産性に優れて、な
おかつ耐久性、耐食性が良好な電磁防止成形体が望まれ
ている。
2. Description of the Related Art In recent years, devices such as personal computers, mobile phones, and PHSs have been widely used.
It is conceivable that other electronic devices may malfunction or affect the human body. Therefore, such devices need to be treated for electromagnetic prevention (electromagnetic wave shielding). There is a demand for an anti-magnetic molded article that is excellent in electromagnetic wave shielding effect, low in cost, excellent in mass productivity, and excellent in durability and corrosion resistance.

【0003】従来より、電気機器、電子機器には種々の
電磁波シールドが施されてきた。プラスチック成形体の
中に導電性金属を混入したり、導電性塗料を塗布した
り、湿式メッキ被膜や金属被膜をプラスチック成形体の
表面に成膜する方法が知られている。
[0003] Conventionally, various electromagnetic wave shields have been applied to electric equipment and electronic equipment. There are known methods of mixing a conductive metal into a plastic molded body, applying a conductive paint, and forming a wet plating film or a metal film on the surface of the plastic molded body.

【0004】[0004]

【発明が解決しようとする課題】金属をプラスチック成
形体の表面に成膜する方法として、無電解メッキ法が従
来用いられていた。無電解メッキ法では、エッチング処
理や、触媒付加等の処理が行われ、プラスチック成形体
と金属との密着力は強固である。しかし、無電解メッキ
の廃液処理の問題と、メッキ時間が長いという量産性の
問題がある。さらに、プラスチック成形体の両面に金属
が付着してしまうので、該プラスチック成形体を商品に
する場合は、片面に塗装等を施す必要があり、コスト上
昇の原因となる問題もある。
As a method for forming a metal film on the surface of a plastic molded body, an electroless plating method has been conventionally used. In the electroless plating method, processes such as etching and addition of a catalyst are performed, and the adhesion between the plastic molded body and the metal is strong. However, there is a problem of waste liquid treatment of electroless plating and a problem of mass productivity that a plating time is long. Further, since metal adheres to both surfaces of the plastic molded product, when the plastic molded product is used as a product, it is necessary to apply painting or the like to one surface, which causes a problem of an increase in cost.

【0005】また、真空工法を利用し、金属をプラスチ
ック成形体の表面に成膜する方法では、Alを膜厚が厚
く成膜する方法や、導電性の高いCuと、耐食性の高い
Niとを積層する方法が一般的である。それらの密着力
を高めるには、プラスチック成形体にプライマー処理を
したり、湿式メッキを施したり、プラズマクリーニング
をする必要がある。しかし、これらの方法は生産性やコ
ストに問題がある。
Further, in the method of forming a metal film on the surface of a plastic molded body by using a vacuum method, a method of forming a thick film of Al, a method of using a highly conductive Cu and a highly corrosion-resistant Ni, are used. The method of laminating is common. In order to increase the adhesion, it is necessary to apply a primer treatment, wet plating, or plasma cleaning to the plastic molded body. However, these methods have problems in productivity and cost.

【0006】すなわち、プライマー処理をする方法に
は、塗装設備および乾燥設備が必要で、コーティングが
不必要な部分のマスキング作業も必要になる。湿式メッ
キをする方法には、メッキ設備および廃水処理設備が必
要で、メッキが不必要な部分のマスキング作業および塗
装作業も必要となる。
In other words, the method of performing the primer treatment requires a coating facility and a drying facility, and also requires a masking operation for a portion where coating is unnecessary. The wet plating method requires a plating facility and a wastewater treatment facility, and also requires a masking operation and a painting operation for a portion not requiring plating.

【0007】また、Arガスなどの不活性ガスによるプ
ラズマクリーニングをする方法には、初期密着性等の密
着力の向上には効果があるが、長時間の耐湿試験および
塩水噴霧試験に耐えうるほどの密着力は得られない。
The method of performing plasma cleaning with an inert gas such as Ar gas is effective in improving the adhesion such as initial adhesion, but has such an effect that it can withstand a long-time moisture resistance test and a salt spray test. Cannot be obtained.

【0008】そこで本発明は、電磁シールド特性が高
く、密着力および耐食性に優れた電磁防止成形体を提供
することを目的とする。
[0008] Therefore, an object of the present invention is to provide an electromagnetic prevention molded article having high electromagnetic shielding properties, and excellent adhesion and corrosion resistance.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の電磁防止成形体は、プラスチック成形体
と、該プラスチック成形体の表面に成膜したCuの第1
層被膜と、該第1層被膜の上に成膜したNiの第2層被
膜とからなる電磁防止成形体であり、前記プラスチック
成形体の表面をArガスのプラズマ中に曝し、続いてO
2 ガスのプラズマ中に曝してから、前記第1層被膜およ
び第2層被膜を真空工法による成膜により形成する。
Means for Solving the Problems In order to achieve the above-mentioned object, an electromagnetic prevention molded article of the present invention comprises a plastic molded article and a first Cu film formed on the surface of the plastic molded article.
An electromagnetically-resistant molded article comprising a layer coating and a second layer coating of Ni formed on the first layer coating, exposing the surface of the plastic molded article to plasma of Ar gas;
After exposure to the plasma of the two gases, the first layer coating and the second layer coating are formed by film formation by a vacuum method.

【0010】また、好ましくは、前記第1層被膜の膜厚
が0.5〜2.0μmであり、前記第2層被膜の膜厚が
0.2〜1.0μmである
Preferably, the thickness of the first layer coating is 0.5 to 2.0 μm, and the thickness of the second layer coating is 0.2 to 1.0 μm.

【0011】[0011]

【発明の実施の形態】本発明では、先ずプラスチック成
形体を真空槽内でArガスのプラズマ中に曝し、続いて
2 ガスのプラズマ中に曝す手順でプラズマ処理を行
う。続いて真空工法により、膜厚が0.5〜2.0μm
のCuの第1層被膜を成膜し、膜厚が0.2〜1.0μ
mのNiの第2層被膜を成膜する手順で成膜処理を行
い、電磁防止成形体を得る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a plasma treatment is performed by first exposing a plastic molded body to Ar gas plasma in a vacuum chamber, and then exposing the plastic molded article to O 2 gas plasma. Subsequently, the thickness is 0.5 to 2.0 μm by a vacuum method.
Of a first layer film of Cu having a thickness of 0.2 to 1.0 μm.
A film forming process is performed in the procedure of forming a second layer coating of m of Ni to obtain an electromagnetic prevention molded body.

【0012】本発明に用いられるプラスチック成形体に
は、ABS、ABSとポリカーボネイトの混合物、ポリ
カーボネイト等で、パソコンや携帯電話などに多く使用
されている樹脂が好ましい。また、従来から金属との密
着力が低いとされているポリプロピレンなどの樹脂でも
よい。
The plastic molded article used in the present invention is preferably made of ABS, a mixture of ABS and polycarbonate, polycarbonate, or the like, which is widely used in personal computers and mobile phones. Further, a resin such as polypropylene, which is conventionally considered to have low adhesion to metal, may be used.

【0013】前記プラズマ処理では、不活性ガスである
Arガスのプラズマ中に曝すことにより、プラスチック
成型体の表面がArイオンの衝突で物理的に凹凸にな
り、表面積が増大する。続いて、O2 ガスのプラズマ中
に曝すことにより、プラスチック成型体の表面は、化学
的にエッチングされて活性な状態になり、金属との濡れ
性が増大する。
In the plasma treatment, the surface of the plastic molded body becomes physically uneven due to the collision of Ar ions by exposing it to plasma of Ar gas, which is an inert gas, and the surface area increases. Subsequently, by exposing the plastic molded body to an O 2 gas plasma, the surface of the plastic molded body is chemically etched into an active state, and the wettability with metal increases.

【0014】以上のプラズマ処理を行うことにより、成
膜処理におけるアンカー効果が増大し、金属との親和性
が増加するので、プラスチック成形体と金属被膜との高
い密着力を得ることができる。
By performing the above-described plasma treatment, the anchor effect in the film-forming treatment is increased, and the affinity with the metal is increased. Therefore, a high adhesion between the plastic molded body and the metal film can be obtained.

【0015】それぞれのガスをイオン化する方法は、高
周波放電、グロー放電、アーク放電など、公知のいずれ
の方法でもよく、ガスのプラズマの圧力は、1×10-4
〜5×10-2torrの範囲内であればよい。
The method of ionizing each gas may be any known method such as high frequency discharge, glow discharge, arc discharge, etc., and the gas plasma pressure is 1 × 10 -4.
It may be in the range of up to 5 × 10 -2 torr.

【0016】また、O2 ガスのプラズマを安定させるた
めに、イオン化前のO2 ガスにArガスを1〜10%添
加してもよい。
Further, in order to stabilize the plasma of O 2 gas, Ar gas to O 2 gas before ionization may be added 1-10%.

【0017】プラズマ処理の時間は、Arガスのプラズ
マ中に曝すのが1分間〜10分間、かつO2 ガスのプラ
ズマ中に曝すのが30秒間〜5分間で十分である。これ
以上の長時間にわたるプラズマ処理では、特性の向上が
得られない。却って、プラスチック成形体の温度が上昇
し過ぎることで、プラスチック成形体が熱により変形し
たり、あるいはプラスチック成形体の構造が破壊され、
金属被膜により期待するシールド特性が得られなかった
りするので、長時間にわたるプラズマ処理は好ましくな
い。
It is sufficient that the plasma treatment time is 1 minute to 10 minutes for exposure to Ar gas plasma and 30 seconds to 5 minutes for exposure to O 2 gas plasma. If the plasma processing is performed for a longer time than this, the characteristics cannot be improved. On the contrary, if the temperature of the plastic molded body rises too much, the plastic molded body is deformed by heat or the structure of the plastic molded body is destroyed,
Plasma treatment over a long period of time is not preferable because the expected shielding properties cannot be obtained due to the metal coating.

【0018】前記成膜処理の第1層被膜には、膜厚が
0.5〜2.0μmの導電性の高いCuが望ましい。C
uの第1層被膜の膜厚は電磁シールド特性に影響し、
0.5μm以上の膜厚が必要で、厚くなるほど電磁シー
ルド特性は高くなるが、2.0μmの膜厚で得られる電
磁シールド特性で実用上は十分であり、2.0μmを超
えると生産性が劣り、また経済的にも不利である。
The first layer film in the film forming process is desirably made of highly conductive Cu having a thickness of 0.5 to 2.0 μm. C
The thickness of the first layer coating of u affects the electromagnetic shielding properties,
A film thickness of 0.5 μm or more is required, and as the thickness increases, the electromagnetic shielding characteristics become higher. However, the electromagnetic shielding characteristics obtained with a film thickness of 2.0 μm are practically sufficient. Inferior and economically disadvantageous.

【0019】Cuの第1層被膜だけでは、耐候性や耐食
性、機械的特性の面で不十分である。そこで、Cuに比
べ、耐食性に優れたNiを第2層被膜として0.2〜
1.0μmの膜厚で成膜する。第2層被膜が0.2μm
より薄いと、ピンホールが多数生じるため、十分な耐食
性が得られない。また、1.0μmを超えると、金属被
膜中の内部応力によりクラックや剥離が生じるので好ま
しくない。
The first layer coating of Cu alone is insufficient in terms of weather resistance, corrosion resistance and mechanical properties. Therefore, Ni, which is more excellent in corrosion resistance than Cu, is used as the second layer coating in an amount of 0.2 to 0.2.
The film is formed with a thickness of 1.0 μm. 0.2 μm second layer coating
If the thickness is smaller, a large number of pinholes are generated, so that sufficient corrosion resistance cannot be obtained. On the other hand, if the thickness exceeds 1.0 μm, cracks and peeling occur due to internal stress in the metal film, which is not preferable.

【0020】上記第1層被膜および第2層被膜は、真空
蒸着法、イオンプレーティング法、スパッタ法などの真
空工法で成膜する。これらの真空工法で作製された金属
被膜は、湿式メッキ法などにより作製された金属被膜に
比べ高純度であるので、薄い金属被膜でも十分な電磁シ
ールド効果が得られる。また、成膜処理を真空工法で行
うので、前処理として行うプラズマ処理に連続してで
き、プラズマ処理後のプラスチック成形体の表面が、大
気に曝され、汚染されることがないので、プラスチック
成形体と金属被膜との高い密着力を得ることができる。
The first layer coating and the second layer coating are formed by a vacuum method such as a vacuum deposition method, an ion plating method, and a sputtering method. Since the metal films produced by these vacuum methods have higher purity than metal films produced by a wet plating method or the like, a sufficient electromagnetic shielding effect can be obtained even with a thin metal film. In addition, since the film forming process is performed by a vacuum method, the process can be performed continuously with the plasma process performed as a pre-process, and the surface of the plastic molded body after the plasma process is not exposed to the atmosphere and is not contaminated. High adhesion between the body and the metal coating can be obtained.

【0021】[0021]

【実施例】以下に実施例を示し、詳しくこの発明につい
て説明する。
The present invention will be described in detail below with reference to examples.

【0022】(実施例1)□150mm×3mmのポリ
プロピレンの基板をエタノールで拭き、電子ビーム方式
のイオンプレーティング装置(神港精機製AIF−85
0SB)内に設置し、真空度2×10-5torrまで排
気した。その後、Arガスを0.03torrまで導入
し、対向電極に−800Vを印加したグロー放電中に、
基板表面を10分間曝した。引き続き、O2 ガスを0.
02torrまで導入し、対向電極に−1000Vを印
加したグロー放電中に、基板表面を5分間曝した。次
に、ペレット状のCuを電子ビームで溶解、蒸発させ、
5分間成膜した。続いて、ハースを回転させて、Niの
インゴットを電子ビームで溶解、蒸発させ、12分間成
膜した。得られた金属被膜の膜厚を蛍光X線にて測定し
たところ、Cuの第1層被膜が1.2μm、Niの第2
層被膜が0.3μmであった。
Example 1 A 150 mm × 3 mm polypropylene substrate was wiped with ethanol, and an electron beam type ion plating apparatus (AIF-85 manufactured by Shinko Seiki Co., Ltd.) was used.
0SB) and evacuated to a degree of vacuum of 2 × 10 −5 torr. Thereafter, Ar gas was introduced to 0.03 torr, and during glow discharge in which -800 V was applied to the counter electrode,
The substrate surface was exposed for 10 minutes. Subsequently, O 2 gas was added to 0.
The substrate surface was exposed for 5 minutes during glow discharge in which the voltage was introduced up to 02 torr and -1000 V was applied to the counter electrode. Next, Cu in the form of a pellet is dissolved and evaporated by an electron beam,
The film was formed for 5 minutes. Subsequently, the hearth was rotated to melt and evaporate the Ni ingot with an electron beam, thereby forming a film for 12 minutes. When the film thickness of the obtained metal film was measured by X-ray fluorescence, the first layer film of Cu was 1.2 μm and the second layer of Ni was
The layer coating was 0.3 μm.

【0023】得られた金属被膜の評価結果を表1にまと
める。
Table 1 summarizes the evaluation results of the obtained metal coatings.

【0024】[0024]

【表1】 (実施例2)ABS樹脂からなる基板を、Arガスのプ
ラズマ中に1分間曝し、続いてO2ガスのプラズマ中に
1分間曝した以外は、実施例1同様のプラズマ処理およ
び成膜処理を行った。得られた金属被膜の膜厚を蛍光X
線にて測定したところ、Cuの第1層被膜が1.1μ
m、Niの第2層被膜が0.32μmであった。
[Table 1] (Example 2) The same plasma processing and film forming processing as in Example 1 were performed except that the substrate made of the ABS resin was exposed to Ar gas plasma for 1 minute, and then exposed to O 2 gas plasma for 1 minute. went. Fluorescent X
Line, the Cu first layer coating was 1.1 μm.
The second layer coating of m and Ni was 0.32 μm.

【0025】得られた金属被膜の評価結果は、表1に示
した実施例1の金属被膜の評価結果と変わらないもので
あった。
The evaluation results of the obtained metal coating were the same as the evaluation results of the metal coating of Example 1 shown in Table 1.

【0026】[0026]

【発明の効果】本発明の電磁防止成形体は、Arガスの
プラズマ中および、O2 ガスのプラズマ中でプラズマ処
理を行った後に、導電性の高いCuの第1層被膜と、耐
食性の高いNiの第2層被膜とからなり、電磁シールド
特性に優れた金属被膜を真空工法で成膜処理する。該プ
ラズマ処理により、プラスチック成形体の表面が改質さ
れるので、金属被膜との密着力を高くでき、耐食性や耐
候性に優れる。
According to the present invention, after performing the plasma treatment in the plasma of Ar gas and the plasma of O 2 gas, the anti-magnetic molded article of the present invention has a first-layer coating of Cu having high conductivity and a high corrosion resistance. A metal coating composed of a second Ni coating and having excellent electromagnetic shielding properties is formed by a vacuum method. Since the surface of the plastic molded body is modified by the plasma treatment, the adhesion to the metal coating can be increased, and the corrosion resistance and weather resistance are excellent.

【0027】また、プラズマ処理および成膜処理が連続
して行えるので、低コストで製造でき、生産性に優れる
という効果も有する。
In addition, since the plasma processing and the film forming processing can be performed continuously, it can be manufactured at low cost and has an effect that the productivity is excellent.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 プラスチック成形体と、該プラスチック
成形体の表面に成膜したCuの第1層被膜と、該第1層
被膜の上に成膜したNiの第2層被膜とからなる電磁防
止成形体であり、前記プラスチック成形体の表面をAr
ガスのプラズマ中に曝し、続いてO2 ガスのプラズマ中
に曝してから、前記第1層被膜および第2層被膜が真空
工法による成膜により形成されたことを特徴とする電磁
防止成形体。
1. An electromagnetic prevention device comprising: a plastic molded body; a first layer coating of Cu formed on the surface of the plastic molded body; and a second layer coating of Ni formed on the first layer coating. A molded article, wherein the surface of the plastic molded article is Ar
An electromagnetically-resistant molded body, characterized in that the first layer coating and the second layer coating are formed by vacuum forming after being exposed to gas plasma and subsequently to O 2 gas plasma.
【請求項2】 前記第1層被膜の膜厚が0.5〜2.0
μmである請求項1に記載の電磁防止成形体。
2. The film thickness of the first layer coating is 0.5 to 2.0.
The molded article according to claim 1, which has a thickness of μm.
【請求項3】 前記第2層被膜の膜厚が0.2〜1.0
μmである請求項1または請求項2に記載の電磁防止成
形体。
3. The film thickness of the second layer coating is 0.2 to 1.0.
The electromagnetically molded article according to claim 1 or 2, which has a diameter of µm.
JP21225798A 1998-07-28 1998-07-28 Electromagnetic preventing molding Pending JP2000045062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21225798A JP2000045062A (en) 1998-07-28 1998-07-28 Electromagnetic preventing molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21225798A JP2000045062A (en) 1998-07-28 1998-07-28 Electromagnetic preventing molding

Publications (1)

Publication Number Publication Date
JP2000045062A true JP2000045062A (en) 2000-02-15

Family

ID=16619588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21225798A Pending JP2000045062A (en) 1998-07-28 1998-07-28 Electromagnetic preventing molding

Country Status (1)

Country Link
JP (1) JP2000045062A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051886A (en) * 2005-08-16 2007-03-01 Fujifilm Corp Substrate for sensor
CN109666896A (en) * 2019-02-02 2019-04-23 江苏新思达电子有限公司 A kind of electromagnetism radiation protective layer EMI technique of the vacuum plating NI on plastic cement
CN109811315A (en) * 2019-02-02 2019-05-28 江苏新思达电子有限公司 A kind of technique of the enhancing surface roughness of the vacuum plating NI on hard disk

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051886A (en) * 2005-08-16 2007-03-01 Fujifilm Corp Substrate for sensor
CN109666896A (en) * 2019-02-02 2019-04-23 江苏新思达电子有限公司 A kind of electromagnetism radiation protective layer EMI technique of the vacuum plating NI on plastic cement
CN109811315A (en) * 2019-02-02 2019-05-28 江苏新思达电子有限公司 A kind of technique of the enhancing surface roughness of the vacuum plating NI on hard disk

Similar Documents

Publication Publication Date Title
US6066826A (en) Apparatus for plasma treatment of moving webs
US6284329B1 (en) Method of forming adherent metal components on a polyimide substrate
US20060191783A1 (en) Method and apparatus for forming adherent metal film on a polymer substrate
US6703610B2 (en) Skimmer for mass spectrometry
US4711822A (en) Metal core printed circuit boards
JPH0770345A (en) Electromagnetic shielded plastic molding
ATE347735T1 (en) DEVICE AND METHOD FOR COATING SUBSTRATES IN A VACUUM
US20040194988A1 (en) EMI-shielding assembly and method for making same
JP2000045062A (en) Electromagnetic preventing molding
Kupfer et al. Ecologically important metallization processes for high-performance polymers
AU750205B2 (en) Plasma polymerization on surface of material
US6809850B2 (en) Electrode plate for color display unit and production method therefor
JP3775273B2 (en) Electromagnetic shielding film
JP4138971B2 (en) Surface treatment method for plastic substrate and coated plastic article
JP2001019784A (en) Electromagnetic shielding plastic material and its production
JPH1088317A (en) Electromagnetic wave preventive molding and its production
JPH10102240A (en) Electromagenetic preventing formed body and its production
JP2561992B2 (en) Electromagnetic wave shield plastic molding
JPS5928568A (en) Dry plating method
JPH10110258A (en) Electromagnetic preventing molded body and its production
JP2561993B2 (en) Electromagnetic wave shield plastic molding
JP3826756B2 (en) Electromagnetic shielding film
RU2214476C2 (en) Method of forming coat from precious metals and their alloys
JP2001135979A (en) Electromagnetic wave preventing plastic material and method of manufacturing the same
JP2817891B2 (en) Manufacturing method of electromagnetic wave shielding plastic molded products

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040713