JP2000044210A - Crucible for calcination of silicon nitride powder - Google Patents

Crucible for calcination of silicon nitride powder

Info

Publication number
JP2000044210A
JP2000044210A JP10215002A JP21500298A JP2000044210A JP 2000044210 A JP2000044210 A JP 2000044210A JP 10215002 A JP10215002 A JP 10215002A JP 21500298 A JP21500298 A JP 21500298A JP 2000044210 A JP2000044210 A JP 2000044210A
Authority
JP
Japan
Prior art keywords
powder
silicon nitride
crucible
grating
nitride powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10215002A
Other languages
Japanese (ja)
Other versions
JP3900695B2 (en
Inventor
Tetsuo Yamada
哲夫 山田
Toshihiro Fujita
俊啓 藤田
Tadayuki Kamiya
忠之 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP21500298A priority Critical patent/JP3900695B2/en
Publication of JP2000044210A publication Critical patent/JP2000044210A/en
Application granted granted Critical
Publication of JP3900695B2 publication Critical patent/JP3900695B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To mass-produce a crystalline powder consisting of isometric granular particles of a uniform grain size and having excellent packing characteristics with good productivity by providing a grating having a specified interval on the inside of a box-type crucible. SOLUTION: On the inside of the crucible a grating having 15 to 80 mm interval is provided. If the interval of the grating is smaller than 15 mm, the packing and discharging of the powder is difficult, which decreases not only the workability but the production efficiency. Moreover, the amt. of impurities mixed from the crucible wall to the calcined powder increases. Therefore, the grating with <15 mm interval is not preferable. If the interval is larger than 80 mm, uniform heating of the powder layer can not be obtd. The thickness of the grating is preferably 4 to 20 mm. If the thickness is smaller than 4 mm, the effect of the grating to absorb the heat generated in the powder layer is not enough obtd. and local heat generation is hardly prevented. If the thickness is larger than 20 mm, the packed amt. of the powder decreases to decrease the production efficiency. An amorphous silicon nitride powder and a nitrogen- contg. silane compd. are packed to the crucible and calcined in a nitrogen-contg. inert gas atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温構造材料とし
て有用な窒化ケイ素質焼結体の製造用原料として好適な
易焼結性の窒化ケイ素粉末を大量に製造するのに用いら
れる焼成用るつぼに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a firing crucible used for producing a large amount of easily sinterable silicon nitride powder suitable as a raw material for producing a silicon nitride sintered body useful as a high-temperature structural material. It is about.

【0002】[0002]

【従来の技術及びその問題点】非晶質窒化ケイ素粉末及
び/又は含窒素シラン化合物を不活性ガス雰囲気下又は
還元性ガス雰囲気下に焼成して、結晶質窒化ケイ素粉末
を製造する方法は、既に知られている。
2. Description of the Related Art A method for producing a crystalline silicon nitride powder by firing an amorphous silicon nitride powder and / or a nitrogen-containing silane compound under an inert gas atmosphere or a reducing gas atmosphere is disclosed in US Pat. Already known.

【0003】ところで、一般的に、非晶質窒化ケイ素粉
末の焼成により得られる結晶質窒化ケイ素粉末には、結
晶化時に針状結晶又は柱状結晶が生成し易く、充填密度
が低いという欠点があり、これを焼結体原料として用い
た場合には、嵩密度の低い成形体しか得られないという
問題点があった。
[0003] In general, crystalline silicon nitride powder obtained by firing amorphous silicon nitride powder has disadvantages that needle-like crystals or columnar crystals are easily formed during crystallization, and the packing density is low. However, when this is used as a raw material for a sintered body, there is a problem that only a compact having a low bulk density can be obtained.

【0004】このような欠点を解消し、微細な粒状結晶
から成る結晶質窒化ケイ素粉末を製造する方法として、
例えば、特公昭61−11886号公報には、ケイ素と
して0.1g/cm3以上の粉体嵩密度を有する含窒素
シラン化合物を、1350〜1550℃の温度範囲全域
における昇温速度を15℃/分以上に制御して1550
℃以上1700℃未満にまで加熱することを特徴とする
窒化ケイ素粉末の製造方法が開示されている。この発明
によれば、針状結晶を含まない粒状結晶のみから成る窒
化ケイ素粉末を製造することができる。しかしながら、
この方法はその実施例からも分かるように、小規模な焼
成実験の結果に基づくものであり、量産規模での粉末焼
成を考えた場合には、解決すべき問題点が残されてい
る。即ち、窒化ケイ素の結晶化の進行すると考えられる
1350℃付近に非晶質窒化ケイ素粉末を大量に加熱す
ると、結晶化熱の発生により粉体層の温度が局部的に著
しく上昇して、昇温速度が数十〜数千℃/分となってし
まうことがあり、そのために、部分的に針状結晶又は柱
状結晶が生成してしまうという問題がある。この問題を
解消する為に、薄い皿状の焼成容器に粉体層の厚みを薄
くして充填することにより、均熱を確保するという手段
があるが、作業性、生産性が悪くて焼成工程のコストア
ップの要因となるという難点がある。
[0004] As a method of overcoming these disadvantages and producing crystalline silicon nitride powder composed of fine granular crystals,
For example, Japanese Patent Publication No. 61-11886 discloses that a nitrogen-containing silane compound having a powder bulk density of 0.1 g / cm 3 or more as silicon is heated at a rate of 15 ° C./° C. over a temperature range of 1350 to 1550 ° C. Control over 1 minute and 1550
There is disclosed a method for producing silicon nitride powder, wherein the method is heated to not less than 1 ° C. and less than 1700 ° C. According to the present invention, it is possible to produce a silicon nitride powder composed of only granular crystals that do not contain needle-like crystals. However,
As can be seen from the examples, this method is based on the results of a small-scale firing experiment, and when powder firing on a mass production scale is considered, there remains a problem to be solved. That is, when a large amount of amorphous silicon nitride powder is heated to around 1350 ° C., where crystallization of silicon nitride is considered to proceed, the temperature of the powder layer locally rises significantly due to generation of crystallization heat, and the temperature rises. The speed may be several tens to several thousand degrees Celsius / minute, which causes a problem that acicular crystals or columnar crystals are partially generated. In order to solve this problem, there is a means to secure a uniform heat by filling the powder layer into a thin dish-shaped baking container with a reduced thickness, but the workability and productivity are poor, and the baking process is difficult. However, there is a drawback that the cost increases.

【0005】[0005]

【発明の目的】本発明の目的は、前記の問題点を解決
し、粒子形状及びサイズの一定した高品質の結晶質窒化
ケイ素粉末を大量に製造するのに適した焼成用るつぼを
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a firing crucible suitable for mass-producing high-quality crystalline silicon nitride powder having a uniform particle shape and size. It is in.

【0006】[0006]

【課題を解決するための手段】本発明は、焼成炉にて非
晶質窒化ケイ素粉末及び/又は含窒素シラン化合物を焼
成して結晶質窒化ケイ素粉末とするのに用いられる箱型
るつぼであって、内部に15〜80mmの間隔で格子を
設けてなることを特徴とする窒化ケイ素粉末焼成用るつ
ぼに関するものである。
The present invention relates to a box-shaped crucible used for firing amorphous silicon nitride powder and / or nitrogen-containing silane compound into a crystalline silicon nitride powder in a firing furnace. Further, the present invention relates to a crucible for firing silicon nitride powder, wherein a lattice is provided at intervals of 15 to 80 mm inside.

【0007】本発明のるつぼは、内部に15〜80mm
の間隔で格子が設けられている。格子の間隔が、15m
mよりも狭いと、粉末の充填、取り出しが難しくて、作
業性が悪いばかりでなく、生産効率も低下する。また、
るつぼ壁面から焼成粉末への不純物混入量が増加するの
で好ましくない。例えば、炭素製るつぼを使用した場合
には、焼成粉末の炭素含有量が増加して、好ましくな
い。また、80mmよりも広くなると、粉体層の均熱を
確保できなくなるので好ましくない。また、格子の厚み
は、4〜20mmが好ましい。厚みが4mmよりも薄い
と粉体層の発熱を格子で吸収する効果が小さく、局所発
熱を防止することが困難になる。また20mmよりも厚
くなると、粉末の充填量が減少して、生産効率が低下す
る。
The crucible of the present invention has a size of 15 to 80 mm inside.
Are provided at intervals of. The grid spacing is 15m
If it is smaller than m, it is difficult to fill and take out the powder, not only the workability is poor, but also the production efficiency is reduced. Also,
This is not preferable because the amount of impurities mixed into the fired powder from the crucible wall surface increases. For example, when a carbon crucible is used, the carbon content of the fired powder increases, which is not preferable. On the other hand, if it is wider than 80 mm, it is not preferable because it is not possible to secure uniform heat of the powder layer. The thickness of the grid is preferably 4 to 20 mm. If the thickness is less than 4 mm, the effect of absorbing the heat of the powder layer by the grid is small, and it becomes difficult to prevent local heat generation. On the other hand, if the thickness is more than 20 mm, the filling amount of the powder decreases, and the production efficiency decreases.

【0008】るつぼの大きさとしては、特に制限はない
が、作業性を考慮して、通常は、底面の各辺及び高さが
それぞれ200〜600mmの範囲のものが好ましい。
なお、高さは均熱の面で600mm以下が好ましい。る
つぼの材質は、黒鉛、炭化ケイ素、窒化ケイ素、窒化ホ
ウ素、アルミナ、ムライト、ジルコニア等を使用するこ
とができる。
The size of the crucible is not particularly limited. However, in consideration of workability, it is usually preferable that each side and the height of the bottom face be in the range of 200 to 600 mm.
The height is preferably 600 mm or less in terms of soaking. As a material of the crucible, graphite, silicon carbide, silicon nitride, boron nitride, alumina, mullite, zirconia, or the like can be used.

【0009】本発明のるつぼで焼成する含窒素シラン化
合物としては、シリコンジイミド、シリコンテトラアミ
ド、シリコンニトロゲンイミド、シリコンクロルイミド
等が用いられる。これらは、公知方法、例えば、四塩化
ケイ素、四臭化ケイ素、四沃化ケイ素等のハロゲン化ケ
イ素とアンモニアとを気相で反応させる方法、液状の前
記ハロゲン化ケイ素と液体アンモニアとを反応させる方
法などによって製造される。また、非晶質窒化ケイ素粉
末としては、公知方法、例えば、前記含窒素シラン化合
物を窒素又はアンモニアガス雰囲気下に600〜120
0℃の範囲の温度で加熱分解する方法、四塩化ケイ素、
四臭化ケイ素、四沃化ケイ素等のハロゲン化ケイ素とア
ンモニアとを高温で反応させる方法などによって製造さ
れたものが用いられる。非晶質窒化ケイ素粉末及び含窒
素シラン化合物の平均粒子径は、通常、0.005〜
0.05μmである。
As the nitrogen-containing silane compound to be fired in the crucible of the present invention, silicon diimide, silicon tetraamide, silicon nitrogenimide, silicon chlorimide and the like are used. These are known methods, for example, a method of reacting silicon halide such as silicon tetrachloride, silicon tetrabromide and silicon tetraiodide with ammonia in the gas phase, and reacting the liquid silicon halide with liquid ammonia. It is manufactured by a method. In addition, as the amorphous silicon nitride powder, a known method, for example, the nitrogen-containing silane compound in a nitrogen or ammonia gas atmosphere 600-120.
Heat decomposition at a temperature in the range of 0 ° C., silicon tetrachloride,
Those produced by a method in which a silicon halide such as silicon tetrabromide or silicon tetraiodide is reacted with ammonia at a high temperature are used. The average particle diameter of the amorphous silicon nitride powder and the nitrogen-containing silane compound is usually 0.005 to
It is 0.05 μm.

【0010】前記の非晶質窒化ケイ素粉末及び/又は含
窒素シラン化合物を本発明のるつぼに充填して、窒素含
有不活性ガス又は窒素含有還元性ガス雰囲気下に焼成す
ることにより結晶質窒化ケイ素粉末が得られる。窒素含
有不活性ガスとしては、窒素又は窒素とアルゴン、ヘリ
ウム等の混合ガスが挙げられる。また、窒素含有還元性
ガスとしては、アンモニア、ヒドラジン等の高温での熱
分解により窒素ガスを放出するもの又は窒素と水素、一
酸化炭素等の混合ガスが挙げられる。
The above-mentioned amorphous silicon nitride powder and / or nitrogen-containing silane compound is filled in a crucible of the present invention and fired in a nitrogen-containing inert gas or nitrogen-containing reducing gas atmosphere to form crystalline silicon nitride. A powder is obtained. Examples of the nitrogen-containing inert gas include nitrogen or a mixed gas of nitrogen, argon, and helium. Examples of the nitrogen-containing reducing gas include ammonia, hydrazine, and the like that release nitrogen gas by thermal decomposition at a high temperature, or a mixed gas of nitrogen, hydrogen, carbon monoxide, and the like.

【0011】前記の焼成に当たっては、昇温過程におい
て、1200〜1400℃の温度範囲全域における昇温
速度を10℃/分以下に制御してゆっくりと昇温するこ
とが好ましい。このような緩速昇温は、非晶質窒化ケイ
素の粒成長による表面エネルギーの減少、結晶核の発生
密度の確保、及び結晶化初期における粒成長の抑制に対
して、有効な手段である。保持温度が1200℃よりも
低温では、このような効果は認められず、逆に、保持温
度が1400℃よりも高温になると、急激な結晶化反応
が進行して、生成する結晶質窒化ケイ素粉末の粉体特性
(粒子形状、粒子径、結晶相など)を制御することが困
難となる。1200〜1400℃の温度範囲全域におけ
る昇温速度は10℃/分以下である。昇温速度が10℃
/分を越えると、1400℃以上に昇温した際に急激な
結晶化が起こり、結晶化熱による温度上昇が最高数百℃
近くにまで達して、所望の微粒結晶より成るα型窒化ケ
イ素粉末が得られなくなる。また、特に1200〜13
00℃における保持時間が過度に長過ぎると、核発生の
若干抑制された状況下で結晶成長が進行するので、生成
する粒状結晶の形状は多面体状のきれいなものになる
が、粒子径は却って大きくなり、比表面積の小さな粉末
となってしまう。
In the calcination, it is preferable that the temperature is raised slowly by controlling the rate of temperature rise in the entire temperature range of 1200 to 1400 ° C. to 10 ° C./min or less in the temperature rising process. Such a slow temperature rise is an effective means for reducing the surface energy due to the grain growth of amorphous silicon nitride, securing the generation density of crystal nuclei, and suppressing the grain growth in the early stage of crystallization. When the holding temperature is lower than 1200 ° C., such an effect is not recognized. Conversely, when the holding temperature is higher than 1400 ° C., a rapid crystallization reaction proceeds, and the crystalline silicon nitride powder produced It is difficult to control the powder characteristics (particle shape, particle diameter, crystal phase, etc.) of the powder. The rate of temperature rise in the entire temperature range of 1200 to 1400 ° C. is 10 ° C./min or less. Heating rate is 10 ℃
When the temperature exceeds 1 / min, rapid crystallization occurs when the temperature is raised to 1400 ° C. or higher, and the temperature rise due to heat of crystallization is several hundred ° C. at the maximum.
As soon as the α-type silicon nitride powder comprising the desired fine crystals is obtained, it becomes impossible to obtain. In addition, in particular, 1200 to 13
If the holding time at 00 ° C. is too long, the crystal growth proceeds under the condition that nucleation is slightly suppressed, so that the shape of the generated granular crystal becomes a polyhedral shape, but the particle size is rather large. The powder having a small specific surface area.

【0012】被焼成物を前記の加熱条件で昇温し、その
結晶化度を40%以上にした後は、より高温まで、例え
ば1700℃まで昇温しても良く、その昇温速度にも制
約は無い。最終的な焼成温度が1500℃の場合には、
同温度に15〜60分間保持して、結晶化を完了させる
ことが望ましい。また、最終的な焼成温度が1700℃
を越えると、粗大結晶が成長するばかりでなく、生成し
た結晶質窒化ケイ素粉末の分解が始まるので好ましくな
い。
After the temperature of the object to be fired is increased under the above-mentioned heating conditions to increase the crystallinity to 40% or more, the temperature may be increased to a higher temperature, for example, to 1700 ° C. There are no restrictions. If the final firing temperature is 1500 ° C,
It is desirable to maintain the same temperature for 15 to 60 minutes to complete the crystallization. Also, the final firing temperature is 1700 ° C.
If it exceeds, not only coarse crystals grow but also decomposition of the produced crystalline silicon nitride powder starts, which is not preferable.

【0013】非晶質窒化ケイ素粉末及び/又は含窒素シ
ラン化合物の加熱に使用される焼成炉については、例え
ば高周波誘導加熱方式又は抵抗加熱方式によるバッチ焼
成炉、プッシャー炉等を使用することができる。
As the firing furnace used for heating the amorphous silicon nitride powder and / or the nitrogen-containing silane compound, for example, a batch firing furnace using a high-frequency induction heating method or a resistance heating method, a pusher furnace, or the like can be used. .

【0014】[0014]

【実施例】以下に本発明の実施例を比較例と共に挙げ、
本発明を更に詳しく説明する。なお、結晶質窒化ケイ素
粉末の酸素含有量はLECO法により測定した。結晶化
度は、窯業協会誌第93巻、第4号(1985年)の3
94〜397頁に記載の加水分解試験により、α型結晶
含有率は、セラミック・ブレティン第56巻、第9号
(1977年)の777〜780頁に記載のX線回折法
に従って算出し、比表面積は窒素ガス吸着によるBET
1点法で測定した。走査型電子顕微鏡により、粉末の粒
子形態を観察すると共に、画像解析により、アスペクト
比 2.5以上の粒子の存在割合を面積分率で求めた。
また、JIS R−1628 に記載の定重量法により、
タップ密度を測定した。プレス成形密度の測定には直径
13mmの打錠成形用金型を用いた。粉末1gを金型に
充填し、2ton/cm2の成形圧力を印加して、円板
状のペレットを作製した。この成形体の外形寸法(直径
と厚さ)と重量を測定し、嵩密度を算出した。さらに、
レーザー散乱回折法により、粉末の粒度分布を測定し、
メジアン径、2μm以上の粒子の重量割合および0.1
5μm以下の粒子の重量割合を求めた。
EXAMPLES Examples of the present invention will be described below together with comparative examples.
The present invention will be described in more detail. The oxygen content of the crystalline silicon nitride powder was measured by the LECO method. The degree of crystallinity was determined by the ceramic industry association, Vol. 93, No. 4, (1985), 3
According to the hydrolysis test described on pages 94 to 397, the α-type crystal content was calculated according to the X-ray diffraction method described on pages 777 to 780 of Ceramic Bulletin Vol. 56, No. 9, (1977). Surface area is BET by nitrogen gas adsorption
It was measured by the one-point method. The particle morphology of the powder was observed with a scanning electron microscope, and the presence ratio of particles having an aspect ratio of 2.5 or more was determined by area fraction by image analysis.
Further, according to the constant weight method described in JIS R-1628,
The tap density was measured. For the measurement of the press molding density, a tableting mold having a diameter of 13 mm was used. A mold was filled with 1 g of the powder, and a molding pressure of 2 ton / cm 2 was applied to produce a disc-shaped pellet. The external dimensions (diameter and thickness) and weight of the molded body were measured, and the bulk density was calculated. further,
By laser scattering diffraction method, measure the particle size distribution of the powder,
Median diameter, weight ratio of particles of 2 μm or more and 0.1
The weight ratio of particles having a size of 5 μm or less was determined.

【0015】実施例1 四塩化ケイ素と液体アンモニアとを反応させて得られた
シリコンジイミドを1000℃で加熱分解して、比表面
積320m2/g、酸素含有量0.8wt%の非晶質窒
化ケイ素粉末を得た。次いで、得られた非晶質窒化ケイ
素粉末を振動ミルにて摩砕処理した後、図1に示すカー
ボン製るつぼ(内寸:W380mm×D380mm×H
380mm、格子7個、格子間隔40.5mm、格子の
厚み8mm)に非晶質窒化ケイ素粉末5.5kgを充填
し、バッチ式電気炉にセットした。
EXAMPLE 1 Silicon diimide obtained by reacting silicon tetrachloride with liquid ammonia was thermally decomposed at 1000 ° C. to obtain an amorphous nitride having a specific surface area of 320 m 2 / g and an oxygen content of 0.8 wt%. A silicon powder was obtained. Next, after the obtained amorphous silicon nitride powder was ground by a vibration mill, a carbon crucible shown in FIG. 1 (inner size: W380 mm × D380 mm × H)
5.5 kg of amorphous silicon nitride powder was filled into a 380 mm, 7 grids, 40.5 mm grid spacing, and 8 mm grid thickness) and set in a batch type electric furnace.

【0016】次に、電気炉内を0.1torr以下に真
空脱気後、窒素ガスを導入し、窒素ガス流通下で加熱を
開始した。室温から1200℃まで2時間で昇温し、同
温度に1時間保持した後、100℃/hrの昇温速度で
1400℃まで加熱した。更に250℃/hrの速度で
1500℃まで昇温して、同温度に1時間保持した後、
炉内放冷し、結晶質窒化ケイ素粉末5.2kgを得た。
得られた窒化ケイ素粉末の結晶化度、α相含有率、粒子
形状、比表面積、タップ密度、プレス成形密度、粒度分
布などの特性値を表2に示す。また、得られた粉末の走
査型電子顕微鏡写真を図2に示す
Next, the inside of the electric furnace was evacuated to a vacuum of 0.1 torr or less, nitrogen gas was introduced, and heating was started under a flow of nitrogen gas. The temperature was raised from room temperature to 1200 ° C. in 2 hours, kept at the same temperature for 1 hour, and then heated to 1400 ° C. at a rate of 100 ° C./hr. Further, the temperature was raised to 1500 ° C. at a rate of 250 ° C./hr and maintained at the same temperature for 1 hour.
The furnace was allowed to cool to obtain 5.2 kg of crystalline silicon nitride powder.
Table 2 shows characteristic values of the obtained silicon nitride powder such as crystallinity, α phase content, particle shape, specific surface area, tap density, press molding density, and particle size distribution. FIG. 2 shows a scanning electron micrograph of the obtained powder.

【0017】実施例2〜5 実施例1で使用したものと同じ非晶質窒化ケイ素粉末
を、振動ミルにて摩砕処理した後、表1に示す格子間隔
を有するカーボン製るつぼに充填して、バッチ式電気炉
で焼成した。得られた窒化ケイ素粉末の結晶化度、α相
含有率、粒子形状、比表面積、タップ密度、プレス成形
密度、粒度分布などの特性値を表2に示す。
Examples 2 to 5 The same amorphous silicon nitride powder as used in Example 1 was ground by a vibrating mill and filled in a carbon crucible having a lattice spacing shown in Table 1. And fired in a batch type electric furnace. Table 2 shows characteristic values of the obtained silicon nitride powder such as crystallinity, α phase content, particle shape, specific surface area, tap density, press molding density, and particle size distribution.

【0018】比較例1 実施例1で使用したものと同じ非晶質窒化ケイ素粉末
6.4kgを、振動ミルにて摩砕処理した後、カーボン
製るつぼ(内寸:W380mm×D380mm×H38
0mm、格子なし)に充填し、バッチ式電気炉にセット
した。
Comparative Example 1 6.4 kg of the same amorphous silicon nitride powder as used in Example 1 was ground by a vibration mill, and then crucible made of carbon (inner size: W380 mm × D380 mm × H38).
(0 mm, no grid)) and set in a batch type electric furnace.

【0019】次いで、実施例1と同様にして、結晶質窒
化ケイ素粉末6.1kgを得た。得られた窒化ケイ素粉
末の結晶化度、α相含有率、粒子形状、比表面積、タッ
プ密度、プレス成形密度、粒度分布などの特性値を表2
に示す。また、得られた粉末の走査型電子顕微鏡写真を
図3に示す。
Then, 6.1 kg of crystalline silicon nitride powder was obtained in the same manner as in Example 1. Table 2 shows characteristic values of the obtained silicon nitride powder, such as crystallinity, α phase content, particle shape, specific surface area, tap density, press molding density, and particle size distribution.
Shown in FIG. 3 shows a scanning electron micrograph of the obtained powder.

【0020】比較例2、3 実施例1で使用したものと同じ非晶質窒化ケイ素粉末
を、振動ミルにて摩砕処理した後、表1に示す格子間隔
を有するカーボン製るつぼに充填して、バッチ式電気炉
にセットした。
Comparative Examples 2 and 3 The same amorphous silicon nitride powder as used in Example 1 was ground by a vibrating mill and then filled in a carbon crucible having a lattice spacing shown in Table 1. Was set in a batch type electric furnace.

【0021】次いで、実施例1と同様に焼成を行い、比
較例2では結晶質窒化ケイ素粉末3.3kgを、比較例
3では結晶質窒化ケイ素粉末5.4kgを得た。比較例
2の場合には、粉末の充填、取り出しの作業性が悪いば
かりでなく、るつぼ1個当たりの粉末充填量が大幅に減
少して、生産効率が悪化し、所望の量の結晶質窒化ケイ
素粉末を取得することができなかった。得られた窒化ケ
イ素粉末の結晶化度、α相含有率、粒子形状、比表面
積、タップ密度、プレス成形密度、粒度分布などの特性
値を表2に示す。
Next, firing was performed in the same manner as in Example 1. In Comparative Example 2, 3.3 kg of crystalline silicon nitride powder was obtained, and in Comparative Example 3, 5.4 kg of crystalline silicon nitride powder was obtained. In the case of Comparative Example 2, not only the workability of filling and unloading the powder was poor, but also the powder filling amount per crucible was greatly reduced, the production efficiency was deteriorated, and a desired amount of crystalline nitride was obtained. Silicon powder could not be obtained. Table 2 shows characteristic values of the obtained silicon nitride powder such as crystallinity, α phase content, particle shape, specific surface area, tap density, press molding density, and particle size distribution.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】本発明のるつぼを用いることにより、粒
径の揃った等軸粒状粒子からなり、充填特性に優れた結
晶質窒化ケイ素粉末を生産性良く大量に製造することが
できる。
By using the crucible of the present invention, a large amount of crystalline silicon nitride powder composed of equiaxed granular particles having a uniform particle size and having excellent filling characteristics can be produced with high productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は、本発明のるつぼの一例を示す概略図
である。
FIG. 1 is a schematic view showing an example of the crucible of the present invention.

【図2】 図2は、本発明の実施例1で得られた結晶質
窒化ケイ素粉末の粒子構造を表す図面に代える走査型電
子顕微鏡写真である。
FIG. 2 is a scanning electron microscope photograph instead of a drawing showing the particle structure of the crystalline silicon nitride powder obtained in Example 1 of the present invention.

【図3】 図3は、本発明の比較例1で得られた結晶質
窒化ケイ素粉末の粒子構造を表す図面に代える走査型電
子顕微鏡写真である。
FIG. 3 is a scanning electron microscope photograph instead of a drawing showing the particle structure of the crystalline silicon nitride powder obtained in Comparative Example 1 of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 焼成炉にて非晶質窒化ケイ素粉末及び/
又は含窒素シラン化合物を焼成して結晶質窒化ケイ素粉
末とするのに用いられる箱型るつぼであって、内部に1
5〜80mmの間隔で格子を設けてなることを特徴とす
る窒化ケイ素粉末焼成用るつぼ。
An amorphous silicon nitride powder and / or an amorphous silicon nitride powder in a firing furnace.
Alternatively, a box-shaped crucible used for firing a nitrogen-containing silane compound into crystalline silicon nitride powder, wherein 1
A crucible for firing silicon nitride powder, wherein a lattice is provided at intervals of 5 to 80 mm.
【請求項2】 格子の厚みが4〜20mmである請求項
1記載の窒化ケイ素粉末焼成用るつぼ。
2. The crucible for firing silicon nitride powder according to claim 1, wherein the thickness of the lattice is 4 to 20 mm.
JP21500298A 1998-07-30 1998-07-30 Crucible for firing silicon nitride powder Expired - Lifetime JP3900695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21500298A JP3900695B2 (en) 1998-07-30 1998-07-30 Crucible for firing silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21500298A JP3900695B2 (en) 1998-07-30 1998-07-30 Crucible for firing silicon nitride powder

Publications (2)

Publication Number Publication Date
JP2000044210A true JP2000044210A (en) 2000-02-15
JP3900695B2 JP3900695B2 (en) 2007-04-04

Family

ID=16665088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21500298A Expired - Lifetime JP3900695B2 (en) 1998-07-30 1998-07-30 Crucible for firing silicon nitride powder

Country Status (1)

Country Link
JP (1) JP3900695B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236717A (en) * 2009-03-30 2010-10-21 Ube Ind Ltd Crucible and method for manufacturing the same, and method for manufacturing silicon nitride powder using the same
US10399854B2 (en) 2014-06-16 2019-09-03 Ube Industries, Ltd. Silicon nitride powder, silicon nitride sintered body and circuit substrate, and production method for said silicon nitride powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236717A (en) * 2009-03-30 2010-10-21 Ube Ind Ltd Crucible and method for manufacturing the same, and method for manufacturing silicon nitride powder using the same
US10399854B2 (en) 2014-06-16 2019-09-03 Ube Industries, Ltd. Silicon nitride powder, silicon nitride sintered body and circuit substrate, and production method for said silicon nitride powder

Also Published As

Publication number Publication date
JP3900695B2 (en) 2007-04-04

Similar Documents

Publication Publication Date Title
JP5706671B2 (en) Silicon carbide powder for producing silicon carbide single crystal by sublimation recrystallization method and method for producing the same
JP6292306B2 (en) Silicon nitride powder, silicon nitride sintered body and circuit board, and method for producing silicon nitride powder
JP5374381B2 (en) Aluminum nitride single crystal polygonal column and method for producing plate-like aluminum nitride single crystal using the same
US4517168A (en) Grinding amorphous silicon nitride powder prior to heating to produce crystalline silicon nitride powder
JP2011102205A (en) METHOD FOR CONTROLLING PARTICLE SIZE OF alpha-SILICON CARBIDE POWDER AND SILICON CARBIDE SINGLE CRYSTAL
JP3900695B2 (en) Crucible for firing silicon nitride powder
JP3900696B2 (en) Crucible for firing silicon nitride powder
JP6354367B2 (en) Silicon nitride powder for release agent of polycrystalline silicon ingot casting mold and manufacturing method thereof, slurry containing silicon nitride powder for release agent of casting mold of polycrystalline silicon ingot, and casting mold for polycrystalline silicon ingot and manufacturing method thereof
JPS6111886B2 (en)
JPH0940406A (en) Silicon nitride powder and its production
JP2578022B2 (en) Method for producing crystalline silicon nitride powder
JPS632885B2 (en)
JP5407999B2 (en) Method for producing crystalline silicon nitride powder
JP2696733B2 (en) Method for producing crystalline silicon nitride powder
JPH082907A (en) Powdery silicon nitride
JPH0455142B2 (en)
JPS61168567A (en) Manufacture of silicon carbide sintered body
JP4524527B2 (en) Method for producing Langasite single crystal
JP2792949B2 (en) Aluminum nitride powder and method for producing the same
JPH05117035A (en) Production of crystalline silicon nitride powder
JPH03295801A (en) Production of crystalline silicon nitride powder
JP2747462B2 (en) Method for producing crystalline silicon nitride powder
JPH02199065A (en) Sintered silicon carbide having high thermal conductivity and production thereof
JPH10316469A (en) Powdery magnesium silicide nitride and its production
JPS6227004B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term