JP2000039231A - Heat transfer pipe and absorption refrigerating machine using the same - Google Patents

Heat transfer pipe and absorption refrigerating machine using the same

Info

Publication number
JP2000039231A
JP2000039231A JP10206645A JP20664598A JP2000039231A JP 2000039231 A JP2000039231 A JP 2000039231A JP 10206645 A JP10206645 A JP 10206645A JP 20664598 A JP20664598 A JP 20664598A JP 2000039231 A JP2000039231 A JP 2000039231A
Authority
JP
Japan
Prior art keywords
heat transfer
fins
transfer tube
tube
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10206645A
Other languages
Japanese (ja)
Inventor
Masahiro Furukawa
雅裕 古川
Yukioki Yamazaki
志奥 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10206645A priority Critical patent/JP2000039231A/en
Publication of JP2000039231A publication Critical patent/JP2000039231A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve heat-exchanging property between absorption liquid dropped in the outside of a pipe and cooling water passing through the inside of the pipe in an absorber. SOLUTION: A heat transfer pipe 1 provided horizontally inside an absorber comprises a cylindrical pipe part 2 through which cooling water passes and plural fins 3 provided in rows in an axial direction of an outer circumferential surface of the cylindrical pipe part 2, wherein the fins 3 are formed into states where a part of each of the fins 3 is eliminated in a circumferential direction of the cylindrical pipe part 2, and the eliminated parts, the parts 4 of the circumferential direction of the cylindrical pipe parts 2 where the fins 3 are not formed (hereinafter the parts 4 are referred to as circumferential parts 4 without fins), are provided in rows so as to be arranged linearly. The heat transfer pipe 1 may be provided with plural fins 3 in the circumferential direction of the cylindrical pipe part 2 in rows apart from each other so that the circumferential parts 4 without fins of the cylindrical pipe part 2 are dispersed into plural places. The fins 3 are limited to be 1.5 mm or thinner in thickness and 2-5 mm in height, wherein the fins 3 are provided in rows in the outer surface and the axial direction of the cylindrical pipe part 2 and have distances of 5-15 mm each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸収式冷凍機とそ
の吸収器に組み込まれる伝熱管に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerator and a heat transfer tube incorporated in the absorber.

【0002】[0002]

【従来の技術】吸収式冷凍機の吸収器においては、吸収
液を滴下などし、この滴下した吸収液に蒸発器で蒸発し
て入ってきた冷媒を吸収させている。そして、吸収液に
よる冷媒の吸収反応は発熱反応であり、吸収液の温度が
低いほど冷媒蒸気は吸収液に吸収され易いので、内部に
冷却水が通る伝熱管を吸収器に設置し、この伝熱管の上
に吸収液を滴下するように構成されている。
2. Description of the Related Art In an absorber of an absorption refrigerator, an absorbing liquid is dropped and the refrigerant evaporated by the evaporator is absorbed into the dropped absorbing liquid. The absorption reaction of the refrigerant by the absorbing liquid is an exothermic reaction, and the lower the temperature of the absorbing liquid, the easier the refrigerant vapor is to be absorbed by the absorbing liquid. It is configured to drop the absorbing liquid onto the heat tube.

【0003】そして、上記機能を発揮する吸収器の伝熱
管1Xにおいては、例えば図17に示したように円管部
2の外表面には円板状のフィン3Xを円管部2の軸方向
に列設して伝熱面積を増加させ、円管部2の内側に通す
冷却水と、管外に滴下などする吸収液との間で良好な熱
交換が行えるようにしている。
[0003] In the heat transfer tube 1X of the absorber exhibiting the above function, for example, as shown in Fig. 17, a disk-shaped fin 3X is provided on the outer surface of the circular tube portion 2 in the axial direction of the circular tube portion 2. The heat transfer area is increased so that good heat exchange can be performed between the cooling water passing through the inside of the circular tube portion 2 and the absorbing liquid dripping outside the tube.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記構成の伝
熱管1Xでは、吸収器において水平に並設した複数の伝
熱管1Xの最上位の伝熱管1Xに吸収液が滴下などされ
ると、吸収液はその伝熱管1Xの主にフィン3Xの下端
部に集まり、そこからさらに下方の伝熱管1Xの上に流
れ落ちて行くが、上下に位置する伝熱管1X同士のフィ
ン3Xの位置を一致させたとしても、上から流れ落ちて
きた吸収液が下の伝熱管1Xのフィン3Xの両側に均等
に分配されることは稀であり、しかも実際にはフィン3
Xの位置は例えば図18に示したように左右に多少位置
ずれしていることの方が多く、このような配置のときに
は上方の伝熱管1Xの例えば左側から数えてn番目のフ
ィン3Xnから滴下した吸収液は、下方の伝熱管1Xの
同じく左側から数えてn番目のフィン3Xnの右側の円
管部2の上に滴下される。
However, in the heat transfer tube 1X having the above-described structure, if the absorbing liquid is dropped on the uppermost heat transfer tube 1X of the plurality of heat transfer tubes 1X arranged horizontally in the absorber, the absorption is reduced. The liquid mainly gathers at the lower end of the fins 3X of the heat transfer tubes 1X and flows down from there onto the heat transfer tubes 1X further downward, but the positions of the fins 3X of the heat transfer tubes 1X positioned above and below are matched. However, it is rare that the absorbent flowing down from above is evenly distributed to both sides of the fins 3X of the lower heat transfer tube 1X.
For example, the position of X is slightly shifted left and right as shown in FIG. 18, for example. In such an arrangement, the position of X drops from the n-th fin 3Xn counted from, for example, the left side of the upper heat transfer tube 1X. The absorbed liquid dropped onto the right circular tube portion 2 of the n-th fin 3Xn counted from the left side of the lower heat transfer tube 1X.

【0005】そして、下方の伝熱管1Xのフィン3Xn
の右側の円管部2の上に滴下した吸収液は、フィン3X
nがあるため円管部2を左方向には拡がることができ
ず、右方向にだけ拡がるが、フィン3Xnの右側のフィ
ン3Xn+1までは距離が長いためそこまでは拡がるこ
とはなく、したがって下方の伝熱管1Xにおいては各フ
ィン3Xの左側の面とその近傍の円管部2とが吸収液に
よって濡れることがないので、表面に滴下などする吸収
液と円管部2の内側に通す冷却水との熱交換特性が期待
したほど改善されないと云った問題点があり、これが解
決すべき課題であった。
The fins 3Xn of the lower heat transfer tube 1X
Absorbing liquid dropped on the circular pipe part 2 on the right side of
Because of the presence of n, the tubular portion 2 cannot be expanded to the left, but only to the right. However, since the distance to the fin 3Xn + 1 on the right side of the fin 3Xn is long, it does not expand there, so In the heat transfer tube 1X, since the left side surface of each fin 3X and the circular tube portion 2 in the vicinity thereof are not wetted by the absorbing liquid, the absorbing liquid dropped on the surface and the cooling water passing through the inside of the circular tube portion 2 However, there is a problem that the heat exchange characteristics of the above are not improved as expected, and this is a problem to be solved.

【0006】[0006]

【課題を解決するための手段】本発明は上記した従来技
術の課題を解決するためになされたものであって、管外
の軸方向に複数のフィンが列設された伝熱管において、
フィンを管の周方向の一部を除く部分に形成するように
した第1の構成の伝熱管と、厚み1.5mm以下、高さ
2〜5mmのフィンを軸方向に5〜15mmの間隔に列
設するようにした第2の構成の伝熱管と、2〜10個の
フィンを管の周方向に列設し、フィンが形成されていな
い部分を管の周方向に2〜10箇所に分散して配置する
ようにした第3の構成の伝熱管と、フィンに貫通する穴
を設けるようにした第4の構成の伝熱管と、フィンに凹
みを設けるようにした第5の構成の伝熱管と、フィンを
波板状に形成するようにした第6の構成の伝熱管と、フ
ィンを先端側ほど広幅に形成するようにした第7の構成
の伝熱管と、冷却水が内部に通される吸収器の伝熱管と
して、前記何れかの伝熱管が、フィンが形成されていな
い周部分を上にして組み込まれた吸収式冷凍機とを提供
するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and is directed to a heat transfer tube having a plurality of fins arranged in an axial direction outside the tube.
The heat transfer tube of the first configuration, in which the fins are formed in a portion except for a part in the circumferential direction of the tube, and the fins having a thickness of 1.5 mm or less and a height of 2 to 5 mm are arranged at intervals of 5 to 15 mm in the axial direction. A heat transfer tube of the second configuration, which is arranged in a row, and 2 to 10 fins are arranged in a line in the circumferential direction of the tube, and a portion where no fin is formed is dispersed in 2 to 10 places in the circumferential direction of the tube. A heat transfer tube having a third configuration arranged so as to be disposed, a heat transfer tube having a fourth configuration having a hole penetrating through the fin, and a heat transfer tube having a fifth configuration having a recess formed in the fin A heat transfer tube having a sixth configuration in which the fins are formed in a corrugated plate shape; a heat transfer tube having a seventh configuration in which the fins are formed to be wider toward the tip end; Any of the heat transfer tubes described above, with the peripheral portion where no fins are formed facing upward, There is provided a built-in absorption chillers.

【0007】[0007]

【発明の実施の形態】本発明の実施形態を、図1〜図1
6に基づいて説明する。図1は吸収式冷凍機の構成を示
す概略図であり、吸収液に臭化リチウムなどの塩基の水
溶液、冷媒に水を用いている。図中51はバーナなどか
らなる加熱器、52はこの加熱器51を備えた高温再生
器、53は低温再生器、54は低温再生器53に並設さ
れた凝縮器、55は吸収器、56は吸収器55に並設さ
れた蒸発器であり、高温再生器52と吸収器55とは吸
収液ポンプ57を途中に備えた吸収液管61を介して接
続され、高温再生器52と凝縮器54とは冷媒管62を
介して接続され、高温再生器52と低温再生器53とは
吸収液管63を介して接続され、この吸収液管63の途
中には高温熱交換器59が備えられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to FIGS.
6 will be described. FIG. 1 is a schematic diagram showing the configuration of an absorption refrigerator, in which an aqueous solution of a base such as lithium bromide is used as an absorbing liquid and water is used as a refrigerant. In the figure, 51 is a heater composed of a burner or the like, 52 is a high-temperature regenerator provided with the heater 51, 53 is a low-temperature regenerator, 54 is a condenser arranged in parallel with the low-temperature regenerator 53, 55 is an absorber, 56 Is an evaporator arranged in parallel with the absorber 55. The high-temperature regenerator 52 and the absorber 55 are connected via an absorption liquid pipe 61 provided with an absorption liquid pump 57 in the middle, and the high-temperature regenerator 52 and the condenser 54 is connected via a refrigerant pipe 62, and the high-temperature regenerator 52 and the low-temperature regenerator 53 are connected via an absorbing liquid pipe 63, and a high-temperature heat exchanger 59 is provided in the middle of the absorbing liquid pipe 63. ing.

【0008】また、低温再生器53と吸収器55とは吸
収液管64を介して接続され、吸収器55の内部に水平
に設置された多数の伝熱管1の上に吸収液が散布できる
ようになっている。なお、伝熱管1には凝縮器54の内
部にも延設された冷却水管65が接続されて、それぞれ
の内部に冷却水が供給できるようになっている。また、
吸収液管64の途中には低温熱交換器58が備えられて
いる。
Further, the low-temperature regenerator 53 and the absorber 55 are connected via an absorbing solution pipe 64 so that the absorbing solution can be sprayed on a number of heat transfer tubes 1 installed horizontally inside the absorber 55. It has become. A cooling water pipe 65 is also connected to the heat transfer pipe 1 and also extends inside the condenser 54 so that cooling water can be supplied to each of the cooling water pipes 65. Also,
A low-temperature heat exchanger 58 is provided in the absorption liquid pipe 64.

【0009】凝縮器54と蒸発器56とは冷媒管66を
介して接続され、この冷媒管66には冷媒ポンプ60が
備えられていて、蒸発器56の底に溜った冷媒液を蒸発
器56の内部に水平に設置された多数の伝熱管1Aの上
に散布できるように構成されている。そして、伝熱管1
Aには冷水管67が接続されている。
The condenser 54 and the evaporator 56 are connected via a refrigerant pipe 66. The refrigerant pipe 66 is provided with a refrigerant pump 60, and the refrigerant liquid collected at the bottom of the evaporator 56 is discharged from the evaporator 56. It is configured so that it can be sprayed on a large number of heat transfer tubes 1A installed horizontally in the inside. And heat transfer tube 1
A is connected to a cold water pipe 67.

【0010】上記構成の吸収式冷凍機においては、吸収
液と冷媒との混合液が高温再生器52で加熱器51によ
り加熱されて高温の冷媒蒸気を分離し、この高温の冷媒
蒸気が冷媒管62を通って低温再生器53に送られ、こ
こで低温再生器53内の吸収液を加熱して冷媒の温度を
下げた後、凝縮器54に入り冷却水管65から供給され
る冷却水に放熱して液化する。
In the absorption refrigerator having the above-described structure, the mixture of the absorption liquid and the refrigerant is heated by the heater 51 in the high-temperature regenerator 52 to separate the high-temperature refrigerant vapor. The refrigerant is sent to the low-temperature regenerator 53 through 62, where the absorption liquid in the low-temperature regenerator 53 is heated to lower the temperature of the refrigerant, and then enters the condenser 54 and radiates heat to the cooling water supplied from the cooling water pipe 65. And liquefy.

【0011】凝縮器54で液化した冷媒は冷媒管66を
介して蒸発器56に送られ、水平に設置された多数の伝
熱管1Aの上に散布され、伝熱管1Aの内部を流れる水
などのブラインから熱を奪って蒸発し、蒸発した冷媒は
吸収器55に入り、ここで低温再生器53から吸収液管
64を介して戻される濃吸収液に吸収されて稀液とな
り、再び高温再生器52に吸収液管61を通って吸収液
ポンプ57により送られて上記したような冷媒の循環が
維持される。
The refrigerant liquefied in the condenser 54 is sent to the evaporator 56 via the refrigerant pipe 66, and is sprayed on a number of heat transfer tubes 1A installed horizontally, such as water flowing inside the heat transfer tubes 1A. The evaporated refrigerant takes away heat from the brine, and the evaporated refrigerant enters the absorber 55, where it is absorbed by the concentrated absorbent returned from the low-temperature regenerator 53 via the absorbent pipe 64 to become a dilute solution, and again becomes a high-temperature regenerator. The refrigerant is sent to the pump 52 through the absorbent pipe 61 by the absorbent pump 57, and the circulation of the refrigerant as described above is maintained.

【0012】そして、伝熱管1Aの内部を流れていると
きに冷媒の蒸発潜熱として熱を奪われて温度を下げた水
などのブラインが、冷水管67を介して負荷に供給され
て冷房などに供される。
Then, while flowing inside the heat transfer tube 1A, brine, such as water, which has been deprived of heat as the latent heat of evaporation of the refrigerant and whose temperature has been lowered, is supplied to the load through the chilled water pipe 67 to be cooled. Provided.

【0013】なお、高温再生器52から送られる高温の
冷媒蒸気によって加熱され、冷媒蒸気を蒸発分離する低
温再生器53の吸収液は、高温再生器52で加熱されて
冷媒を蒸発分離して冷媒濃度が下がった中間吸収液であ
り、この中間吸収液は高温熱交換器59で吸収器55か
ら高温再生器52に送られる稀液と熱交換して温度を下
げて送り込まれる。
The absorption liquid in the low-temperature regenerator 53, which is heated by the high-temperature refrigerant vapor sent from the high-temperature regenerator 52 and evaporates and separates the refrigerant vapor, is heated in the high-temperature regenerator 52 to evaporate and separate the refrigerant. The intermediate absorbent having a reduced concentration is exchanged with the dilute liquid sent from the absorber 55 to the high-temperature regenerator 52 by the high-temperature heat exchanger 59 to be sent at a reduced temperature.

【0014】そして、吸収器55に設置されて内部に冷
却水が通される伝熱管1は、例えば図2〜図9、図11
〜図14に示した形状に形成される。すなわち、伝熱管
1は冷却水が通される円管部2と、その外周面の軸方向
に列設された複数のフィン3とからなり、各フィン3は
円管部2の周方向の一部を除く部分に形成される。
The heat transfer tube 1 which is installed in the absorber 55 and through which the cooling water is passed is, for example, shown in FIGS.
To the shape shown in FIG. That is, the heat transfer tube 1 is composed of a circular tube portion 2 through which cooling water passes, and a plurality of fins 3 arranged in an axial direction on an outer peripheral surface of the circular tube portion 2. It is formed on the part excluding the part.

【0015】例えば、図2と図3に示した伝熱管1にお
いては、円管部2の外面軸方向に複数のフィン3が等間
隔に列設されている。そして、各フィン3は、円管部2
の周方向において一部が途切れた状態に形成され、その
途切れた部分、すなわちフィン3が形成されていない円
管部2の周方向の部分4(以下、この部分をフィンなし
円周部と云う)が直線的配置となるように列設されてい
る。
For example, in the heat transfer tube 1 shown in FIGS. 2 and 3, a plurality of fins 3 are arranged at equal intervals in the axial direction of the outer surface of the circular tube portion 2. And each fin 3 is a circular tube part 2
Is formed in a partially interrupted state in the circumferential direction, and the interrupted portion, that is, the circumferential portion 4 of the circular tube portion 2 where the fins 3 are not formed (hereinafter, this portion is referred to as a finless circumferential portion) ) Are arranged in a line so as to form a linear arrangement.

【0016】なお、フィン3は、板厚が厚いと伝熱管1
が重くなるだけでなく、円管部2内に通される冷却水と
管外に滴下などされる吸収液との間の熱交換特性も低下
するので、通常は1.5mm以下の厚さに形成される。
When the fins 3 are thick, the heat transfer tubes 1
Not only becomes heavy but also deteriorates the heat exchange characteristic between the cooling water passed through the circular tube portion 2 and the absorbing liquid dropped outside the tube. It is formed.

【0017】また、フィン3の高さは、2〜5mmの範
囲で形成されるのが好ましい。すなわち、フィン3は2
mmより低いと前記熱交換特性を改善する作用が小さ
く、5mmより高いと乾いた部分が現れるためフィン3
全体が有効に作用しなくなり、また伝熱管1を複数設置
する場合にはフィン3同士が干渉し合って占有スペース
が大きく、すなわちその設置密度が低下し、全体の熱交
換特性は却って低下すると云った欠点があるので、フィ
ン3は通常2mm以上、5mm以下の高さに制限され
る。
The height of the fins 3 is preferably in the range of 2 to 5 mm. That is, the fin 3 is 2
If it is less than 5 mm, the effect of improving the heat exchange characteristics is small, and if it is more than 5 mm, a dry portion appears.
When the entire heat transfer tube 1 is installed, the fins 3 interfere with each other and occupy a large space, that is, when the plurality of heat transfer tubes 1 are installed, that is, the installation density is reduced, and the overall heat exchange characteristics are rather reduced. Because of the drawbacks, the fin 3 is usually limited to a height of 2 mm or more and 5 mm or less.

【0018】また、フィン3は、5〜15mmの間隔で
円管部2の外面軸方向に列設されるのが好ましい。すな
わち、フィン3は原則的には多いほどその熱交換特性は
向上するが、フィン3の高さを前記範囲としたときに
は、フィン3を5mmより小さい間隔で列設すると円管
部2の表面に付着している吸収液に吸収させる冷媒蒸気
の円管部2表面への流動が妨げられ、フィン3が15m
mより大きい間隔で列設されると、フィン3による熱交
換特性を改善する作用が小さくなると云った欠点がある
ので、フィン3は通常5mm以上、15mm以下の間隔
で円管部2の軸方向に列設される。
It is preferable that the fins 3 are arranged in a row in the axial direction of the outer surface of the circular tube portion 2 at an interval of 5 to 15 mm. In other words, the heat exchange characteristics are improved as the number of the fins 3 is increased in principle. The flow of the refrigerant vapor to be absorbed by the adsorbing liquid to the surface of the pipe portion 2 is prevented, and the fin 3 is
If the fins 3 are arranged at intervals larger than m, the effect of improving the heat exchange characteristics of the fins 3 is reduced. Therefore, the fins 3 are usually arranged at an interval of 5 mm or more and 15 mm or less in the axial direction of the circular tube portion 2. Are arranged in a row.

【0019】また、フィン3は円管部2と接触している
側より先端側の方が広幅に形成されて、伝熱面積を大き
く保つ工夫がなされている。
Further, the fins 3 are formed wider on the tip side than on the side in contact with the circular tube portion 2 so that the heat transfer area is kept large.

【0020】そして、上記構成の伝熱管1においては、
円管部2のフィンなし円周部4を上にして吸収器55に
設置されると、上下に設置される伝熱管1のフィン3の
位置が例え図18に示したように左右に位置ずれしたと
しても、管外面に滴下などされた吸収液は円管部2のフ
ィンなし円周部4を通って左右両方向にも拡がり、円管
部2の全面と、フィン3の左右両面を濡らすので、円管
部2内に通される冷却水と管外に滴下などされる吸収液
との熱交換特性が改善される。
In the heat transfer tube 1 having the above structure,
When the circular tube portion 2 is installed on the absorber 55 with the finless circumferential portion 4 facing upward, the position of the fins 3 of the heat transfer tube 1 installed vertically is shifted left and right as shown in FIG. Even if it does, the absorbing liquid dropped on the outer surface of the tube spreads in both the left and right directions through the finless circumferential portion 4 of the circular tube portion 2 and wets the entire surface of the circular tube portion 2 and the left and right surfaces of the fins 3. In addition, the heat exchange characteristic between the cooling water passed through the circular pipe portion 2 and the absorbing liquid dropped outside the pipe is improved.

【0021】伝熱管1は、図4〜図9に示したように、
円管部2のフィンなし円周部4が複数箇所に分散して位
置するように形成することもできる。
The heat transfer tube 1 is, as shown in FIGS.
The finless circumferential portion 4 of the circular tube portion 2 may be formed so as to be distributed and located at a plurality of locations.

【0022】例えば、図4と図5に示した伝熱管1にお
いては、4個のフィン3が円管部2の周方向に等間隔に
列設され、円管部2のフィンなし円周部4が4箇所に分
散して配置されている。
For example, in the heat transfer tube 1 shown in FIGS. 4 and 5, four fins 3 are arranged at equal intervals in the circumferential direction of the circular tube portion 2 and the finless circular portion of the circular tube portion 2 is formed. 4 are distributed in four places.

【0023】そして、円管部2の周方向に分散して設置
された4個のフィン3それぞれの位置から円管部2の軸
方向に複数のフィン3が直線状に列設されている。
A plurality of fins 3 are linearly arranged in the axial direction of the circular tube portion 2 from the respective positions of the four fins 3 distributed in the circumferential direction of the circular tube portion 2.

【0024】また、図6と図7に示した伝熱管1におい
ては、8個のフィン3が円管部2の周方向に等間隔に列
設され、円管部2のフィンなし円周部4が8箇所に分散
して配置されている。
In the heat transfer tube 1 shown in FIGS. 6 and 7, eight fins 3 are arranged at equal intervals in the circumferential direction of the circular tube portion 2, and the finless circular portion of the circular tube portion 2 is formed. 4 are distributed in eight places.

【0025】そして、この場合も円管部2の周方向に分
散して設置された8個のフィン3それぞれの位置から円
管部2の軸方向に複数のフィン3が直線的に列設されて
いる。
Also in this case, a plurality of fins 3 are linearly arranged in the axial direction of the circular tube portion 2 from the respective positions of the eight fins 3 which are dispersedly arranged in the circumferential direction of the circular tube portion 2. ing.

【0026】また、図8と図9に示した伝熱管1は、図
4と図5に示した円管部2の周方向に列設した4個のフ
ィン3の内、一つのフィン3を省いたものである。
In the heat transfer tube 1 shown in FIGS. 8 and 9, one of the four fins 3 arranged in the circumferential direction of the circular tube portion 2 shown in FIGS. It is omitted.

【0027】上記のように円管部2のフィンなし円周部
4を複数箇所に分散して設けた伝熱管1においては、フ
ィンなし円周部4を1箇所にしか設けない伝熱管1に比
較して、管外表面に滴下などされた吸収液が円管部2の
横方向にも一層広がり易くなると云った利点がある。
As described above, in the heat transfer tube 1 in which the finless circumferential portions 4 of the circular tube portion 2 are provided at a plurality of locations, the heat transfer tube 1 in which the finless circumferential portions 4 are provided in only one location is used. In comparison, there is an advantage that the absorbing liquid dropped on the outer surface of the tube is more likely to spread in the lateral direction of the circular tube portion 2.

【0028】また、伝熱管1を吸収器55に組み込む際
に、円管部2のフィンなし円周部4が、管外表面に滴下
などされた吸収液が横方向にも広がり易い上方に配置さ
れる確率が高くなると云った利点もある。
When the heat transfer tube 1 is incorporated into the absorber 55, the finless circumferential portion 4 of the tube portion 2 is disposed above the tube so that the absorbing liquid dropped on the outer surface of the tube tends to spread in the lateral direction. There is also an advantage that the probability of being performed is increased.

【0029】なお、円管部2の外面周方向に列設するフ
ィン3の個数は、10個以下が好ましい。10個を越え
て円管部2の外面周方向にフィン3を列設すると、フィ
ン3は1.5mm以下の厚みに形成されるので強度が不
足し、吸収器55への組み込み時などにフィン3を破損
し易くなると云った欠点があるので、円管部2の外面周
方向に列設するフィン3の個数は10個以下に制限され
る。
The number of the fins 3 arranged in the circumferential direction on the outer surface of the circular tube portion 2 is preferably 10 or less. When the fins 3 are arranged in a row in the circumferential direction of the outer surface of the circular tube portion 2 exceeding 10 fins, the fins 3 are formed to have a thickness of 1.5 mm or less, so that the fins 3 have insufficient strength. 3 has a disadvantage that the fins 3 are easily damaged, so the number of the fins 3 arranged in the circumferential direction on the outer surface of the circular tube portion 2 is limited to 10 or less.

【0030】図10は、図4と図5に示した構造の伝熱
管1と、特開平9−152289号公報などに記載され
た管外面に長手方向に複数の突条が形成され、その突条
同士の間の山部と谷部とを曲面にした従来の伝熱管との
性能比較図(従来の伝熱管における液膜流量0.03k
g/m・sのときの伝熱性能を100%とした比較)で
あり、この図面からも明らかなように、本発明の伝熱管
1の伝熱性能は何れの流量においても従来の伝熱管より
伝熱性能が20%以上優れている。
FIG. 10 shows a heat transfer tube 1 having the structure shown in FIGS. 4 and 5, and a plurality of ridges formed longitudinally on the outer surface of the tube described in Japanese Patent Application Laid-Open No. 9-152289. Performance comparison diagram with conventional heat transfer tube with curved peaks and valleys between strips (liquid film flow rate 0.03 k in conventional heat transfer tube)
g / m · s, the heat transfer performance was 100%). As is apparent from this drawing, the heat transfer performance of the heat transfer tube 1 according to the present invention is the same as that of the conventional heat transfer tube at any flow rate. The heat transfer performance is more than 20% better.

【0031】また、伝熱管1は、図11と図12に示し
たように、貫通した穴5をフィン3に形成することもで
きる。
Further, as shown in FIGS. 11 and 12, the heat transfer tube 1 can be formed with a through hole 5 in the fin 3.

【0032】このように構成した伝熱管1においては、
フィン3の表面を流れ落ちる吸収液の流れ方が穴5が存
在することによって乱されてフィン3に滞留する時間が
長くなるので、管外表面に滴下などされる吸収液と円管
部2に通される冷却水との熱交換特性が一層改善される
と云った利点がある。
In the heat transfer tube 1 configured as described above,
The flow of the absorbent flowing down the surface of the fins 3 is disturbed by the presence of the holes 5 and the residence time in the fins 3 is prolonged. There is an advantage that the heat exchange characteristic with the cooling water to be used is further improved.

【0033】また、吸収液に吸収させる冷媒蒸気は穴5
を通ることができるので、蒸発器56で蒸発して吸収器
55に入った冷媒蒸気は蒸発器56の反対側にまで入り
込み易く、蒸発器56から遠く離れた位置おいても冷媒
蒸気が吸収液に速やかに吸収されると云った利点もあ
る。
The refrigerant vapor to be absorbed by the absorbing liquid is
Therefore, the refrigerant vapor that has evaporated in the evaporator 56 and entered the absorber 55 can easily enter the opposite side of the evaporator 56, and the refrigerant vapor is absorbed by the absorbing liquid even at a position far away from the evaporator 56. There is also an advantage that it is absorbed quickly.

【0034】また、伝熱管1は、図13と図14に示し
たように、フィン3を波板状に形成することもできる。
このように形成した伝熱管1においても、フィン3の表
面を流れ落ちる吸収液の速度は遅くなるので、管外表面
に滴下などされる吸収液と円管部2に通される冷却水と
の熱交換特性が改善されると云った利点がある。なお波
板状に形成するフィン3は、同心円状の波板に形成して
も良い。
In the heat transfer tube 1, the fins 3 may be formed in a corrugated shape as shown in FIGS.
Also in the heat transfer tube 1 formed in this manner, the speed of the absorbing solution flowing down the surface of the fin 3 becomes slow, so that the heat of the absorbing solution dropped on the outer surface of the tube and the cooling water passed through the circular tube portion 2 are generated. There is an advantage that the exchange characteristics are improved. The corrugated fins 3 may be formed in concentric corrugated plates.

【0035】そして、上記形状の伝熱管1は、円管部2
のフィンなし円周部4を上にして吸収式冷凍機の吸収器
55に組み込まれるので、上下に設置される伝熱管1の
フィン3の位置が例え左右に位置ずれしたとしても、管
外面に滴下などされた吸収液は円管部2のフィンなし円
周部4を通って左右両方向にも拡がり、円管部2の全面
と、フィン3の左右両面を濡らすので、円管部2内に通
される冷却水と管外に滴下などされる吸収液との熱交換
特性が改善される。
Then, the heat transfer tube 1 having the above-mentioned shape is
Of the heat transfer tube 1 installed on the upper and lower sides even if the positions of the fins 3 of the heat transfer tube 1 installed on the upper and lower sides are shifted right and left. The dripped absorbing liquid spreads in both left and right directions through the finless circumferential portion 4 of the circular tube portion 2 and wets the entire surface of the circular tube portion 2 and the left and right surfaces of the fins 3. The heat exchange characteristics between the cooling water passed through and the absorbing liquid dropped to the outside of the tube are improved.

【0036】ところで、上記構成の伝熱管1は、例えば
図15・図16に示したように、打ち抜き加工などして
一端にフィン3をフランジ状に備えた複数の短管6を、
フィン3の位置を揃えて円管7に差し通し、その後円管
7を拡径して短管6を円管7に固定するなどして形成さ
れる。
By the way, as shown in FIGS. 15 and 16, for example, as shown in FIGS. 15 and 16, a plurality of short tubes 6 provided with fins 3 at one end in a flange shape by punching or the like are used.
The fins 3 are formed in such a manner that the fins 3 are aligned and inserted into the circular pipe 7, and then the circular pipe 7 is expanded in diameter and the short pipe 6 is fixed to the circular pipe 7.

【0037】なお、本発明は上記実施形態に限定される
ものではないので、特許請求の範囲に記載の趣旨から逸
脱しない範囲で各種の変形実施が可能である。
Since the present invention is not limited to the above embodiment, various modifications can be made without departing from the spirit of the present invention.

【0038】[0038]

【発明の効果】以上説明したように本発明の伝熱管が組
み込まれた吸収式冷凍機の吸収器においては、管外に滴
下などされる吸収液と管内に通される冷却水との熱交換
器特性が改善されるので、吸収器の小型化が図れると共
に、吸収式冷凍機の省エネ化を図る上でも顕著な効果が
ある。
As described above, in the absorber of the absorption refrigerator incorporating the heat transfer tube of the present invention, the heat exchange between the absorbing liquid dropped outside the tube and the cooling water passed through the tube is performed. Since the characteristics of the absorber are improved, it is possible to reduce the size of the absorber and to have a remarkable effect in saving the energy of the absorption refrigerator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】吸収式冷凍機の構成を示す説明図である。FIG. 1 is an explanatory diagram showing a configuration of an absorption refrigerator.

【図2】伝熱管の一実施形態を示す斜視図である。FIG. 2 is a perspective view showing one embodiment of a heat transfer tube.

【図3】図2に示した伝熱管の側面図である。FIG. 3 is a side view of the heat transfer tube shown in FIG.

【図4】伝熱管の他の実施形態を示す斜視図である。FIG. 4 is a perspective view showing another embodiment of the heat transfer tube.

【図5】図4に示した伝熱管の側面図である。FIG. 5 is a side view of the heat transfer tube shown in FIG.

【図6】伝熱管の他の実施形態を示す斜視図である。FIG. 6 is a perspective view showing another embodiment of the heat transfer tube.

【図7】図6に示した伝熱管の側面図である。FIG. 7 is a side view of the heat transfer tube shown in FIG.

【図8】伝熱管の他の実施形態を示す斜視図である。FIG. 8 is a perspective view showing another embodiment of the heat transfer tube.

【図9】図8に示した伝熱管の側面図である。FIG. 9 is a side view of the heat transfer tube shown in FIG.

【図10】性能比較結果を示す図である。FIG. 10 is a diagram showing performance comparison results.

【図11】伝熱管の他の実施形態を示す斜視図である。FIG. 11 is a perspective view showing another embodiment of the heat transfer tube.

【図12】図11に示した伝熱管の側面図である。FIG. 12 is a side view of the heat transfer tube shown in FIG.

【図13】伝熱管の他の実施形態を示す斜視図である。FIG. 13 is a perspective view showing another embodiment of the heat transfer tube.

【図14】図13に示した伝熱管の側面図である。FIG. 14 is a side view of the heat transfer tube shown in FIG.

【図15】伝熱管の一作成要領を示す斜視図である。FIG. 15 is a perspective view showing one procedure for making a heat transfer tube.

【図16】伝熱管の一作成要領を示す断面図である。FIG. 16 is a cross-sectional view showing one procedure for making a heat transfer tube.

【図17】従来の伝熱管の構成を示す説明図である。FIG. 17 is an explanatory diagram showing a configuration of a conventional heat transfer tube.

【図18】従来の伝熱管の吸収器における配置構成を示
す説明図である。
FIG. 18 is an explanatory diagram showing an arrangement of a conventional heat transfer tube in an absorber.

【符号の説明】[Explanation of symbols]

1・1X 伝熱管 2 円管部 3・3X フィン 4 フィンなし円周部 5 穴 6 短管 7 円管 51 加熱器 52 高温再生器 53 低温再生器 54 凝縮器 55 吸収器 56 蒸発器 57 吸収液ポンプ 58 低温熱交換器 59 高温熱交換器 60 冷媒ポンプ 1.1X heat transfer tube 2 Circular tube portion 3 / 3X fin 4 Circular portion without fins 5 Hole 6 Short tube 7 Circular tube 51 Heater 52 High temperature regenerator 53 Low temperature regenerator 54 Condenser 55 Absorber 56 Evaporator 57 Absorbing liquid Pump 58 Low temperature heat exchanger 59 High temperature heat exchanger 60 Refrigerant pump

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 管外の軸方向に複数のフィンが列設され
た伝熱管において、フィンが管の周方向の一部を除く部
分に形成されたことを特徴とする伝熱管。
1. A heat transfer tube in which a plurality of fins are arranged in an axial direction outside the tube, wherein the fins are formed in a portion excluding a part in a circumferential direction of the tube.
【請求項2】 厚み1.5mm以下、高さ2〜5mmの
フィンが軸方向に5〜15mmの間隔に列設されたこと
を特徴とする請求項1記載の伝熱管。
2. The heat transfer tube according to claim 1, wherein fins having a thickness of 1.5 mm or less and a height of 2 to 5 mm are arranged in an axial direction at intervals of 5 to 15 mm.
【請求項3】 2〜10個のフィンが管の周方向に列設
され、フィンが形成されていない部分が管の周方向に2
〜10箇所に分散して配置されたことを特徴とする請求
項1または2記載の伝熱管。
3. Two to ten fins are arranged in a line in the circumferential direction of the tube, and a portion where no fin is formed is two in the circumferential direction of the tube.
The heat transfer tube according to claim 1 or 2, wherein the heat transfer tube is dispersedly arranged at 10 to 10 locations.
【請求項4】 フィンに貫通する穴が設けられたことを
特徴とする請求項1〜3何れかに記載の伝熱管。
4. The heat transfer tube according to claim 1, wherein a hole penetrating the fin is provided.
【請求項5】 フィンに凹みが設けられたことを特徴と
する請求項1〜3何れかに記載の伝熱管。
5. The heat transfer tube according to claim 1, wherein the fin is provided with a recess.
【請求項6】 フィンが波板状に形成されたことを特徴
とする請求項1〜3何れかに記載の伝熱管。
6. The heat transfer tube according to claim 1, wherein the fin is formed in a corrugated shape.
【請求項7】 フィンが先端側ほど広幅に形成されたこ
とを特徴とする請求項1〜6何れかに記載の伝熱管。
7. The heat transfer tube according to claim 1, wherein the fin is formed so as to have a larger width toward the tip.
【請求項8】 冷却水が内部に通される吸収器の伝熱管
として、請求項1〜7何れかに記載の伝熱管が、フィン
が形成されていない周部分を上にして組み込まれたこと
を特徴とする吸収式冷凍機。
8. The heat transfer tube according to claim 1, wherein the heat transfer tube according to any one of claims 1 to 7 is incorporated with a peripheral portion having no fin formed thereon as a heat transfer tube of an absorber through which cooling water is passed. An absorption refrigerator.
JP10206645A 1998-07-22 1998-07-22 Heat transfer pipe and absorption refrigerating machine using the same Pending JP2000039231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10206645A JP2000039231A (en) 1998-07-22 1998-07-22 Heat transfer pipe and absorption refrigerating machine using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10206645A JP2000039231A (en) 1998-07-22 1998-07-22 Heat transfer pipe and absorption refrigerating machine using the same

Publications (1)

Publication Number Publication Date
JP2000039231A true JP2000039231A (en) 2000-02-08

Family

ID=16526789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10206645A Pending JP2000039231A (en) 1998-07-22 1998-07-22 Heat transfer pipe and absorption refrigerating machine using the same

Country Status (1)

Country Link
JP (1) JP2000039231A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103925627A (en) * 2014-04-02 2014-07-16 荣启华 Radiator and heating system thereof
CN103939978A (en) * 2014-04-02 2014-07-23 济南大学 Radiator and automatic heat control thermodynamic system thereof
CN108151555A (en) * 2018-01-03 2018-06-12 格力电器(合肥)有限公司 Heat exchanger and air conditioner with same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103925627A (en) * 2014-04-02 2014-07-16 荣启华 Radiator and heating system thereof
CN103939978A (en) * 2014-04-02 2014-07-23 济南大学 Radiator and automatic heat control thermodynamic system thereof
CN108151555A (en) * 2018-01-03 2018-06-12 格力电器(合肥)有限公司 Heat exchanger and air conditioner with same
CN108151555B (en) * 2018-01-03 2024-08-09 格力电器(合肥)有限公司 Heat exchanger and air conditioner with same

Similar Documents

Publication Publication Date Title
JP2007271197A (en) Absorption type refrigerating device
JP3916114B2 (en) Absorption type refrigerator and heat transfer tube used therefor
JP2000039231A (en) Heat transfer pipe and absorption refrigerating machine using the same
JPS6273053A (en) Air-cooled absorption refrigerator
JP3091071B2 (en) Heat exchangers and absorption air conditioners
JP3712775B2 (en) Plate evaporator / absorber for absorption refrigerator
JPH09152289A (en) Absorption refrigerating machine
JP3266886B2 (en) Heat transfer tube
JP3042486B2 (en) Absorption refrigeration equipment
KR100707682B1 (en) Heat pipe for absorption refrigerating machine
JP3836930B2 (en) Evaporator
JP2000035259A (en) Absorptive freezer
JP3238795B2 (en) Absorption refrigeration equipment
JP3756980B2 (en) Plate type absorber for absorption refrigerator
JP2875615B2 (en) Double effect absorption chiller / heater
KR20070063073A (en) Absorption refrigerating machine having heat pipe of changed inner side
JP2011226762A (en) Absorption type water heater/cooler
JPH09273831A (en) Plate type vaporizer for absorption type refrigerator
KR200154750Y1 (en) Absorption type small cooler
JP3216567B2 (en) Air-cooled absorption refrigeration system
JP2000121195A (en) Ammonia absorption refrigerating machine
WO1999015847A1 (en) Heat exchanger and absorption water cooler/heater using the heat exchanger
JPH10300269A (en) Air-cooling absorber
JPH03255863A (en) Absorbing refrigerator
JP2003254680A (en) Heat exchanger and absorption refrigerating machine using it

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060829