JP3216567B2 - Air-cooled absorption refrigeration system - Google Patents

Air-cooled absorption refrigeration system

Info

Publication number
JP3216567B2
JP3216567B2 JP11131297A JP11131297A JP3216567B2 JP 3216567 B2 JP3216567 B2 JP 3216567B2 JP 11131297 A JP11131297 A JP 11131297A JP 11131297 A JP11131297 A JP 11131297A JP 3216567 B2 JP3216567 B2 JP 3216567B2
Authority
JP
Japan
Prior art keywords
absorption
air
heat transfer
cooled
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11131297A
Other languages
Japanese (ja)
Other versions
JPH10300258A (en
Inventor
史朗 薬師寺
晃一 安尾
和之 奥山
克宏 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP11131297A priority Critical patent/JP3216567B2/en
Publication of JPH10300258A publication Critical patent/JPH10300258A/en
Application granted granted Critical
Publication of JP3216567B2 publication Critical patent/JP3216567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本願発明は、吸収器部分で生
じる吸収熱を空気流によって冷却放熱させるようにした
空冷吸収式冷凍装置に関するものである。 【0002】 【従来の技術】一般に吸収式冷凍装置の吸収器では、冷
媒蒸気の吸収に加え、該吸収によって生じる吸収液の吸
収熱の除去を行うことが必要となる。そのため、一般に
水冷式又は空冷式の吸収器冷却手段が設けられるように
なっているが、水冷式の冷却手段を設けたものでは冷却
効率は高いものの、冷却塔を必要とするなどシステムが
複雑、大型化し、コストが高くなる欠点を有している。 【0003】このような事情から、最近では空冷式の吸
収器構造が色々提案されるようになっている。 【0004】それらの具体例として、例えば特開昭64
−84062号公報、特公平7−21364号公報、特
公平7−21365号公報等に示されるように、ヘッダ
ー部を介して上方から下方に冷媒蒸気とともに吸収液を
流すストレートな吸収伝熱管の外周部に多数枚の放熱フ
ィンを設けることによって吸収器部分をクロスフィン型
の熱交換器構造に形成し、それらをファン等の送風手段
の空気流上流側から下流側方向に複数組並設することに
よって空冷吸収器を構成し、上記ファン等の送風手段に
よる空気流によって吸収器自体を空気冷却するようにし
た空冷吸収式冷凍装置がある。そして、その場合、上記
複数組の吸収伝熱管には、吸収液分配容器を介して、そ
れぞれ同一流量の吸収液が均等に供給されるようになっ
ていた。 【0005】 【発明が解決しようとする課題】しかし、以上のように
空気流上流側から空気流下流側各列の複数組の吸収伝熱
管のそれぞれに均等に同一量の吸収液を流すようにした
場合、次のような問題がある。 【0006】すなわち、各吸収伝熱管部分を通る空気の
温度は、空気流最上流側の吸収伝熱管部分が最も低く、
下流側に行くに従って熱交換されて順次高くなる。その
ため、上記複数列の吸収伝熱管は必然的に上流側のもの
ほど吸収能力が大きく、下流側のものほど吸収能力が小
さくなる。 【0007】したがって、それにも拘わらず上述のよう
に空気流上流側から下流側に配列された複数列の吸収伝
熱管の各々に同一流量の吸収液を流すようにした場合、
上流側の吸収伝熱管の大きい冷媒蒸気吸収能力を十分に
活用することができていない問題がある。 【0008】本願発明は、この問題を解決するためにな
されたもので、空気流上流側から下流側に配列された複
数列の吸収伝熱管の各々に対して、その吸収能力に対応
した適切な吸収液流量を調節設定できるようにすること
により、空気流上流側吸収伝熱管の大きな吸収性能を有
効かつ十分に活用して可及的に吸収性能を高め、当該吸
収器の吸収性能を効果的に向上させ得るようにした空冷
吸収式冷凍装置を提供することを目的とするものであ
る。 【0009】 【課題を解決するための手段】本願発明は、該目的を達
成するために、次のような課題解決手段を備えて構成さ
れている。 【0010】(1) 請求項1の発明 すなわち、本願請求項1の発明は、吸収液に冷媒蒸気を
吸収させる複数列の吸収伝熱管4a,4b,4cよりな
る空冷吸収器4と、該空冷吸収器4を空気流により冷却
する送風手段20と、上記複数列の吸収伝熱管4a,4
b,4cの各々に流す吸収液の流量を調節する流量調節
手段18a,18b、23a,23b,23cとを備え
てなる空冷吸収式冷凍装置において、上記流量調節手段
18a,18b、23a,23b,23cは、複数列の
吸収伝熱管4a,4b,4cの内の空気流上流側のもの
ほど下流側のものに比べて吸収液の流量が多くなるよう
に流量を調節するようになっていることを特徴としてい
る。 【0011】したがって、該構成では、空気流上流側吸
収伝熱管および空気流下流側吸収伝熱管各々の吸収性能
に応じた適切な吸収液供給流量を与えることが可能とな
る。 【0012】しかも、その場合において、上記流量調節
手段18a,18b、23a,23b,23cは、上記
複数列の吸収伝熱管4a,4b,4cの内の空気流上流
側のものほど下流側のものに比べて吸収液の流量が多く
なるように流量を調節するようになっている。 【0013】したがって、空気流上流側から下流側に配
列された複数列の吸収伝熱管各々に対して適切な吸収液
流量を調節設定できるようになり、冷却空気の温度が低
く、吸収性能が大きい空気流上流側吸収伝熱管には、そ
の大きな吸収性能に応じた多量の吸収液を流してその大
きな吸収性能を有効かつ十分に活用することができるよ
うになる一方、冷却空気の温度が高く、吸収性能の小さ
い空気流下流側吸収伝熱管には少ない量の吸収液を流す
ことによって、可能な限り吸収効率を高くし、それら2
つの作用によって吸収伝熱管全体としての吸収効率、吸
収性能を向上させることが可能となる。 【0014】(2) 請求項2の発明 また、本願請求項2の発明では、上記請求項1の発明の
上記流量調節手段18a,18bが、空冷吸収器4の吸
収液分配部15a,15bへの吸収液分岐配管の管径を
変えることにより、流量を調節するようになっている。 【0015】したがって、それによって、空気流上流側
と下流側とで異なる吸収液流量が固定的に調節設定さ
れ、上述の請求項1の発明の作用が有効に実現される。 【0016】(3) 請求項3の発明 また、本願請求項3の発明では、上記請求項1の発明の
上記流量調節手段23a,23b,23cが、吸収液分
配部15の各吸収伝熱管4a,4b,4cの吸収液入口
キャップ22a,22b,22cの径を変えることによ
り、流量を調節するようになっている。 【0017】したがって、それによって、空気流上流側
と下流側とで異なる吸収液流量が固定的に調節設定さ
れ、上述の請求項1の発明の作用が有効に実現される。 【0018】(4) 請求項4の発明 また、本願請求項4の発明では、上記請求項1の発明の
上記流量調節手段23a,23b,23cが、吸収液分
配部15の各吸収伝熱管4a,4b,4cの吸収液入口
キャップ22a,22b,22cの吸収液導入口23
a,23b,23cの開口面積を変えることにより、流
量を調節するようになっている。 【0019】したがって、それによって、空気流上流側
と下流側とで異なる吸収液流量が固定的に調節設定さ
れ、上述の請求項1の発明の作用が有効に実現される。 【0020】 【発明の効果】以上の結果、本願発明の空冷吸収式冷凍
装置によると、複数列の吸収伝熱管トータルとしての吸
収効率、吸収性能を従来よりも有効に向上させることが
でき、可及的に小型高性能の空冷吸収式冷凍装置を提供
し得るようになる。 【0021】 発明の実施の形態(実施の形態1) 図1および図2は、本願発明の実施の形態1に係る空冷
吸収式冷凍装置の構成を示している。 【0022】この空冷吸収式冷凍装置においては、吸収
液として例えば臭化リチウム水溶液(LiBr水溶液)
が採用され、また冷媒(被吸収液)として水(H2O)
が採用されている。 【0023】図1において、先ず符号1は高温再生器で
あり、ガスバーナ等の加熱源を備えている。該高温再生
器1の上方には、揚液管2を介して連通された気液分離
器3が設けられている。上記高温再生器1においては、
臭化リチウム希溶液を加熱沸騰させて、揚液管2を介し
て上方に位置する気液分離器3に供給し、ここで冷媒蒸
気である水蒸気と吸収液である臭化リチウム中間濃溶液
(中間濃度吸収液)とに分離再生するようになってい
る。 【0024】上記高温再生器1に供給される臭化リチウ
ム希溶液は、後述する空冷吸収器4において吸収液であ
る臭化リチウム濃溶液に冷媒蒸気である水蒸気を吸収さ
せることによって得られ、低温溶液熱交換器7および高
温溶液熱交換器8を経て順次有効に予熱された後に高温
再生器1へ還流されるようになっている。 【0025】上記気液分離器3で気液分離された水蒸気
は、次に低温再生器9に送られて凝縮される。また、上
記気液分離器3において気液分離された上記臭化リチウ
ム中間濃溶液は、上記高温溶液熱交換器8において前述
した空冷吸収器4からの臭化リチウム希溶液と熱交換さ
れた後にオリフィス11を介して上記低温再生器9へ供
給される。 【0026】そして、上記低温再生器9では、上記のよ
うにして気液分離器3から各々供給された水蒸気と臭化
リチウム中間濃溶液との間で相互に熱交換させることに
より、水蒸気を可及的に凝縮させるとともに臭化リチウ
ム中間濃溶液中に含まれる残余水分を蒸発させてさらに
高濃度の臭化リチウム濃溶液を取り出す。 【0027】次に、このようにして低温再生器9におい
て臭化リチウム中間濃溶液から蒸発された水蒸気は、オ
リフィス12を介して供給される上記水蒸気混合状態の
凝縮水とともに空冷凝縮器10に送られ確実に凝縮液化
されて凝縮水となり、さらに蒸発器13の凝縮水散布装
置部分へ供給される。また、一方上記記低温再生器9か
ら取り出された臭化リチウム濃溶液は、上記低温溶液熱
交換器7において上記した空冷吸収器4からの臭化リチ
ウム希溶液と熱交換した後にメイン供給管18から流量
調節手段として機能する第1,第2の分岐管18a,1
8b部を介して空冷吸収器4の第1,第2の各吸収液分
配装置15a,15b部分に供給される。 【0028】第1,第2の分岐管18a,18bは、図
2のように空気流上流側第1の吸収伝熱管4a上部の第
1の吸収液分配装置15aに対応する第1の分岐管18
aが大径で、空気流下流側第2,第3の吸収伝熱管4
b,4c上部の第2の吸収液分配装置15bに対応する
第2の分岐管18bが小径に形成されており、それによ
って空気流上流側第1の吸収伝熱管4aに多量の吸収液
を流す一方、空気流下流側第2,第3の吸収伝熱管4
b,4cに少量の吸収液を流すようになっている。 【0029】この空冷吸収器4は、例えば吸収液が垂直
に流される第1〜第3の複数本の吸収伝熱管4a,4
b,4cと、該第1〜第3の吸収伝熱管4a,4b,4
c各々の外周部に設けられた多数枚の放熱フィンF,F
・・・と、上記第1の吸収伝熱管4a、第2,第3の吸
収伝熱管4b,4cの各々上部に設けられ、それら第1
の吸収伝熱管4aおよび第2,第3の吸収伝熱管4b,
4cの各々に対して吸収液を分配する第1,第2の吸収
液分配装置15a,15bと、送風ファン20とを備え
て構成されている。 【0030】蒸発器13は、利用側熱交換器14を含む
二次側冷媒サイクルを循環する冷媒(例えば、R407
C)と上記空冷凝縮器10から送られてくる凝縮水とを
相互に熱交換させるものであり、冷房運転時の冷熱源と
なる。 【0031】そして、上記空冷吸収器4では、上記臭化
リチウム濃溶液に上記蒸発器13で蒸発した水蒸気を吸
収させることによって上述のように臭化リチウム希溶液
を形成する。この臭化リチウム希溶液は、一旦下部ヘッ
ダ16に留められた後、溶液ポンプ5により逆止弁6を
介して前述したように低温溶液熱交換器7および高温溶
液熱交換器8を経て高温再生器1に戻されて高温再生さ
れる。 【0032】以上のように、上記空冷吸収器4の第1〜
第3の吸収伝熱管4a〜4cには、それぞれ図示のよう
に、その第1,第2の吸収液分配装置15a,15bの
上流側に個別に流量を調節することができる管径の大き
な第1,管径の小さな第2の分岐管18a,18bが設
けられており、該第1,第2の分岐管18a,18bを
介して供給される吸収液を第1,第2の吸収液分配装置
15a,15bを介して空気流上流側第1および空気流
下流側第2,第3の吸収伝熱管4a,4b,4cに流す
ようにしているので、各々その伝熱管部分を流れる吸収
液の流量が空気流下流側のものより空気流上流側のもの
ほど多くなるように流量設定されるようになる。 【0033】したがって、該構成では、上記第1〜第3
の吸収伝熱管4a〜4cは、送風ファン20からの空気
流上流側に位置し、空気温度が低くて冷却性能の高いも
のほど流される吸収液の量が多くなり、十分な吸収性能
を発揮するようになる。他方、空気温度が高くて吸収性
能が低い空気流下流側のものほど流される吸収液の量が
少なくなり、それぞれ熱交換効率、吸収効率が向上す
る。その結果、空冷吸収器4の吸収伝熱管4a〜4c全
体として、その冷却能力に応じた均一な熱交換能力を実
現することができるようになり、吸収器の吸収効率、吸
収性能がアップする。 【0034】なお、以上の構成の場合、第1の吸収液分
配装置15aに対して、第2の吸収液分配装置15bは
第2,第3の2本の吸収伝熱管4b,4cに吸収液を分
配するようになっているため、通常でも必然的に吸収伝
熱管1本当りの吸収液供給量は少ない。従って上記上流
側流量増大のための上記第1の分岐管18aの管径の設
定は、その点を十分に考慮してなされることはもちろん
である。 【0035】(変形例1) なお、上記実施の形態1における第1,第2の分岐管1
8a,18bは、その管径を変えることにより、吸収液
の供給流量を変えるように構成したが、これは例えば図
3に示すように、管径そのものは各々等径のものとし、
吸収液の供給流量を相対的に少なくしたい第2の分岐管
18bの途中に、図4に示すような小径の貫孔19aを
有するオリフィス19を介設するようにしても良い。 【0036】このような構成によっても、上述の管径を
変えた場合と全く同様の作用効果(流量調節作用)を得
ることができる。 【0037】(変形例2) また、上記実施の形態1の構成では、空気流上流側第1
列目と空気流下流側第2列、第3列目とで相互の流量を
変えるようにしたが、これは第1列、第2列、第3列各
々3段階で相互に流量を変えるようにして、空気流上流
側ほど多く流れるようにすると、より効果的である。 【0038】(実施の形態2) 次に図5〜図7は、本願発明の実施の形態2に係る空冷
吸収式冷凍装置の構成を示している。 【0039】この空冷吸収式冷凍装置においては、吸収
液として例えば臭化リチウム水溶液(LiBr水溶液)
が採用され、また冷媒(被吸収液)として水(H2O)
が採用されている。 【0040】図5において、先ず符号1は高温再生器で
あり、ガスバーナ等の加熱源を備えている。該高温再生
器1の上方には、揚液管2を介して連通された気液分離
器3が設けられている。上記高温再生器1においては、
臭化リチウム希溶液を加熱沸騰させて、揚液管2を介し
て上方に位置する気液分離器3に供給し、ここで冷媒蒸
気である水蒸気と吸収液である臭化リチウム中間濃溶液
(中間濃度吸収液)とに分離再生するようになってい
る。 【0041】上記高温再生器1に供給される臭化リチウ
ム希溶液は、後述する空冷吸収器4において吸収液であ
る臭化リチウム濃溶液に冷媒蒸気である水蒸気を吸収さ
せることによって得られ、低温溶液熱交換器7および高
温溶液熱交換器8を経て順次有効に予熱された後に高温
再生器1へ還流されるようになっている。 【0042】上記気液分離器3で気液分離された水蒸気
は、次に低温再生器9に送られて凝縮される。また、上
記気液分離器3において気液分離された上記臭化リチウ
ム中間濃溶液は、上記高温溶液熱交換器8において前述
した空冷吸収器4からの臭化リチウム希溶液と熱交換さ
れた後にオリフィス11を介して上記低温再生器9へ供
給される。 【0043】そして、上記低温再生器9では、上記のよ
うにして気液分離器3から各々供給された水蒸気と臭化
リチウム中間濃溶液との間で相互に熱交換させることに
より、水蒸気を可及的に凝縮させるとともに臭化リチウ
ム中間濃溶液中に含まれる残余水分を蒸発させてさらに
高濃度の臭化リチウム濃溶液を取り出す。 【0044】次に、このようにして低温再生器9におい
て臭化リチウム中間濃溶液から蒸発された水蒸気は、オ
リフィス12を介して供給される上記水蒸気混合状態の
凝縮水とともに空冷凝縮器10に送られ確実に凝縮液化
されて凝縮水となり、さらに蒸発器13の凝縮水散布装
置部分へ供給される。また、一方上記記低温再生器9か
ら取り出された臭化リチウム濃溶液は、上記低温溶液熱
交換器7において上記した空冷吸収器4からの臭化リチ
ウム希溶液と熱交換した後にメイン供給管18から流量
調節分配手段として機能する空冷吸収器4上部の吸収液
分配装置15に供給される。 【0045】この吸収液分配装置15は、例えば図6の
ように同吸収液分配装置15の吸収液分配トレイ16内
に第1〜第3の各吸収伝熱管4a,4b,4cの上端側
第1〜第3の開口部21a〜21cを各々所定高さ突設
させて構成されている。そして、第1〜第3の各吸収伝
熱管4a,4b,4cのトレイ内に突出した上記第1〜
第3の開口部21a〜21cの外周には、該第1〜第3
の開口部21a〜21cよりも所定寸法高さが高い円筒
状の第1〜第3の入口キャップ22a〜22cが配設さ
れており、該第1〜第3の入口キャップ22a〜22c
と上記第1〜第3の開口部21a〜21cとの間には各
々所定寸法の環状の第1〜第3の隙間24a〜24cが
形成されている。そして、上記第1〜第3の入口キャッ
プ22a〜22cの各下端部には、上記第1〜第3の隙
間24a〜24cに連通する各々複数(例えば2個)の
スリット状の第1〜第3の吸収液導入口23a〜23c
が例えば円周方向に等間隔に形成されている。該第1〜
第3の吸収液導入口23a〜23cは、上記吸収液分配
トレイ16の内底部に溜まった吸収液bが第1〜第3の
隙間24a〜24c内へ流入できるものであればよく、
従って、その形状は必ずしも上記のようなスリット形状
に限定されるものではなく、例えば半円形状でもよく、
また、必ずしも円周方向に等間隔に形成されなくてもよ
い。 【0046】そして、上記吸収液分配トレイ16の内底
部に溜まった吸収液bは、先ず第1〜第3の入口キャッ
プ22a〜22cの第1〜第3の吸収液導入口23a〜
23cから第1〜第3の入口キャップ22a〜22cと
第1〜第3の吸収伝熱管4a〜4cの第1〜第3の開口
部21a〜21cとの間の第1〜第3の隙間24a〜2
4cに入り、それから第1〜第3の吸収伝熱管4a〜4
c内へ溢れ出し、その内壁を均一に濡らしながら流下す
ることになり、この流下の過程において蒸発器13から
の冷媒蒸気aを効率良く吸収する。従って、上記吸収液
分配トレイ16に溜まった吸収液bの液面に変動等が生
じたとしても、上記第1〜第3の隙間24a〜24c内
に溜まった吸収液bには当該変動が伝達されることはな
く、第1〜第3の隙間24a〜24cから第1〜第3の
吸収伝熱管4a〜4c内への吸収液bの溢れ出しは定常
状態を常時保持されることになる。そして、それにより
空冷吸収器4における安定した吸収効率を維持できるこ
とになる。 【0047】ところで、上記第1〜第3の入口キャップ
22a〜22cの第1〜第3の吸収液導入口23a〜2
3cは、図示のように空気流上流側第1の吸収伝熱管4
a上部の第1の入口キャップ22aのものが大開口面積
(高さが高くて)で、空気流下流側第2,第3の吸収伝
熱管4b,4c上部の第2,第3の入口キャップ22
b,22cのものが小開口面積(高さが低くて)に形成
されており、それによって空気流上流側第1の吸収伝熱
管4aに多量の吸収液を流す一方、空気流下流側第2,
第3の吸収伝熱管4b,4cには少量の吸収液を流すよ
うになっている。 【0048】空冷吸収器4は、空気流上流側から下流側
にかけて並設され、吸収液が垂直に流される上述の第1
〜第3の複数本の吸収伝熱管4a,4b,4cと、該第
1〜第3の吸収伝熱管4a,4b,4c各々の外周部に
設けられた多数枚の放熱フィンF,F・・・と、上記第
1,第2,第3の吸収伝熱管4a,4b,4cの上部に
設けられ、それら第1,第2,第3の吸収伝熱管4a,
4b,4cの各々に対して共通に吸収液を分配する上述
の吸収液分配装置15と、送風ファン20とを備えて構
成されている。 【0049】蒸発器13は、利用側熱交換器14を含む
二次側冷媒サイクルを循環する冷媒(例えば、R407
C)と上記空冷凝縮器10から送られてくる凝縮水とを
相互に熱交換させるものであり、冷房運転時の冷熱源と
なる。 【0050】そして、上記空冷吸収器4では、上記臭化
リチウム濃溶液に上記蒸発器13で蒸発した水蒸気を吸
収させることによって上述のように臭化リチウム希溶液
を形成する。この臭化リチウム希溶液は、一旦下部ヘッ
ダ16内に留められた後、溶液ポンプ5により逆止弁6
を介して前述したように低温溶液熱交換器7および高温
溶液熱交換器8を経て高温再生器1に戻されて高温再生
される。 【0051】以上のように、上記空冷吸収器4の第1〜
第3の吸収伝熱管4a〜4cには、それぞれ図6に示す
ように、その吸収液分配装置15の吸収液分配トレイ1
6部分に第1〜第3の各吸収伝熱管4a,4b,4cに
対して個別に流量を調節することができる開口面積の異
なる第1〜第3の吸収液導入口23a〜23cを有する
第1〜第3の入口キャップ22a〜22cが設けられて
おり、該第1〜第3の入口キャップ22a〜22cを介
して供給される吸収液を第1,第2,第3の吸収伝熱管
4a,4b,4cに流すようにしており、しかも上記第
1〜第3の吸収液導入口23a〜23cは空気流上流側
第1の吸収液導入口23aの開口面積が大きく形成され
ているので、各々その伝熱管部分を流れる吸収液の流量
が空気流下流側のものより空気流上流側のものほど多く
なるように流量設定されるようになる。 【0052】したがって、該構成では、上記第1〜第3
の吸収伝熱管4a〜4cは、送風ファン20からの空気
流上流側に位置し、空気温度が低くて冷却性能の高いも
のほど流される吸収液の量が多くなり、十分な吸収性能
を発揮するようになる。他方、空気温度が高くて吸収性
能が低い空気流下流側のものほど流される吸収液の量が
少なくなり、それぞれ熱交換効率、吸収効率が向上す
る。その結果、空冷吸収器4の第1〜第3の吸収伝熱管
4a〜4c全体として、その冷却能力に応じた均一な熱
交換能力を実現することができるようになり、吸収器の
吸収効率、吸収性能がアップする。 【0053】(変形例1) なお、上記実施の形態では、吸収液分配トレイ16の第
1〜第3の入口キャップ22a〜22cの第1〜第3の
吸収液導入口23a〜23cそれぞれの開口面積を変え
ることにより、吸収液の流量を調節するようにしたが、
これは当該第1〜第3の入口キャップ22a〜22cそ
のものの径を変え、第1〜第3の各吸収伝熱管4a〜4
c上端の開口部21a〜21cとの間の第1〜第3の隙
間24a〜24cの寸法を異ならせるか、又は第1〜第
3の各吸収伝熱管4a〜4cの上端側各開口部21a〜
21cの上方への突出高を変えるようにして流量調節す
るようにしても良い。 【0054】(変形例2) なお、上記実施の形態では、第1〜第3の吸収液導入口
23a〜23cの開口面積を空気流上流側第1の吸収液
導入口23aと空気流下流側第2,第3の吸収液導入口
23b,23cとで2段階に変えるようにしているが、
これは順次上流側ほど大きくなるように3段階に変える
ようにすると、より効果的である。これは又変形例1の
第1〜第3の入口キヤップ22a〜22cの径や第1〜
第3の開口部21a〜21cの高さについても同様であ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-cooled absorption refrigeration system in which heat absorbed in an absorber is cooled and radiated by an air flow. 2. Description of the Related Art In general, in an absorber of an absorption refrigeration system, it is necessary to remove not only the absorption of refrigerant vapor but also the absorption heat of an absorption liquid generated by the absorption. Therefore, in general, a water-cooled or air-cooled absorber cooling means is provided.However, although a water-cooled cooling means is provided, the cooling efficiency is high, but a system such as a cooling tower is required. There is a disadvantage that the size is increased and the cost is increased. Under such circumstances, various air-cooled absorber structures have recently been proposed. [0004] As specific examples thereof, see, for example,
As described in JP-A-84062, JP-B-7-21364, JP-B-7-21365, etc., the outer periphery of a straight absorption heat transfer tube in which an absorption liquid flows together with refrigerant vapor from above to below via a header portion. By providing a large number of radiating fins in the section, the absorber part is formed in a cross fin type heat exchanger structure, and a plurality of sets of these are arranged in parallel from the airflow upstream side of the blowing means such as a fan to the downstream There is an air-cooled absorption refrigeration system in which an air-cooled absorber is constituted by the air-cooling device, and the absorber itself is air-cooled by an air flow from a blowing means such as the fan. In this case, the plurality of sets of absorption heat transfer tubes are supplied with the same flow rate of the absorbing liquid evenly via the absorbing liquid distribution container. [0005] However, as described above, the same amount of the absorbing liquid is caused to flow evenly to each of the plural sets of absorption heat transfer tubes in each row from the air flow upstream to the air flow downstream. If so, there are the following problems. That is, the temperature of the air passing through each absorption heat transfer tube portion is lowest in the absorption heat transfer tube portion on the most upstream side of the air flow.
The heat is exchanged toward the downstream side, so that the temperature gradually increases. For this reason, the absorption heat transfer tubes of the plurality of rows necessarily have higher absorption capacity on the upstream side and have lower absorption capacity on the downstream side. Accordingly, in the case where the same flow rate of the absorbing liquid is supplied to each of the plurality of rows of the absorption heat transfer tubes arranged from the upstream side to the downstream side of the air flow as described above,
There is a problem that the large refrigerant vapor absorption capacity of the absorption heat transfer tube on the upstream side cannot be fully utilized. The present invention has been made in order to solve this problem. For each of a plurality of rows of absorption heat transfer tubes arranged from the upstream side to the downstream side of the airflow, an appropriate one corresponding to the absorption capacity is provided. By making it possible to adjust and set the absorption liquid flow rate, the absorption performance of the absorption heat transfer tube on the upstream side of the air flow is effectively and fully utilized to enhance the absorption performance as much as possible, and effectively improve the absorption performance of the absorber. It is an object of the present invention to provide an air-cooled absorption refrigeration apparatus that can be improved. [0009] In order to achieve the above object, the present invention is provided with the following means for solving the problems. (1) The invention of claim 1 That is, the invention of claim 1 of the present application provides an air-cooled absorber 4 composed of a plurality of rows of absorption heat transfer tubes 4a, 4b, 4c for absorbing refrigerant vapor into an absorbing liquid, A blowing means 20 for cooling the absorber 4 by an air flow; and the plurality of rows of absorption heat transfer tubes 4a, 4
b, 4c, an air-cooled absorption refrigeration system comprising flow rate adjusting means 18a, 18b, 23a, 23b, 23c for adjusting the flow rate of the absorbing liquid flowing through each of the flow rate adjusting means 18a, 18b, 23a, 23b, 23c is such that the flow rate of the absorption liquid is adjusted such that the upstream side of the air flow in the plurality of rows of the absorption heat transfer tubes 4a, 4b, 4c has a higher flow rate of the absorption liquid than the downstream side. It is characterized by. Therefore, with this configuration, it is possible to provide an appropriate absorption liquid supply flow rate in accordance with the absorption performance of each of the airflow upstream absorption heat transfer tube and the airflow downstream absorption heat transfer tube. Further, in this case, the flow rate adjusting means 18a, 18b, 23a, 23b, 23c are arranged such that the upstream one of the plurality of rows of the absorption heat transfer tubes 4a, 4b, 4c is the downstream one. The flow rate is adjusted so that the flow rate of the absorbing liquid is increased as compared with the above. Therefore, it is possible to adjust and set an appropriate flow rate of the absorbing liquid for each of the plurality of rows of absorption heat transfer tubes arranged from the upstream side to the downstream side of the air flow, so that the cooling air temperature is low and the absorption performance is high. On the upstream side of the airflow absorption heat transfer tube, a large amount of absorption liquid according to the large absorption performance can be flowed to effectively and sufficiently utilize the large absorption performance, while the temperature of the cooling air is high, The absorption efficiency is made as high as possible by flowing a small amount of the absorbing liquid through the absorption heat transfer tube on the downstream side of the air flow having a small absorption performance.
The two functions make it possible to improve the absorption efficiency and absorption performance of the absorption heat transfer tube as a whole. (2) The invention of claim 2 In the invention of claim 2 of the present invention, the flow rate adjusting means 18a, 18b of the invention of claim 1 is connected to the absorption liquid distribution sections 15a, 15b of the air-cooled absorber 4. The flow rate is adjusted by changing the diameter of the absorption liquid branch pipe. Accordingly, the flow rate of the absorbing liquid that is different between the upstream side and the downstream side of the air flow is fixedly adjusted and set, whereby the operation of the first aspect of the present invention is effectively realized. (3) According to the third aspect of the present invention, in the third aspect of the present invention, the flow rate adjusting means 23a, 23b, and 23c according to the first aspect of the present invention are arranged such that the absorption heat transfer tubes 4a , 4b, 4c, the flow rate is adjusted by changing the diameter of the absorption liquid inlet caps 22a, 22b, 22c. Accordingly, the flow rates of the absorbing liquid which are different between the upstream side and the downstream side of the air flow are fixedly adjusted and set, whereby the operation of the first aspect of the present invention is effectively realized. (4) In the fourth aspect of the present invention, in the fourth aspect of the present invention, the flow rate adjusting means 23a, 23b, and 23c of the first aspect of the present invention is configured such that the absorption heat transfer tubes 4a , 4b, 4c absorption liquid inlet caps 22a, 22b, 22c.
The flow rate is adjusted by changing the opening areas of a, 23b, and 23c. Accordingly, the flow rate of the absorbing liquid which is different between the upstream side and the downstream side of the air flow is fixedly adjusted and set, whereby the operation of the first aspect of the present invention is effectively realized. As described above, according to the air-cooled absorption refrigeration apparatus of the present invention, the absorption efficiency and the absorption performance as a whole of a plurality of rows of absorption heat transfer tubes can be improved more effectively than before. As a result, a compact, high-performance air-cooled absorption refrigeration apparatus can be provided. DETAILED DESCRIPTION OF THE INVENTION (Embodiment 1) Figures 1 and 2 show a configuration of an air-cooled absorption type refrigerating apparatus according to a first embodiment of the present invention. In this air-cooled absorption refrigeration apparatus, for example, an aqueous solution of lithium bromide (aqueous solution of LiBr) is used as the absorbing liquid.
And water (H 2 O) as a refrigerant (liquid to be absorbed)
Has been adopted. In FIG. 1, reference numeral 1 denotes a high-temperature regenerator provided with a heating source such as a gas burner. Above the high-temperature regenerator 1, there is provided a gas-liquid separator 3 which is communicated via a liquid pumping pipe 2. In the high temperature regenerator 1,
The dilute solution of lithium bromide is heated and boiled and supplied to a gas-liquid separator 3 located above via a liquid raising pipe 2, where water vapor as a refrigerant vapor and a lithium bromide intermediate concentrated solution as an absorbing liquid ( (Intermediate concentration absorbing solution). The dilute lithium bromide solution supplied to the high-temperature regenerator 1 is obtained by absorbing water vapor as a refrigerant vapor into a lithium bromide concentrated solution as an absorption liquid in an air-cooled absorber 4 described later. After being effectively preheated sequentially through the solution heat exchanger 7 and the high-temperature solution heat exchanger 8, it is returned to the high-temperature regenerator 1. The water vapor separated by the gas-liquid separator 3 is then sent to a low-temperature regenerator 9 where it is condensed. The intermediate lithium bromide solution that has been gas-liquid separated in the gas-liquid separator 3 is heat-exchanged with the lithium bromide dilute solution from the air-cooled absorber 4 in the high-temperature solution heat exchanger 8. The low temperature regenerator 9 is supplied through the orifice 11. In the low-temperature regenerator 9, steam is exchanged between the steam supplied from the gas-liquid separator 3 and the lithium bromide intermediate concentrated solution as described above, so that steam can be removed. As much as possible, the residual water contained in the intermediate lithium bromide solution is evaporated, and a further concentrated lithium bromide concentrated solution is taken out. Next, the water vapor evaporated from the intermediate lithium bromide solution in the low-temperature regenerator 9 in this manner is sent to the air-cooled condenser 10 together with the condensed water in the water vapor mixed state supplied through the orifice 12. The condensed water is surely condensed and liquefied to become condensed water, and further supplied to the condensed water spraying device portion of the evaporator 13. On the other hand, the lithium bromide concentrated solution taken out from the low-temperature regenerator 9 is heat-exchanged with the lithium bromide dilute solution from the air-cooled absorber 4 in the low-temperature solution heat exchanger 7 and then supplied to the main supply pipe 18. From the first and second branch pipes 18a, 18 functioning as flow rate adjusting means.
The liquid is supplied to the first and second absorption liquid distributors 15a and 15b of the air-cooled absorber 4 via the portion 8b. The first and second branch pipes 18a and 18b are, as shown in FIG. 2, a first branch pipe corresponding to the first absorption liquid distributor 15a above the first absorption heat transfer pipe 4a on the upstream side of the air flow. 18
a has a large diameter, and the second and third absorption heat transfer tubes 4 on the downstream side of the air flow.
The second branch pipe 18b corresponding to the second absorption liquid distribution device 15b above the b and 4c is formed with a small diameter, so that a large amount of the absorption liquid flows into the first absorption heat transfer pipe 4a on the upstream side of the air flow. On the other hand, the second and third absorption heat transfer tubes 4
A small amount of absorbing liquid is allowed to flow through b and 4c. The air-cooled absorber 4 includes, for example, first to third pluralities of absorption heat transfer tubes 4a and 4 through which the absorption liquid flows vertically.
b, 4c and the first to third absorption heat transfer tubes 4a, 4b, 4
c A large number of radiating fins F, F provided on respective outer peripheral portions
.. Are provided above the first absorption heat transfer tube 4a, the second absorption heat transfer tube 4b, and the third absorption heat transfer tube 4c, respectively.
Absorption heat transfer tube 4a and the second and third absorption heat transfer tubes 4b,
4 c, the first and second absorbing liquid distributors 15 a and 15 b for distributing the absorbing liquid to each of them, and a blower fan 20. The evaporator 13 circulates a refrigerant (for example, R407) circulating in a secondary refrigerant cycle including the use side heat exchanger 14.
C) and the condensed water sent from the air-cooled condenser 10 exchange heat with each other, and serve as a cold heat source during the cooling operation. The air-cooled absorber 4 forms the dilute lithium bromide solution as described above by absorbing the water vapor evaporated by the evaporator 13 into the concentrated lithium bromide solution. After the lithium bromide dilute solution is once fixed to the lower header 16, it is regenerated at a high temperature through the low-temperature solution heat exchanger 7 and the high-temperature solution heat exchanger 8 by the solution pump 5 via the check valve 6 as described above. It is returned to the vessel 1 and is regenerated at a high temperature. As described above, the first to fourth air-cooled absorbers 4
As shown in the drawing, the third absorption heat transfer tubes 4a to 4c have large pipe diameters whose upstream and downstream sides of the first and second absorption liquid distribution devices 15a and 15b can be individually adjusted. 1. A second branch pipe 18a, 18b having a small pipe diameter is provided, and the absorption liquid supplied through the first and second branch pipes 18a, 18b is distributed to the first and second absorption liquids. The first and second absorption heat transfer tubes 4a, 4b and 4c are arranged to flow through the heat transfer tubes 4a, 4b and 4c through the devices 15a and 15b. The flow rate is set so that the flow rate is higher on the upstream side of the air flow than on the downstream side of the air flow. Therefore, in this configuration, the first to third
Are located on the upstream side of the air flow from the blower fan 20, and the lower the air temperature and the higher the cooling performance, the larger the amount of the absorbing liquid that flows, thereby exhibiting sufficient absorption performance. Become like On the other hand, the higher the air temperature is and the lower the air flow is on the downstream side, the lower the absorption performance is, the smaller the amount of the flowing absorption liquid is, and the heat exchange efficiency and the absorption efficiency are respectively improved. As a result, the heat absorption tubes 4a to 4c of the air-cooled absorber 4 as a whole can realize a uniform heat exchange capacity according to the cooling capacity, and the absorption efficiency and absorption performance of the absorber are improved. In the above configuration, the second absorbing liquid distributor 15b is connected to the second and third absorption heat transfer tubes 4b and 4c with respect to the first absorbing liquid distributor 15a. Is distributed, so that the supply amount of the absorbing liquid per one absorption heat transfer tube is inevitably small even in the normal case. Therefore, it is a matter of course that the setting of the pipe diameter of the first branch pipe 18a for increasing the flow rate on the upstream side is made in consideration of this point. (Modification 1) The first and second branch pipes 1 according to the first embodiment described above.
8a and 18b are configured to change the supply flow rate of the absorbing liquid by changing their tube diameters. For example, as shown in FIG.
An orifice 19 having a small-diameter through hole 19a as shown in FIG. 4 may be provided in the middle of the second branch pipe 18b where the supply flow rate of the absorbing liquid is to be relatively reduced. With such a configuration, it is possible to obtain exactly the same operation and effect (flow rate adjustment operation) as when the above-mentioned tube diameter is changed. (Modification 2) In the configuration of the first embodiment, the first airflow upstream side
The mutual flow rate was changed between the second row and the second row and the third row on the downstream side of the air flow, but this was done so that the flow rate was changed mutually in each of the first row, the second row, and the third row in three stages. It is more effective to make the air flow more upstream in the air flow. Second Embodiment Next, FIGS. 5 to 7 show a configuration of an air-cooled absorption refrigeration apparatus according to a second embodiment of the present invention. In this air-cooled absorption-type refrigeration apparatus, for example, a lithium bromide aqueous solution (LiBr aqueous solution) is used as the absorbing liquid.
And water (H 2 O) as a refrigerant (liquid to be absorbed)
Has been adopted. In FIG. 5, reference numeral 1 denotes a high-temperature regenerator provided with a heating source such as a gas burner. Above the high-temperature regenerator 1, there is provided a gas-liquid separator 3 which is communicated via a liquid pumping pipe 2. In the high temperature regenerator 1,
The dilute solution of lithium bromide is heated and boiled and supplied to a gas-liquid separator 3 located above via a liquid raising pipe 2, where water vapor as a refrigerant vapor and a lithium bromide intermediate concentrated solution as an absorbing liquid ( (Intermediate concentration absorbing solution). The dilute lithium bromide solution supplied to the high-temperature regenerator 1 is obtained by absorbing water vapor as refrigerant vapor into a lithium bromide concentrated solution as an absorption liquid in an air-cooled absorber 4 described later. After being effectively preheated sequentially through the solution heat exchanger 7 and the high-temperature solution heat exchanger 8, it is returned to the high-temperature regenerator 1. The water vapor separated by the gas-liquid separator 3 is then sent to a low-temperature regenerator 9 where it is condensed. The intermediate lithium bromide solution that has been gas-liquid separated in the gas-liquid separator 3 is heat-exchanged with the lithium bromide dilute solution from the air-cooled absorber 4 in the high-temperature solution heat exchanger 8. The low temperature regenerator 9 is supplied through the orifice 11. In the low-temperature regenerator 9, heat exchange is performed between the steam supplied from the gas-liquid separator 3 and the intermediate concentrated lithium bromide solution as described above, so that steam can be removed. As much as possible, the residual water contained in the intermediate lithium bromide solution is evaporated, and a further concentrated lithium bromide concentrated solution is taken out. Next, the water vapor evaporated from the lithium bromide intermediate concentrated solution in the low-temperature regenerator 9 in this manner is sent to the air-cooled condenser 10 together with the condensed water in the water vapor mixed state supplied through the orifice 12. The condensed water is surely condensed and liquefied to become condensed water, and further supplied to the condensed water spraying device portion of the evaporator 13. On the other hand, the lithium bromide concentrated solution taken out from the low-temperature regenerator 9 is heat-exchanged with the lithium bromide dilute solution from the air-cooled absorber 4 in the low-temperature solution heat exchanger 7 and then supplied to the main supply pipe 18. From the air-cooled absorber 4 functioning as a flow control and distribution means. As shown in FIG. 6, for example, as shown in FIG. 6, the absorption liquid distribution device 15 is provided in the absorption liquid distribution tray 16 of the first to third absorption heat transfer tubes 4a, 4b, 4c. Each of the first to third openings 21a to 21c is protruded at a predetermined height. The first to third absorption heat transfer tubes 4a, 4b, and 4c protrude into the trays.
The first to third openings 21a to 21c are provided on the outer periphery thereof.
Cylindrical first to third inlet caps 22a to 22c having a predetermined height higher than the opening portions 21a to 21c are provided, and the first to third inlet caps 22a to 22c are provided.
An annular first to third gap 24a to 24c having a predetermined dimension is formed between the first and third openings 21a to 21c. Each of the lower ends of the first to third inlet caps 22a to 22c has a plurality of (for example, two) slit-shaped first to first slits communicating with the first to third gaps 24a to 24c. 3. Absorbent inlets 23a to 23c
Are formed at equal intervals in the circumferential direction, for example. The first to first
The third absorbing liquid introduction ports 23a to 23c may be any as long as the absorbing liquid b accumulated at the inner bottom of the absorbing liquid distribution tray 16 can flow into the first to third gaps 24a to 24c.
Therefore, the shape is not necessarily limited to the above-described slit shape, for example, may be a semi-circular shape,
Further, it is not always necessary to form them at equal intervals in the circumferential direction. Then, the absorbing liquid b accumulated in the inner bottom of the absorbing liquid distribution tray 16 is firstly removed from the first to third absorbing liquid introduction ports 23a to 23c of the first to third inlet caps 22a to 22c.
23c to first to third gaps 24a between the first to third inlet caps 22a to 22c and the first to third openings 21a to 21c of the first to third absorption heat transfer tubes 4a to 4c. ~ 2
4c, and then the first to third absorption heat transfer tubes 4a to 4c.
c overflows, and flows down while uniformly wetting the inner wall. In the course of this flow, the refrigerant vapor a from the evaporator 13 is efficiently absorbed. Therefore, even if the level of the absorbing liquid b stored in the absorbing liquid distribution tray 16 fluctuates, the fluctuation is transmitted to the absorbing liquid b stored in the first to third gaps 24a to 24c. The overflow of the absorbent b from the first to third gaps 24a to 24c into the first to third absorption heat transfer tubes 4a to 4c is always maintained in a steady state. And thereby, the stable absorption efficiency in the air-cooled absorber 4 can be maintained. By the way, the first to third absorbent inlets 23a to 23a of the first to third inlet caps 22a to 22c.
3c is a first absorption heat transfer tube 4 on the upstream side of the airflow as shown in the figure.
The first inlet cap 22a on the upper side has a large opening area (high in height), and the second and third inlet caps on the second and third absorption heat transfer tubes 4b and 4c on the downstream side of the air flow. 22
b, 22c are formed in a small opening area (with a small height), whereby a large amount of absorbing liquid flows through the first absorption heat transfer tube 4a on the upstream side of the air flow, while the second absorption downstream side on the air flow side. ,
A small amount of absorbing liquid flows through the third absorption heat transfer tubes 4b and 4c. The air-cooled absorbers 4 are arranged side by side from the upstream side to the downstream side of the air flow, and the above-mentioned first air-absorbing liquid flows vertically.
.. To a plurality of third absorption heat transfer tubes 4a, 4b, 4c, and a large number of radiation fins F, F,... Provided on the outer periphery of each of the first to third absorption heat transfer tubes 4a, 4b, 4c. And provided above the first, second, and third absorption heat transfer tubes 4a, 4b, and 4c, and the first, second, and third absorption heat transfer tubes 4a,
The apparatus is provided with the above-described absorbent distributing device 15 for distributing the absorbent in common to each of 4b and 4c, and a blower fan 20. The evaporator 13 circulates a refrigerant (for example, R407) circulating in the secondary refrigerant cycle including the use side heat exchanger 14.
C) and the condensed water sent from the air-cooled condenser 10 exchange heat with each other, and serve as a cold heat source during the cooling operation. The air-cooled absorber 4 absorbs the water vapor evaporated by the evaporator 13 into the concentrated lithium bromide solution to form a dilute lithium bromide solution as described above. After the lithium bromide dilute solution is once retained in the lower header 16, the solution pump 5
As described above, the heat is returned to the high-temperature regenerator 1 via the low-temperature solution heat exchanger 7 and the high-temperature solution heat exchanger 8 to be regenerated at a high temperature. As described above, the first to the first air-cooled absorbers 4
As shown in FIG. 6, each of the third absorption heat transfer tubes 4a to 4c has an absorption liquid distribution tray 1 of the absorption liquid distribution device 15.
Six portions have first to third absorption liquid introduction ports 23a to 23c having different opening areas which can individually adjust the flow rates for the first to third absorption heat transfer tubes 4a, 4b, and 4c. First to third inlet caps 22a to 22c are provided, and the absorbent supplied through the first to third inlet caps 22a to 22c is supplied to the first, second, and third absorption heat transfer tubes 4a. , 4b, and 4c, and the first to third absorbing liquid inlets 23a to 23c have a large opening area of the first absorbing liquid inlet 23a on the upstream side of the air flow. In each case, the flow rate of the absorbing liquid flowing through the heat transfer tube portion is set so as to be larger at the upstream side of the air flow than at the downstream side of the air flow. Therefore, in this configuration, the first to third
The absorption heat transfer tubes 4a to 4c are located upstream of the airflow from the blower fan 20, and the lower the air temperature and the higher the cooling performance, the larger the amount of the absorbing liquid that flows, thereby exhibiting sufficient absorption performance. Become like On the other hand, the higher the air temperature is and the lower the air flow is on the downstream side of the absorption performance, the smaller the amount of the flowing absorbent is, and the heat exchange efficiency and the absorption efficiency are respectively improved. As a result, as a whole, the first to third absorption heat transfer tubes 4a to 4c of the air-cooled absorber 4 can realize a uniform heat exchange capacity according to the cooling capacity, and the absorption efficiency of the absorber, Improves absorption performance. (Modification 1) In the above embodiment, the openings of the first to third absorbing liquid inlets 23a to 23c of the first to third inlet caps 22a to 22c of the absorbing liquid distribution tray 16 are respectively provided. By changing the area, the flow rate of the absorbing solution was adjusted,
This changes the diameter of the first to third inlet caps 22a to 22c themselves, and the first to third absorption heat transfer tubes 4a to 4c.
The size of the first to third gaps 24a to 24c between the openings 21a to 21c at the upper end of the c is different, or the upper ends 21a of the first to third absorption heat transfer tubes 4a to 4c. ~
The flow rate may be adjusted by changing the protruding height of 21c above. (Modification 2) In the above-described embodiment, the opening areas of the first to third absorbing liquid inlets 23a to 23c are set to the first absorbing liquid inlet 23a on the upstream side of the air flow and the downstream side of the first absorbing liquid inlet 23a. Although the second and third absorption liquid introduction ports 23b and 23c are changed in two stages,
This is more effective if it is changed in three stages so that the higher the order is, the more upstream it is. This is because the diameters of the first to third inlet caps 22a to 22c of the first modification and the first to third inlet caps are different.
The same applies to the heights of the third openings 21a to 21c.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の実施の形態1に係る空冷吸収式冷凍
装置の装置全体の構成を示す図である。
FIG. 1 is a diagram showing the overall configuration of an air-cooled absorption refrigeration apparatus according to Embodiment 1 of the present invention.

【図2】同装置の要部の構成を示す拡大図である。FIG. 2 is an enlarged view showing a configuration of a main part of the apparatus.

【図3】同装置の要部の変形例を示す拡大図である。FIG. 3 is an enlarged view showing a modified example of a main part of the device.

【図4】図3の構成における要部の部品の拡大図であ
る。
FIG. 4 is an enlarged view of a main part in the configuration of FIG. 3;

【図5】本願発明の実施の形態2に係る空冷吸収式冷凍
装置の装置全体の構成を示す図である。
FIG. 5 is a diagram showing a configuration of an entire air-cooled absorption refrigeration apparatus according to Embodiment 2 of the present invention.

【図6】同装置の要部の構成を示す拡大断面図である。FIG. 6 is an enlarged sectional view showing a configuration of a main part of the device.

【図7】同装置の要部の部品の構成を示す拡大図であ
る。
FIG. 7 is an enlarged view showing a configuration of a main part of the apparatus.

【符号の説明】[Explanation of symbols]

1は高温再生器、2は揚液管、3は気液分離器、4は空
冷吸収器、4aは第1の吸収伝熱管、4bは第2の吸収
伝熱管、4cは第3の吸収伝熱管、5は溶液ポンプ、9
は低温再生器、10は空冷凝縮器、13は蒸発器、15
は吸収液分配装置、15aは第1の吸収液分配装置、1
5bは第2の吸収液分配装置、16は吸収液分配トレ
イ、18aは第1の分岐管、18bは第2の分岐管、2
2a〜22cは第1〜第3の入口キャップ、23a〜2
3cは第1〜第3の吸収液導入口である。
1 is a high-temperature regenerator, 2 is a liquid pump, 3 is a gas-liquid separator, 4 is an air-cooled absorber, 4a is a first absorption heat transfer tube, 4b is a second absorption heat transfer tube, and 4c is a third absorption transfer tube. Heat tube, 5 is a solution pump, 9
Is a low-temperature regenerator, 10 is an air-cooled condenser, 13 is an evaporator, 15
Is an absorption liquid distribution device, 15a is a first absorption liquid distribution device, 1
5b is a second absorption liquid distribution device, 16 is an absorption liquid distribution tray, 18a is a first branch pipe, 18b is a second branch pipe,
2a to 22c are first to third inlet caps, 23a to 2c
Reference numeral 3c denotes first to third absorbing liquid inlets.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川端 克宏 大阪府堺市金岡町1304番地 ダイキン工 業株式会社堺製作所 金岡工場内 (56)参考文献 特開 平6−307734(JP,A) 特開 昭50−50748(JP,A) 特開 平10−246532(JP,A) 特公 平7−21364(JP,B2) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 303 F25B 15/00 306 F25B 37/00 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Katsuhiro Kawabata 1304 Kanaokacho, Sakai-shi, Osaka Daikin Industries, Ltd. Sakai Works Kanaoka Factory (56) References JP-A-6-307773 (JP, A) 50-50748 (JP, A) JP-A-10-246532 (JP, A) JP 7-21364 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 15 / 00 303 F25B 15/00 306 F25B 37/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 吸収液に冷媒蒸気を吸収させる複数列の
吸収伝熱管(4a),(4b),(4c)よりなる空冷
吸収器(4)と、該空冷吸収器(4)を空気流により冷
却する送風手段(20)と、上記複数列の吸収伝熱管
(4a),(4b),(4c)の各々に流す吸収液の流
量を調節する流量調節手段(18a),(18b)、
(23a),(23b),(23c)とを備えてなる空
冷吸収式冷凍装置において、上記流量調節手段(18
a),(18b)、(23a),(23b),(23
c)は、複数列の吸収伝熱管(4a),(4b),(4
c)の内の空気流上流側のものほど下流側のものに比べ
て吸収液の流量が多くなるように流量を調節するように
なっていることを特徴とする空冷吸収式冷凍装置。
1. An air-cooled absorber (4) comprising a plurality of rows of absorption heat transfer tubes (4a), (4b) and (4c) for absorbing a refrigerant vapor into an absorbent, and an air-cooled absorber (4). Air blower means (20) for cooling by means of flow rate control means (18a), (18b);
(23a), (23b), (23c), in the air-cooled absorption refrigeration system comprising:
a), (18b), (23a), (23b), (23)
c) is a plurality of rows of absorption heat transfer tubes (4a), (4b), (4).
An air-cooled absorption refrigeration system characterized in that the flow rate of the absorption liquid is adjusted so that the flow rate of the absorption liquid is higher at the upstream side of the air flow in (c) than at the downstream side.
【請求項2】 流量調節手段(18a),(18b)
は、空冷吸収器(4)の吸収液分配部(15a),(1
5b)への吸収液分岐配管の管径を変えることにより、
流量を調節するように構成されていることを特徴とする
請求項1記載の空冷吸収式冷凍装置。
2. Flow rate adjusting means (18a), (18b)
Are the absorption liquid distributors (15a), (1) of the air-cooled absorber (4).
By changing the diameter of the absorption liquid branch pipe to 5b),
The air-cooled absorption refrigeration system according to claim 1, wherein the air-cooling absorption refrigeration system is configured to adjust a flow rate.
【請求項3】 流量調節手段(23a),(23b),
(23c)は、吸収液分配部(15)の各吸収伝熱管
(4a),(4b),(4c)の吸収液入口キャップ
(22a),(22b),(22c)の径を変えること
により、流量を調節するように構成されていることを特
徴とする請求項1記載の空冷吸収式冷凍装置。
3. The flow control means (23a), (23b),
(23c) is obtained by changing the diameter of the absorption liquid inlet caps (22a), (22b) and (22c) of the absorption heat transfer tubes (4a), (4b) and (4c) of the absorption liquid distribution section (15). The air-cooled absorption refrigeration system according to claim 1, wherein the air-flow absorption refrigeration system is configured to adjust a flow rate.
【請求項4】 流量調節手段(23a),(23b),
(23c)は、吸収液分配部(15)の各吸収伝熱管
(4a),(4b),(4c)の吸収液入口キャップ
(22a),(22b),(22c)の吸収液導入口
(23a),(23b),(23c)の開口面積を変え
ることにより、流量を調節するように構成されているこ
とを特徴とする請求項1記載の空冷吸収式冷凍装置。
4. A flow control means (23a), (23b),
(23c) is an absorption liquid inlet port (22a) of each absorption heat transfer tube (4a), (4b) and (4c) of the absorption liquid distribution part (15), (22b) and (22c). 2. The air-cooled absorption refrigeration system according to claim 1, wherein the flow rate is adjusted by changing the opening area of each of 23a), 23b and 23c.
JP11131297A 1997-04-28 1997-04-28 Air-cooled absorption refrigeration system Expired - Fee Related JP3216567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11131297A JP3216567B2 (en) 1997-04-28 1997-04-28 Air-cooled absorption refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11131297A JP3216567B2 (en) 1997-04-28 1997-04-28 Air-cooled absorption refrigeration system

Publications (2)

Publication Number Publication Date
JPH10300258A JPH10300258A (en) 1998-11-13
JP3216567B2 true JP3216567B2 (en) 2001-10-09

Family

ID=14558043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11131297A Expired - Fee Related JP3216567B2 (en) 1997-04-28 1997-04-28 Air-cooled absorption refrigeration system

Country Status (1)

Country Link
JP (1) JP3216567B2 (en)

Also Published As

Publication number Publication date
JPH10300258A (en) 1998-11-13

Similar Documents

Publication Publication Date Title
US7066241B2 (en) Method and means for miniaturization of binary-fluid heat and mass exchangers
JP2000179989A (en) Sprinkler of absorption water cooler/heater
US10816271B2 (en) Heat exchanger and absorption refrigerator
JP3216567B2 (en) Air-cooled absorption refrigeration system
WO2022224554A1 (en) Absorber unit for absorption refrigerator, heat exchange unit, and absorption refrigerator
JP2568769B2 (en) Absorption refrigerator
JP3879176B2 (en) Air-cooled absorption refrigeration system
JP3997594B2 (en) Air-cooled absorber
JP4598633B2 (en) Absorption refrigerator
JPH0446339B2 (en)
US6802364B1 (en) Method and means for miniaturization of binary-fluid heat and mass exchangers
JP3171138B2 (en) Air-cooled absorption refrigeration system
JPH0518633A (en) Absorption refrigerating apparatus
WO2022138018A1 (en) Absorber for absorption chiller, heat exchange unit for absorption chiller, and absorption chiller
JP2877420B2 (en) Absorption refrigerator
KR0140627B1 (en) Refrigerant Heat Exchanger for Pressure Drop of Absorption Air Conditioner
JP3944043B2 (en) Air-cooled absorber
JP2993454B2 (en) Air-cooled absorption refrigeration system
JPH10122700A (en) Air-cooled absorption refrigerating apparatus
JP3938712B2 (en) High-temperature regenerator and absorption chiller / heater
JPH0721364B2 (en) Air-cooled absorption type water heater
JP2607038B2 (en) Absorption refrigeration equipment
JPH071131B2 (en) Air-cooled absorption type water heater
JPH11248292A (en) Absorption refrigerating device
JPH11230636A (en) Air-cooled absorption refrigerator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees