JP2000038608A - Rare earthmetal-iron-nitrogen based magnetic powder and its production - Google Patents
Rare earthmetal-iron-nitrogen based magnetic powder and its productionInfo
- Publication number
- JP2000038608A JP2000038608A JP10209210A JP20921098A JP2000038608A JP 2000038608 A JP2000038608 A JP 2000038608A JP 10209210 A JP10209210 A JP 10209210A JP 20921098 A JP20921098 A JP 20921098A JP 2000038608 A JP2000038608 A JP 2000038608A
- Authority
- JP
- Japan
- Prior art keywords
- acid
- magnetic powder
- treatment
- rare
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、希土類遷移金属合金粉
末のみならず、希土類遷移金属の金属間化合物の新規な
製造方法に係り、特に、良好な磁気特性を有する合金粉
末の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing not only rare earth transition metal alloy powder but also an intermetallic compound of rare earth transition metal, and more particularly to a method for producing an alloy powder having good magnetic properties. It is.
【0002】[0002]
【従来の技術】希土類元素と遷移金属(鉄、コバルト、
ニッケル)からなる合金あるいは化合物は、産業上極め
て重要な材料である。例えばSmCo5は永久磁石、L
aNi5は水素吸蔵合金に使用される。また希土類-遷移
金属-ホウ素からなる化合物、例えば、Nd2Fe14Bは
超強力磁石としてその市場を急拡大させている。一方、
希土類−遷移金属−窒素からなる化合物(Sm2Fe17
N3等)は次世代の永久磁石材料として期待され、特に
ボンド磁石に関連した研究がなされている。2. Description of the Related Art Rare earth elements and transition metals (iron, cobalt,
An alloy or a compound of (nickel) is an extremely important material in industry. For example, SmCo5 is a permanent magnet, L
aNi5 is used for a hydrogen storage alloy. Also, compounds comprising rare earth-transition metal-boron, for example, Nd2Fe14B, are rapidly expanding the market as super-strong magnets. on the other hand,
Rare earth-transition metal-nitrogen compound (Sm2Fe17
N3) is expected as a next-generation permanent magnet material, and researches particularly on bond magnets have been made.
【0003】ところで、これらの希土類元素と遷移金属
からなる合金あるいは化合物の形態として、数μmの粉
末状が求められることが多い。そのような合金粉末を得
るためには、希土類元素酸化物粉末と遷移金属粉末を混
合し、これをカルシウム蒸気中で加熱することで希土類
元素酸化物を還元して、遷移金属中に拡散させる還元拡
散法が知られている。還元拡散法は安価な希土類元素酸
化物を使用できることや、合金が還元と同時に得られる
という利点があり、永久磁石用のSmCo5金属間化合
物、又はSm2Co17系合金の製造には広くこの方法が
用いられている。[0003] By the way, as a form of an alloy or a compound composed of these rare earth elements and a transition metal, a powder of several μm is often required. In order to obtain such an alloy powder, a rare-earth element oxide powder and a transition metal powder are mixed, and the mixture is heated in calcium vapor to reduce the rare-earth element oxide and diffuse into the transition metal. Diffusion methods are known. The reduction diffusion method has an advantage that an inexpensive rare earth element oxide can be used and that an alloy can be obtained at the same time as reduction. This method is widely used in the production of SmCo5 intermetallic compounds for permanent magnets or Sm2Co17-based alloys. ing.
【0004】還元拡散工程により得られる生成物は多孔
質状の合金ブロックであり、これは目的の還元された合
金材料とともに金属Ca等の還元剤が含まれた状態とな
っている。磁性粉末を得るには、多孔質ブロックを水中
に投入して崩壊し、粉末化する工程を経ることになる。
これを磁性粉末製品に仕上げるには、従来より、デカン
テーション等による水洗、酸処理を行い、最後に分離乾
燥して、目的の磁性粉末を得ていた。この還元拡散法に
よる磁性粉末の粒子的性質は、原料に選ぶ遷移金属、或
いは希土類元素の酸化物の粒径、粒度分布及び粒子形状
に依存し、微小な粒のそろった酸化物粒子を混合するこ
とにより、粒度分布の比較的シャープな小粒子の磁性粉
末を粉砕工程なしで得ることができる。[0004] The product obtained by the reduction diffusion step is a porous alloy block, which contains a reducing agent such as metal Ca together with the desired reduced alloy material. In order to obtain a magnetic powder, the porous block is put into water, collapsed and powdered.
In order to finish this into a magnetic powder product, conventionally, washing with water by decantation or the like, acid treatment, and finally, separation and drying have been performed to obtain a target magnetic powder. The particle properties of the magnetic powder obtained by the reduction diffusion method depend on the particle size, particle size distribution, and particle shape of the oxide of the transition metal or rare earth element selected as the raw material, and the oxide particles having a uniform size are mixed. Thereby, a magnetic powder of small particles having a relatively sharp particle size distribution can be obtained without a pulverizing step.
【0005】この還元拡散法を適用することにより得ら
れる希土類鉄窒素系磁性粉末は、優れた磁気特性を有
し、特にボンド磁石への応用については有望視される。[0005] The rare earth iron-nitrogen based magnetic powder obtained by applying this reduction diffusion method has excellent magnetic properties, and is particularly promising for application to bonded magnets.
【0006】[0006]
【発明が解決しようとする課題】ところで、ボンド磁石
用のコンパウンドは、主として磁性粉末と樹脂からな
る。このコンパウンドは、磁性粉末が全体に均質に混合
されるように150〜350℃の温度範囲で機械的に混
練される。この混練の際にコンパウンドの流動性が悪い
とせん断熱が生じ、磁性粉末粒子及び樹脂が熱劣化を起
こす。また粒子同士のせりによって粒子に応力がかかり
磁気特性の劣化を生じる。さらに磁場成形時には粒子が
動きにくいために配向性が悪くなるという問題が発生す
る。The compound for a bonded magnet mainly comprises a magnetic powder and a resin. This compound is mechanically kneaded in a temperature range of 150 to 350 ° C. so that the magnetic powder is homogeneously mixed throughout. If the compound has poor fluidity during the kneading, shear heat is generated, and the magnetic powder particles and the resin are thermally degraded. In addition, stress is applied to the particles due to the agglomeration of the particles, and the magnetic characteristics are deteriorated. Further, at the time of magnetic field molding, there is a problem that the orientation is deteriorated because the particles are hard to move.
【0007】従って、本発明の目的は、この還元拡散法
を基本にして調製される希土類鉄窒素系磁性粉末をさら
に改良し、それを使用したボンド磁石の保磁力、磁化等
の磁気特性をさらに改良することにある。Accordingly, an object of the present invention is to further improve the rare earth iron-nitrogen based magnetic powder prepared based on this reduction diffusion method, and to further improve the magnetic properties such as the coercive force and magnetization of the bonded magnet using the same. To improve.
【0008】[0008]
【発明を解決するための手段】本発明者等は、還元拡散
により合成された磁性粉末と樹脂との親和性を高めるこ
とにより、ボンド磁石用のコンパウンドの調製の混練時
によけいなエネルギーを加えなくてすみ、その結果、磁
性粉末の熱、あるいは機械応力による劣化を防ぐことが
できると考え、還元拡散工程を経た後に得られた磁性粉
末について、種々の表面処理を鋭意検討した結果、磁気
特性の改良をなすことができた。Means for Solving the Problems The present inventors have improved the affinity between a magnetic powder synthesized by reduction diffusion and a resin, so that no extra energy is added during kneading in the preparation of a compound for a bonded magnet. As a result, we thought that the deterioration of the magnetic powder due to heat or mechanical stress can be prevented, and as a result of intensive examination of various surface treatments on the magnetic powder obtained after the reduction diffusion step, Improvements could be made.
【0009】すなわち、本発明の希土類鉄窒素系磁性材
料の製造方法は、希土類酸化物を含む原料粉末を還元拡
散及び窒化を行い合金ブロックを得、該合金ブロックを
水に浸漬して崩壊し、その後水洗及び酸処理を行う希土
類鉄窒素系磁性粉末の製造方法において、該酸処理は、
弱酸による処理と、その後に5B族元素と酸素からなる
酸を含む酸による処理からなることを特徴とする。That is, according to the method for producing a rare earth iron-nitrogen based magnetic material of the present invention, a raw material powder containing a rare earth oxide is subjected to reduction diffusion and nitridation to obtain an alloy block, and the alloy block is immersed in water and collapsed. In a method for producing a rare earth iron-nitrogen based magnetic powder, which is then subjected to water washing and acid treatment, the acid treatment comprises:
It is characterized by comprising a treatment with a weak acid, followed by a treatment with an acid containing an acid comprising a Group 5B element and oxygen.
【0010】使用する弱酸として、蟻酸、酢酸、プロピ
オン酸の内の少なくとも一種であることが好ましい。The weak acid used is preferably at least one of formic acid, acetic acid and propionic acid.
【0011】5B族元素と酸素からなる酸は、リン酸、
ヒ酸、アンチモン酸、ビスマス酸が好ましく使用でき
る。The acid comprising a Group 5B element and oxygen is phosphoric acid,
Arsenic acid, antimonic acid and bismuth acid can be preferably used.
【0012】酸処理に使用する5B族元素と酸素からな
る酸の濃度は、0.005〜1.0重量%の範囲である
ことが好ましい。[0012] The concentration of the acid consisting of a Group 5B element and oxygen used in the acid treatment is preferably in the range of 0.005 to 1.0% by weight.
【0013】[0013]
【発明の実施の形態】本発明の製造方法が適用可能であ
る磁性粉末は、希土類鉄窒素系であり、希土類元素とし
て、Y、Nd、Pr、La、Ce、Tb、Dy、Ho、
Er、Eu、Sm、Gd、Er、Tm、Yb、Luのう
ちの少なくとも一種であればよい。その代表的なものと
してSm2Fe17N3があり、残留磁化、保磁力、キュリ
ー温度等の磁気性能は体の材料に比べて特に優れてい
る。BEST MODE FOR CARRYING OUT THE INVENTION The magnetic powder to which the production method of the present invention is applicable is a rare earth iron-nitrogen-based material, and as rare earth elements, Y, Nd, Pr, La, Ce, Tb, Dy, Ho,
It may be at least one of Er, Eu, Sm, Gd, Er, Tm, Yb, and Lu. A typical example is Sm2Fe17N3, and its magnetic properties such as residual magnetization, coercive force, and Curie temperature are particularly superior to those of the body material.
【0014】還元拡散工程に供する原料は、希土類元素
はその酸化物であり、例えばY2O3、Nd2O3、Pr2
O3、La2O3、CeO2、Tb4O7、Dy2O3、Ho2
O3、Er2O3、Eu2O3、Sm2O3、Gd2O3、Er2
O3、Tm2O3、Yb2O3、Lu2O3等を使用する。鉄
原料は、金属鉄を基本に使用するが、FeO、Fe3O
4、Fe2O3等を用いても良く、さらに、希土類元素と
酸化鉄の複酸化物を使用することも可能である。The raw material to be subjected to the reduction diffusion step is a rare earth element whose oxide is, for example, Y 2 O 3, Nd 2 O 3, Pr 2
O3, La2O3, CeO2, Tb4O7, Dy2O3, Ho2
O3, Er2O3, Eu2O3, Sm2O3, Gd2O3, Er2
O3, Tm2O3, Yb2O3, Lu2O3 and the like are used. The iron raw material is based on metallic iron, but FeO, Fe3O
4. Fe2O3 or the like may be used, and a double oxide of a rare earth element and iron oxide may be used.
【0015】これら原料粉末は、平均粒子径5μm以下で
ある必要がある。さらに好ましくは平均粒子径が0.2
μmから2μmの範囲にあることが望ましく、また最大
粒子径は10μmを超えてはならない。もし平均粒子径
が5μm以上であれば最終的に得られる磁性粉末の粒子
径も5μmを超えてしまい、Sm・Fe・N系磁性材料
では、特に粒径が重要である。These raw material powders need to have an average particle diameter of 5 μm or less. More preferably, the average particle size is 0.2
It is preferably in the range from μm to 2 μm and the maximum particle size should not exceed 10 μm. If the average particle size is 5 μm or more, the particle size of the finally obtained magnetic powder also exceeds 5 μm, and the particle size is particularly important for Sm · Fe · N magnetic materials.
【0016】還元拡散法に使用する還元剤は、粒度4メ
ッシュ以下の粒状金属カルシウムが好適に使用できる。
これらの還元剤は、反応当量(希土類酸化物を還元する
のに必要な化学量論量であり、遷移金属を酸化物の形で
使用した場合には、これを還元するに必要な分を含む)
の 1.1〜3.0倍量、好ましくは 1.5〜2.0
倍量の割合で使用する。As the reducing agent used in the reduction diffusion method, granular metallic calcium having a particle size of 4 mesh or less can be suitably used.
These reducing agents have a reaction equivalent (the stoichiometric amount necessary to reduce the rare earth oxide, and if the transition metal is used in the form of an oxide, it contains the amount necessary to reduce it. )
1.1 to 3.0 times, preferably 1.5 to 2.0 times
Use at twice the rate.
【0017】還元拡散工程で得る合金ブロック(反応生
成物)は、副生するCaO、未反応の過剰カルシウム及
び生成合金粉末の混合物であって、これらが複合した焼
結塊状態である。次にこの生成混合物を冷却水中に投入
して、CaO及び金属カルシウムをCa(OH)2懸濁
物として合金粉末から分離する。The alloy block (reaction product) obtained in the reduction diffusion step is a mixture of CaO by-produced, unreacted excess calcium, and produced alloy powder, and is in a sintered mass state in which these are combined. This product mixture is then poured into cooling water to separate CaO and metallic calcium from the alloy powder as a Ca (OH) 2 suspension.
【0018】還元拡散による還元反応が終了した後、崩
壊工程に移行する前に、同じ炉内で引き続き窒素ガス、
或いは加熱により分解して窒素を供給しうる化合物ガス
を導入することで窒化することができる。還元拡散工程
で希土類鉄系合金が多孔質塊状で得られるため、粉砕を
行うことなく直ちに窒素雰囲気中で熱処理を行うことが
でき、これにより窒化が均一に行われ、希土類鉄窒素合
金を得る。この窒化処理は、上記還元のための加熱温度
領域から降温させて、150〜800℃の範囲で行い、
300〜600℃の範囲が好ましく、特に400〜55
0℃の温度が最適である。この温度範囲で雰囲気を窒素
雰囲気とすることにより窒化できる。例えば、この窒化
処理温度が 150℃未満であると、希土類鉄系合金中
への窒素の拡散が不十分となり、窒化を均一に行うこと
が困難となる。さらに窒化温度が800℃を超えると、
希土類鉄系合金が希土類・窒素系化合物と、α−鉄に分
解するため、得られる合金粉末の磁気特性が著しく低下
する。上記熱処理時間は、窒化が十分に均一に行われる
程度に設定されるが、一般にこの時間は、2〜20時間
程度である。After the reduction reaction by reduction diffusion is completed, before moving to the collapse step, nitrogen gas,
Alternatively, nitriding can be performed by introducing a compound gas capable of supplying nitrogen by being decomposed by heating. Since the rare-earth iron-based alloy is obtained in the form of a porous mass in the reduction diffusion step, heat treatment can be immediately performed in a nitrogen atmosphere without pulverization, whereby nitriding is performed uniformly, and a rare-earth iron-nitrogen alloy is obtained. This nitriding treatment is performed at a temperature of 150 to 800 ° C. by lowering the temperature from the heating temperature range for the reduction.
It is preferably in the range of 300 to 600 ° C, particularly 400 to 55 ° C.
A temperature of 0 ° C. is optimal. Nitriding can be performed by setting the atmosphere in this temperature range to a nitrogen atmosphere. For example, when the nitriding temperature is lower than 150 ° C., diffusion of nitrogen into the rare-earth iron-based alloy becomes insufficient, and it becomes difficult to perform uniform nitriding. Further, when the nitriding temperature exceeds 800 ° C.,
Since the rare-earth iron-based alloy is decomposed into the rare-earth / nitrogen-based compound and α-iron, the magnetic properties of the obtained alloy powder are significantly reduced. The heat treatment time is set to such an extent that the nitriding is performed sufficiently uniformly, and generally, this time is about 2 to 20 hours.
【0019】窒化処理工程で得た合金ブロックを純水に
浸漬すると、合金ブロックは崩壊し、合金粉末の副生成
物であるCa成分(酸化カルシウム、水酸化カルシウ
ム、窒化カルシウム)、窒化カルシウム等の分離が始ま
る。デカンテーションを数回繰り返し、副生成物をある
程度除く。When the alloy block obtained in the nitriding treatment step is immersed in pure water, the alloy block collapses, and Ca components (calcium oxide, calcium hydroxide, calcium nitride) and calcium nitride, which are by-products of the alloy powder, are removed. Separation begins. Repeat decantation several times to remove some by-products.
【0020】本発明の特徴は、この後の弱酸処理におい
て、弱酸処理とそれに引き続く5B族の元素と酸素から
なる酸を含む酸で表面処理することを特徴とする。A feature of the present invention is that in the subsequent weak acid treatment, the surface is treated with a weak acid treatment followed by an acid containing an acid composed of an element of group 5B and oxygen.
【0021】<弱酸処理>この工程はデカンテーション
では除去できなかったCaを酸により溶かすと共に、反
応していない希土類金属、遷移金属を溶かし除くことを
目的としている。この溶解には、酸として蟻酸、酢酸、
プロピオン酸、クエン酸等の弱酸が好ましく使用でき
る。それは、塩酸、硫酸等の強酸を使用した場合、表面
のCaあるいは異相の溶解だけでなく、内部の磁性材料
組織まで溶解してしまい、その結果として、磁気特性の
低下を誘発することになるからである。弱酸の中でも、
特に、酢酸が安価なことも含めて好ましく使用できる。<Weak Acid Treatment> This step aims at dissolving Ca, which could not be removed by decantation, with an acid and dissolving unreacted rare earth metals and transition metals. For this dissolution, formic acid, acetic acid,
Weak acids such as propionic acid and citric acid can be preferably used. If a strong acid such as hydrochloric acid or sulfuric acid is used, not only dissolution of Ca or a different phase on the surface, but also dissolution of the internal magnetic material structure, as a result, a decrease in magnetic properties is induced. It is. Among weak acids,
In particular, acetic acid can be preferably used, including its low cost.
【0022】弱酸水溶液の濃度としては0.005%以
上5%以下が好ましく、より好ましくは0.05%以上
0.1%以下である。0.005%未満では溶解が不十
分でCa洗浄効果がほとんど認められない。逆に、5.
0%を越えると、表面が酸化してしまうので好ましくな
い。弱酸水溶液の量は、その中に希土類遷移金属窒化物
系磁性粉末を入れて充分撹拌できる量であれば良く、必
要量より過剰に使用してもかまわない。作業工程上取り
扱い易いのは、希土類遷移金属窒化物系磁性粉末に対し
て体積で3倍量から50倍量の範囲である。The concentration of the weak acid aqueous solution is preferably from 0.005% to 5%, more preferably from 0.05% to 0.1%. If it is less than 0.005%, the dissolution is insufficient and the Ca cleaning effect is hardly recognized. Conversely, 5.
If it exceeds 0%, the surface is oxidized, which is not preferable. The amount of the weak acid aqueous solution may be such that the rare-earth transition metal nitride-based magnetic powder can be sufficiently stirred therein and may be used in excess of the required amount. What is easy to handle in the working process is in the range of 3 times to 50 times the volume of the rare earth transition metal nitride-based magnetic powder.
【0023】<5B族元素と酸素からなる酸を含む酸に
よる処理>5B族元素と酸素からなる酸とは、5B族元
素であるN、P、As、Sb、Biの内のNを除く元素
と酸素が結合したことにより得られる酸であり、リン
酸、ヒ酸、アンチモン酸、ビスマス酸が使用できる。こ
こでリン酸とは、五酸化二リンP2O5が水和してできる
酸をいい、メタリン酸、ピロリン酸、オルトリン酸、三
リン酸、四リン酸などがある。ヒ酸とは、五酸化二ヒ素
As2O5が水化してできる酸をいい、水溶液としてはオ
ルトヒ酸が使用できる。アンチモン酸とは、五酸化二ア
ンチモンの水化物をいい、オルトアンチモン酸、メタア
ンチモン酸、ピロアンチモン酸、三アンチモン酸があ
る。Nと酸素からなる酸は酸化作用があり、使用できな
い。<Treatment with an acid containing an acid consisting of a group 5B element and oxygen> The acid consisting of a group 5B element and oxygen is an element excluding N among the group 5B elements N, P, As, Sb, and Bi And an acid obtained by bonding oxygen and oxygen, and phosphoric acid, arsenic acid, antimonic acid and bismuth acid can be used. Here, the phosphoric acid means an acid formed by hydration of diphosphorus pentoxide P2O5, and includes metaphosphoric acid, pyrophosphoric acid, orthophosphoric acid, triphosphoric acid, tetraphosphoric acid and the like. Arsenic acid refers to an acid formed by the hydration of arsenic pentoxide As2 O5, and orthoarsenic acid can be used as an aqueous solution. Antimonic acid refers to a hydrate of diantimony pentoxide, and includes orthoantimonic acid, metaantimonic acid, pyroantimonic acid and triantimonic acid. An acid consisting of N and oxygen has an oxidizing effect and cannot be used.
【0024】5B族元素と酸素からなる酸の濃度は、
0.005%以上1%以下が好ましく、より好ましくは
0.01%以上0.1%以下である。0.005%未満
では表面処理が不十分であり、1.0%を越えると表面
が酸化してしまうので好ましくない。この5B族元素と
酸素からなる酸による化成処理は、懸濁液中で行う方
法、乾燥前のケーキに添加する方法、のどちらでも良
い。の場合は、前述の弱酸と同様に懸濁操作ができる
量あればよく、ケーキに添加する場合は、希土類遷移
金属窒化物系磁性粉末全体に行き渡る量であればよい。
どちらの場合も、多すぎても特性に悪影響を与えない。The concentration of the acid consisting of the Group 5B element and oxygen is as follows:
The content is preferably 0.005% or more and 1% or less, more preferably 0.01% or more and 0.1% or less. If it is less than 0.005%, the surface treatment is insufficient, and if it exceeds 1.0%, the surface is oxidized, which is not preferable. This chemical conversion treatment with an acid comprising a Group 5B element and oxygen may be performed either in a suspension or by adding it to a cake before drying. In the case of (1), it is sufficient that the amount is such that the suspending operation can be performed in the same manner as in the case of the weak acid described above.
In either case, too much does not adversely affect the properties.
【0025】上述した弱酸、5B族元素と酸素からなる
の2段階複合処理により、磁性体粒子表面は次のように
改質される。 1)まず、弱酸処理により希土類鉄窒素磁性粉末表面に
付着しているCa成分(酸化カルシウム、水酸化カルシ
ウム、窒化カルシウム)や、酸化鉄、窒化サマリウム等
を溶かし、それらを磁性粉末と分離する。 2)その結果として、比較的清浄な磁性粉末表面が顕れ
る。このままに放置しておくと空気中の酸素、水分と反
応してまだら状に酸化物で汚されてしまい、そこを基点
にして磁性粉末表面からN、Hが抜け出やすくなり結晶
構造上不安定となる。その結果、保磁力ばかりか磁化も
低下してしまう。 3)それを抑えるためには、磁性粉末表面が清浄化され
た直後に5B族元素の酸により処理をする。この酸の働
きにより、磁性粉末表面に緻密で極めて薄い膜が形成さ
れ、N、Hの抜け出やすい孔を塞ぐ。結晶上不安定にな
っている部分を窒素と同じ5B族元素で埋め、磁性粉末
最表面を極めて薄い膜で安定化させる。 4)表面層が安定化したことで逆磁気の芽の発性をつみ
取り、且つ表面の5B族元素をベースとした均一膜がピ
ンニングとして働き磁壁を動きにくくする。上記2つの
理由により保磁力が向上するものと思われる。The surface of the magnetic particles is modified as follows by the above-described two-stage composite treatment of a weak acid, a group 5B element and oxygen. 1) First, Ca components (calcium oxide, calcium hydroxide, calcium nitride), iron oxide, samarium nitride, and the like adhering to the surface of the rare earth iron-nitrogen magnetic powder by weak acid treatment are dissolved, and these are separated from the magnetic powder. 2) As a result, a relatively clean magnetic powder surface appears. If left as it is, it reacts with oxygen and moisture in the air and becomes mottled by oxides, and N and H easily escape from the surface of the magnetic powder based on that, and the crystal structure becomes unstable. Become. As a result, not only the coercive force but also the magnetization decreases. 3) In order to suppress this, immediately after the magnetic powder surface is cleaned, treatment is performed with an acid of a 5B group element. By the action of the acid, a dense and extremely thin film is formed on the surface of the magnetic powder, and closes the holes from which N and H easily escape. The unstable portion on the crystal is filled with the same group 5B element as nitrogen, and the outermost surface of the magnetic powder is stabilized with an extremely thin film. 4) By stabilizing the surface layer, the generation of reverse magnetic buds can be suppressed, and a uniform film based on the group 5B element on the surface acts as pinning to make the domain wall hard to move. It is considered that the coercive force is improved for the above two reasons.
【0026】[0026]
【実施例】[実施例1]平均粒子径1.5μm、純度9
9.9%の酸化鉄(Fe2O3)粉末135.7gを軟鋼
製のトレーに入れて、水素気流中600℃の還元処理を
行う。水素流通量は2L/分であり、処理時間は5時間
である。得られた酸化鉄還元体は酸素分析の結果、酸素
除去率は90.5%で、平均粒子径は1.9μmであっ
た。この粉末に平均粒子径1.0μm、純度99.9%
の酸化サマリウム(Sm2O3)粉末34.9gを加え、
ハイスピードミキサーで10分間混合した。次にこの混
合粉末に粒状の金属カルシウム43.29gを加えて充
分混合の上、軟鋼製のるつぼに投入する。このるつぼを
ガス置換可能な電気炉に挿入後、電気炉内を圧力1×1
0-2Torrまで真空排気する。この後アルゴンガスに
よる大気圧への復圧を行い、このままアルゴンガスを1
L/分で流通させる。[Example 1] Average particle size 1.5 μm, purity 9
135.7 g of 9.9% iron oxide (Fe2O3) powder is placed in a mild steel tray and subjected to a reduction treatment at 600 ° C. in a hydrogen stream. The hydrogen flow rate is 2 L / min and the processing time is 5 hours. As a result of oxygen analysis, the obtained reduced iron oxide had an oxygen removal rate of 90.5% and an average particle diameter of 1.9 μm. This powder had an average particle size of 1.0 μm and a purity of 99.9%.
34.9 g of samarium oxide (Sm2O3) powder of
Mix with high speed mixer for 10 minutes. Next, 43.29 g of granular metallic calcium is added to this mixed powder, mixed well, and then put into a mild steel crucible. After inserting the crucible into the gas-replaceable electric furnace, the pressure inside the electric furnace was 1 × 1.
Evacuate to 0 -2 Torr. Thereafter, the pressure is restored to the atmospheric pressure with argon gas.
Distribute at L / min.
【0027】電気炉を昇温し1050℃になったらこの
状態で1時間保持し、以後アルゴンガス中で50℃まで
冷却する。ここで炉内を圧力1×10-2Torrまで真
空排気し、その後排気を止めて窒素ガスによる大気圧へ
の復圧を行い、このまま窒素ガスを5L/分で流通させ
る。ここで再び電気炉を昇温し450℃になったらこの
状態で5時間保持し、その後加熱を止めて放冷する。When the temperature of the electric furnace is raised to 1050 ° C., this state is maintained for 1 hour, and thereafter cooled to 50 ° C. in argon gas. Here, the inside of the furnace is evacuated to a pressure of 1 × 10 −2 Torr, and then the evacuation is stopped and the pressure is restored to the atmospheric pressure by nitrogen gas, and nitrogen gas is allowed to flow at 5 L / min. Here, when the temperature of the electric furnace is raised again to 450 ° C., this state is maintained for 5 hours, and then the heating is stopped and the mixture is allowed to cool.
【0028】得られた反応生成物は多孔質のブロック状
であって、容易にるつぼから取り出すことができる。こ
れを3000ccのイオン交換水に投入すると、反応生
成物であるCaO(酸化カルシウム)が微細なCa(O
H)2(水酸化カルシウム)に変わり、この結果としてブ
ロックは崩壊しスラリーとなる。このスラリーを10分
間攪拌した後5分間静置し、微細なCa(OH)2が浮遊
している上澄み液を捨てる。以上の操作を5回繰り返
す。その後、90%酢酸を2.5ml(酢酸濃度0.0
75%)加えて約3分攪拌した後デカンテーションし
た。生成物に付着しているカルシウム由来成分を洗浄し
た。The obtained reaction product is in the form of a porous block and can be easily taken out of the crucible. When this is poured into 3000 cc of ion-exchanged water, CaO (calcium oxide) as a reaction product becomes fine Ca (O
H) 2 (calcium hydroxide), which results in the blocks breaking down into a slurry. This slurry is stirred for 10 minutes, and then allowed to stand for 5 minutes, and the supernatant in which fine Ca (OH) 2 is floating is discarded. The above operation is repeated five times. Thereafter, 2.5 ml of 90% acetic acid (acetic acid concentration 0.0
(75%) and stirred for about 3 minutes, followed by decantation. The calcium-derived components adhering to the product were washed.
【0029】純水3000ccに85%オルトリン酸を
2.5ml(リン酸濃度0.071%)加えて添加し、
約3分攪拌した後デカンテーションした。この時のpH
は5.3であった。固液分離した後にエタノール置換し
脱水されたケーキを得た。次に、これを170゜Cで2
時間真空乾燥し本発明の希土類遷移金属窒化物系磁性粉
末を得た。To 3000 cc of pure water, 2.5 ml of 85% orthophosphoric acid (phosphoric acid concentration: 0.071%) was added and added.
After stirring for about 3 minutes, decantation was performed. PH at this time
Was 5.3. After solid-liquid separation, the cake was replaced with ethanol to obtain a dehydrated cake. Next, this was added at 170 ° C for 2
Vacuum drying was performed for a time to obtain a rare earth transition metal nitride-based magnetic powder of the present invention.
【0030】こうして得られた粉末は流動性の良い分散
した粉末であり、以下のような分析結果を得た。 合金粉末重量:125.5g 平均粒子径:2.0μm 最大粒子径:7.5μm 最小粒子径:0.8μm 組成分析 Sm:23.5wt% Fe:72.9wt% N:3.13wt% Ca:0.01wt% O:0.16wt% PO4:0.31wt%The powder thus obtained was a dispersed powder having good fluidity, and the following analysis results were obtained. Alloy powder weight: 125.5 g Average particle diameter: 2.0 μm Maximum particle diameter: 7.5 μm Minimum particle diameter: 0.8 μm Composition analysis Sm: 23.5 wt% Fe: 72.9 wt% N: 3.13 wt% Ca: 0.01 wt% O: 0.16 wt% PO4: 0.31 wt%
【0031】得られたSm−Fe−N系合金粉末を最大
磁場20kOeのVSM(振動試料型磁力計)で磁気特
性を測定した。このとき、合金粉末微粉をパラフィンワ
ックスと共にサンプルケースに詰め、ドライヤーでパラ
フィンワックスを溶融させてから20kOeの配向磁場
でその磁化容易軸を揃え、着磁磁場40kOeでパルス
着磁した。またSm2Fe17N3金属間化合物の真密度は
7.66g/mlとし、反磁場補正せずに評価した。試
料測定の結果、残留磁化は127emu/g、保磁力は
20kOeであった。The magnetic characteristics of the obtained Sm—Fe—N alloy powder were measured by a VSM (vibrating sample magnetometer) having a maximum magnetic field of 20 kOe. At this time, the alloy powder was packed in a sample case together with paraffin wax, the paraffin wax was melted by a drier, the axes of easy magnetization were aligned with an orientation magnetic field of 20 kOe, and pulse magnetization was performed with a magnetization magnetic field of 40 kOe. The true density of the Sm2Fe17N3 intermetallic compound was 7.66 g / ml and evaluated without demagnetizing field correction. As a result of measurement of the sample, the residual magnetization was 127 emu / g, and the coercive force was 20 kOe.
【0032】次に、得られたSm・Fe・N合金粉末を
用いて以下の手順でボンド磁石を作製した。まず該粉末
100重量部に対して10部のポリアミド樹脂(ナイロ
ン12)を混合機を用いて混合し、2軸混合機により2
30℃で混練して得られたコンパウンドを配向磁場9K
Oe、230゜Cで射出成形し、10mmφ×7mmの
円柱状のボンド磁石成形品を得た。この成形体を50k
Oeのパルス磁場で着磁した後、BHトレーサーにて磁
気特性を測定した。その結果以下の優れた磁気特性を有
するボンド磁石が得られた。 Br: 7.5kG iHc:15.0kOe (BH)max:13.0MGOeNext, a bonded magnet was manufactured by the following procedure using the obtained Sm.Fe.N alloy powder. First, 10 parts of a polyamide resin (nylon 12) is mixed with 100 parts by weight of the powder using a mixer, and mixed with a twin-screw mixer.
The compound obtained by kneading at 30 ° C. is subjected to an orientation magnetic field of 9K.
Injection molding was performed at Oe and 230 ° C. to obtain a cylindrical bonded magnet molded product of 10 mmφ × 7 mm. 50k
After magnetization with a pulse magnetic field of Oe, the magnetic properties were measured with a BH tracer. As a result, a bonded magnet having the following excellent magnetic properties was obtained. Br: 7.5 kG iHc: 15.0 kOe (BH) max: 13.0 MGOe
【0033】[実施例2]実施例1と同じ原料を用い同
様の条件で還元拡散し、窒化処理を行い、多孔質ブロッ
クを得た。これを同様の条件で崩壊し、さらに同様にし
て水洗し、弱酸処理を行った。Example 2 The same raw material as in Example 1 was reduced and diffused under the same conditions, followed by nitriding to obtain a porous block. This was disintegrated under the same conditions, further washed with water and treated with a weak acid.
【0034】純水3000ccに83%日産化学工業製
五酸化アンチモン(商品名:サンエポックNA−103
0)を2.5g(オルトアンチモン酸濃度0.069
%)加えて添加し、約3分攪拌した後デカンテーション
した。固液分離した後にエタノール置換し脱水されたケ
ーキを得た。次に、これを170゜Cで2時間真空乾燥
し本発明の希土類遷移金属窒化物系磁性粉末を得た。83% in 3000 cc of pure water Antimony pentoxide manufactured by Nissan Chemical Industries (trade name: San-Epoque NA-103)
0) in an amount of 2.5 g (orthoantimonic acid concentration 0.069).
%) And decanted after stirring for about 3 minutes. After solid-liquid separation, the cake was replaced with ethanol to obtain a dehydrated cake. Next, this was vacuum dried at 170 ° C. for 2 hours to obtain a rare earth transition metal nitride-based magnetic powder of the present invention.
【0035】こうして得られた粉末は流動性の良い分散
した粉末であり、以下のような分析結果を得た。 合金粉末重量:125.7g 平均粒子径:2.2μm 最大粒子径:7.7μm 最小粒子径:0.9μm 組成分析 Sm:23.5wt% Fe:72.9wt% N:3.13wt% Ca:0.01wt% O:0.11wt% Sb2O5:0.21wt%The powder thus obtained was a dispersed powder having good fluidity, and the following analysis results were obtained. Alloy powder weight: 125.7 g Average particle diameter: 2.2 μm Maximum particle diameter: 7.7 μm Minimum particle diameter: 0.9 μm Composition analysis Sm: 23.5 wt% Fe: 72.9 wt% N: 3.13 wt% Ca: 0.01 wt% O: 0.11 wt% Sb2O5: 0.21 wt%
【0036】得られたSm−Fe−N系合金粉末の同様
にして測定した結果、残留磁化は126emu/g、保
磁力は19.3kOeであった。As a result of measurement of the obtained Sm-Fe-N alloy powder in the same manner, the residual magnetization was 126 emu / g and the coercive force was 19.3 kOe.
【0037】次に、得られたSm・Fe・N合金粉末を
用いて、実施例1と同様な方法でボンド磁石を作製し、
同様な条件で測定したところ、次の測定結果を得た。 Br: 7.5kG iHc:15.5kOe (BH)max:13.0MGOeNext, using the obtained Sm · Fe · N alloy powder, a bonded magnet was produced in the same manner as in Example 1,
When measured under the same conditions, the following measurement results were obtained. Br: 7.5 kG iHc: 15.5 kOe (BH) max: 13.0 MGOe
【0038】[比較例1]実施例1と同じ原料を用い同
様の条件で還元拡散し、窒化処理を行い、多孔質ブロッ
クを得た。これを同様の条件で崩壊し、さらに同様にし
て水洗し、弱酸処理を行い、リン酸処理を行わないこと
以外実施例1と同様にして磁性粉末を得た。Comparative Example 1 The same raw material as in Example 1 was reduced and diffused under the same conditions, followed by nitriding to obtain a porous block. This was disintegrated under the same conditions, further washed with water, subjected to a weak acid treatment, and a magnetic powder was obtained in the same manner as in Example 1 except that the phosphoric acid treatment was not performed.
【0039】こうして得られた粉末は、以下のような分
析結果を得た。 合金粉末重量:125.0g 平均粒子径:2.1μm 最大粒子径:7.6μm 最小粒子径:0.9μm 組成分析 Sm:23.5wt% Fe:72.9wt% N:3.13wt% Ca:0.01wt% O:0.13wt%The powder thus obtained had the following analysis results. Alloy powder weight: 125.0 g Average particle diameter: 2.1 μm Maximum particle diameter: 7.6 μm Minimum particle diameter: 0.9 μm Composition analysis Sm: 23.5 wt% Fe: 72.9 wt% N: 3.13 wt% Ca: 0.01 wt% O: 0.13 wt%
【0040】得られたSm−Fe−N系合金粉末を同様
にして測定した結果、残留磁化は122emu/g、保
磁力は14kOeであった。The obtained Sm-Fe-N alloy powder was measured in the same manner. As a result, the residual magnetization was 122 emu / g and the coercive force was 14 kOe.
【0041】次に、得られたSm・Fe・N合金粉末を
用いて、実施例1と同様な方法でボンド磁石を作製し、
同様な条件で測定したところ、次の測定結果を得た。 Br:6.9kG iHc:9.5kOe (BH)max:10.1MGOeNext, using the obtained Sm · Fe · N alloy powder, a bonded magnet was produced in the same manner as in Example 1,
When measured under the same conditions, the following measurement results were obtained. Br: 6.9 kG iHc: 9.5 kOe (BH) max: 10.1 MGOe
【0042】[比較例2]実施例1と同じ原料を用い同
様の条件で還元拡散し、窒化処理を行い、多孔質ブロッ
クを得た。これを同様の条件で崩壊し、さらに同様にし
て水洗するが、弱酸処理を行わず、実施例1と同じ条件
でリン酸処理行い磁性粉末を得た。[Comparative Example 2] The same raw material as in Example 1 was reduced and diffused under the same conditions and subjected to nitriding treatment to obtain a porous block. This was disintegrated under the same conditions, and further washed with water in the same manner. However, a weak acid treatment was not performed, and a phosphoric acid treatment was performed under the same conditions as in Example 1 to obtain a magnetic powder.
【0043】こうして得られた粉末は、以下のような分
析結果を得た。 合金粉末重量:125.8g 平均粒子径:2.3μm 最大粒子径:7.8μm 最小粒子径:1.1μm 組成分析 Sm:23.5wt% Fe:72.9wt% N:3.13wt% Ca:0.01wt% O:0.16wt% PO4 :0.36wt%The powder thus obtained obtained the following analysis results. Alloy powder weight: 125.8 g Average particle diameter: 2.3 μm Maximum particle diameter: 7.8 μm Minimum particle diameter: 1.1 μm Composition analysis Sm: 23.5 wt% Fe: 72.9 wt% N: 3.13 wt% Ca: 0.01 wt% O: 0.16 wt% PO4: 0.36 wt%
【0044】得られたSm−Fe−N系合金粉末の同様
にして測定した結果、残留磁化は127emu/g、保
磁力は13kOeであった。As a result of measurement of the obtained Sm-Fe-N-based alloy powder in the same manner, the residual magnetization was 127 emu / g and the coercive force was 13 kOe.
【0045】次に、得られたSm・Fe・N合金粉末を
用いて、実施例1と同様な方法でボンド磁石を作製し、
同様な条件で測定したところ、次の測定結果を得た。 Br:6.9kG iHc:8.5kOe (BH)max:9.8MGOeNext, using the obtained Sm · Fe · N alloy powder, a bonded magnet was prepared in the same manner as in Example 1,
When measured under the same conditions, the following measurement results were obtained. Br: 6.9 kG iHc: 8.5 kOe (BH) max: 9.8 MGOe
【0046】[0046]
【発明の効果】上述したように、本発明を適用すること
により、磁気特性のうち、特に、保磁力が大幅に向上す
る。磁性粉末の比較によると従来の方法によると、14
kOe程度であったものが、20kOe程度と大幅に改
善される。As described above, by applying the present invention, of the magnetic characteristics, in particular, the coercive force is greatly improved. According to a comparison of magnetic powders, according to the conventional method, 14
What was about kOe is greatly improved to about 20 kOe.
【0047】これは、本発明を適用することにより、清
浄化された磁性粉末表面が5B族元素の酸により磁性粉
末表面に緻密で極めて薄い膜が形成され、N、Hの抜け
出やすい孔を塞ぎ、結晶上不安定になっている部分を窒
素と同じ5B族元素で埋め、磁性粉末最表面を極めて薄
い膜で安定化し、表面層が安定化したことで逆磁気の芽
の発性をつみ取り、且つ表面の5B族元素をベースとし
た均一膜がピンニングとして働き磁壁を動きにくくして
いると推定している。This is because, by applying the present invention, a clean and extremely thin film is formed on the surface of the cleaned magnetic powder by the acid of the group 5B element, and the pores from which N and H easily escape are closed. Instable portions on the crystal are filled with the same Group 5B element as nitrogen, and the outermost surface of the magnetic powder is stabilized with an extremely thin film, and the surface layer is stabilized to capture the birth of reverse magnetic buds. It is presumed that the uniform film based on the 5B group element on the surface acts as pinning and makes the domain wall hard to move.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 一ノ宮 敬治 徳島県阿南市上中町岡491番地100 日亜化 学工業株式会社内 Fターム(参考) 4K017 AA04 BA06 BA08 BB18 DA04 4K018 BA18 KA46 5E040 AA03 AA19 CA01 HB09 HB15 HB17 NN17 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Keiji Ichinomiya 491-1 Kagaminakacho, Anan-shi, Tokushima Pref. HB09 HB15 HB17 NN17
Claims (5)
及び窒化を行い合金ブロックを得、該合金ブロックを水
に浸漬して崩壊し、その後水洗及び酸処理を行う希土類
鉄窒素系磁性粉末の製造方法において、該酸処理は、弱
酸による処理と、その後に5B族元素と酸素からなる酸
を含む酸による処理からなることを特徴とする希土類鉄
窒素系磁性粉末の製造方法。An alloy block is obtained by subjecting a raw material powder containing a rare earth oxide to reduction diffusion and nitridation. The alloy block is immersed in water and collapsed, and then washed with water and subjected to an acid treatment. In the production method, the acid treatment comprises a treatment with a weak acid and a subsequent treatment with an acid containing an acid composed of a Group 5B element and oxygen.
酸、クエン酸の内の少なくとも一種であることを特徴と
する請求項1に記載の希土類鉄窒素系磁性粉末の製造方
法。2. The method according to claim 1, wherein the weak acid is at least one of formic acid, acetic acid, propionic acid, and citric acid.
酸、ヒ酸、アンチモン酸、ビスマス酸であることを特徴
とする請求項1乃至2に記載の希土類鉄窒素系磁性粉末
の製造方法。3. The method for producing a rare-earth iron-nitrogen based magnetic powder according to claim 1, wherein the acid comprising the group 5B element and oxygen is phosphoric acid, arsenic acid, antimonic acid, or bismuthic acid. .
からなる酸の濃度は0.005〜1.0重量%の範囲で
あることを特徴とする請求項1乃至3に記載の希土類鉄
窒素系磁性粉末の製造方法。4. The rare earth iron according to claim 1, wherein the concentration of the acid consisting of a Group 5B element and oxygen used in the acid treatment is in the range of 0.005 to 1.0% by weight. A method for producing a nitrogen-based magnetic powder.
磁性粉末の製造方法により得られる希土類鉄窒素系磁性
粉末。5. A rare-earth iron-nitrogen-based magnetic powder obtained by the method for producing a rare-earth iron-nitrogen-based magnetic powder according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10209210A JP2000038608A (en) | 1998-07-24 | 1998-07-24 | Rare earthmetal-iron-nitrogen based magnetic powder and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10209210A JP2000038608A (en) | 1998-07-24 | 1998-07-24 | Rare earthmetal-iron-nitrogen based magnetic powder and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000038608A true JP2000038608A (en) | 2000-02-08 |
Family
ID=16569183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10209210A Pending JP2000038608A (en) | 1998-07-24 | 1998-07-24 | Rare earthmetal-iron-nitrogen based magnetic powder and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000038608A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019163568A1 (en) * | 2018-02-22 | 2019-08-29 | リンテック株式会社 | Film-like firing material and film-like firing material with support sheet |
-
1998
- 1998-07-24 JP JP10209210A patent/JP2000038608A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019163568A1 (en) * | 2018-02-22 | 2019-08-29 | リンテック株式会社 | Film-like firing material and film-like firing material with support sheet |
JPWO2019163568A1 (en) * | 2018-02-22 | 2020-12-03 | リンテック株式会社 | Film-like firing material and film-like firing material with support sheet |
JP7124049B2 (en) | 2018-02-22 | 2022-08-23 | リンテック株式会社 | Film-shaped sintered material and film-shaped sintered material with support sheet |
US11948865B2 (en) | 2018-02-22 | 2024-04-02 | Lintec Corporation | Film-shaped firing material and film-shaped firing material with a support sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3452254B2 (en) | Method for producing anisotropic magnet powder, raw material powder for anisotropic magnet powder, and bonded magnet | |
JP2011049441A (en) | Method for manufacturing r-t-b based permanent magnet | |
JPH07235439A (en) | Manufacture of rare earth-iron-boron based sintered magnet or bonded magnet | |
JP2006291257A (en) | Rare earth-transition metal-nitrogen based magnetic powder, and method for producing the same | |
JPS6217149A (en) | Manufacture of sintered permanent magnet material | |
JP3597615B2 (en) | Method for producing RTB based anisotropic bonded magnet | |
JP2000038608A (en) | Rare earthmetal-iron-nitrogen based magnetic powder and its production | |
JP2016025312A (en) | Highly weather resistant rare earth-transition metal-nitrogen based magnet powder, and manufacturing method thereof | |
JP3229435B2 (en) | Method for producing sintered R-Fe-B magnet by injection molding method | |
JP3109637B2 (en) | Anisotropic needle-like magnetic powder and bonded magnet using the same | |
JPH06112026A (en) | Permanent magnet with excellent thermal stability and corrosion-resisting property and manufacture thereof | |
JPS61136656A (en) | Production of sintered material for permanent magnet | |
JPS63128606A (en) | Permanent magnet | |
JPS6230846A (en) | Production of permanent magnet material | |
JP2927987B2 (en) | Manufacturing method of permanent magnet powder | |
JP3770032B2 (en) | Method for producing rare earth iron nitrogen-based alloy powder | |
JP3120546B2 (en) | Manufacturing method of permanent magnet material | |
JPS62132302A (en) | Rare earth element-iron-boron alloy powder and manufacture thereof | |
JP3078633B2 (en) | Manufacturing method of sintered anisotropic magnet | |
JP2023092687A (en) | Method for producing coated rare earth-transition metal alloy powder and coated rare earth-transition metal alloy powder | |
JP2000252108A (en) | Rare-earth sintered magnet and its manufacture | |
JP3174443B2 (en) | Method for producing sintered R-Fe-B magnet by injection molding method | |
JPH0320044B2 (en) | ||
JPS6230845A (en) | Production of anisotropic permanent magnet material | |
JPH05152115A (en) | Manufacture of magnetic recording powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040817 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041026 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20041109 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20041109 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060127 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060203 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20060428 |