JP2000038188A - Positional information transmitting buoy - Google Patents

Positional information transmitting buoy

Info

Publication number
JP2000038188A
JP2000038188A JP10207497A JP20749798A JP2000038188A JP 2000038188 A JP2000038188 A JP 2000038188A JP 10207497 A JP10207497 A JP 10207497A JP 20749798 A JP20749798 A JP 20749798A JP 2000038188 A JP2000038188 A JP 2000038188A
Authority
JP
Japan
Prior art keywords
directional antenna
buoy
antenna
geostationary satellite
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10207497A
Other languages
Japanese (ja)
Inventor
Kazunari Miyazaki
一成 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP10207497A priority Critical patent/JP2000038188A/en
Publication of JP2000038188A publication Critical patent/JP2000038188A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide good antenna directivity against the vertical and horizontal motions of a buoy main body by wind and waves by installing a gyroscope structure, and fixing a directional antenna to the gyroscope structure. SOLUTION: A controller 13 controls the direction of a gyroscope 19 by driving independent motors to control the elevation angle and horizontal angle of a directional antenna 17 and can direct the directional antenna 17 toward a geostationary satellite. Even when a buoy main body is moved vertically and horizontally, the elevation angle is kept constant by the gyroscope 19 and the motor. The horizontal angle of the directional antenna 17 is invariably controlled so that the antenna 17 is directed toward the geostationary satellite, because the controller 13 calculates the new horizontal angle of the directional antenna 17 at any time in response to the direction change quantity of an electronic compass.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は自機位置情報送信浮
標に関し、詳しくは送信アンテナをジャイロスコ−プ構
造に収納し、ジャイロスコ−プを予め決めた方向に制御
することにより送信アンテナの指向性を制御して自機位
置情報を静止衛星に送信することを可能とする自機位置
情報送信浮標に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a buoy for transmitting position information of its own device, and more particularly to a gyroscopic structure in which a transmitting antenna is housed and the directivity of the transmitting antenna is controlled by controlling the gyroscopic direction in a predetermined direction. The present invention relates to a buoy for transmitting own-location information to enable control to transmit own-location information to a geostationary satellite.

【0002】[0002]

【従来の技術】全世界的な海難救助システムとしてGM
DSS(Glbal Maritime Distres
s&Safety System)が知られている。こ
のシステムを利用する船舶にはEPIRB(Emerg
ency Positionig Indicating
Radio Beacon)が設置される。このEPI
RBは通常は船舶外表面の構造物に水圧センサ−と共に
設置され、船舶が遭難、沈没等により浸水または水没
し、一定の水深に達した時点で水圧センサ−が稼動して
EPIRB本体を海面に放出する。海面に放出されたE
PIRBは所定の救難信号電波を発信する。この救難信
号を地球を周回する複数の極軌道衛星(高度:一万Km
程度)により受信しEPIRBの送信周波数のドップラ
−効果により遭難船舶の位置を算出するものである。こ
の位置精度はEPIRBの送信周波数精度に大きく左右
されるため通常は数十Km程度の誤差を生ずる。従っ
て、救助隊は船舶遭難海域に到着するとEPIRBの発
する別周波数のビ−コンを追跡して遭難位置を確定しな
ければならない。
2. Description of the Related Art GM as a global rescue system
DSS (Glbal Maritime Distress)
s & Safety System) is known. Ships that use this system include EPIRB (Emerg)
ency Positioning Indicating
Radio Beacon) is installed. This EPI
The RB is usually installed together with a water pressure sensor on a structure on the outer surface of the ship, and when the ship is flooded or submerged due to distress, sinking, etc., when the water reaches a certain depth, the water pressure sensor is activated and the EPIRB body is brought to the sea surface. discharge. E released to the sea surface
The PIRB transmits a predetermined rescue signal radio wave. A plurality of polar orbiting satellites orbiting the earth (altitude: 10,000 km
) To calculate the position of the distressed vessel by the Doppler effect of the transmission frequency of EPIRB. Since this position accuracy is greatly affected by the transmission frequency accuracy of EPIRB, an error of about several tens of km usually occurs. Therefore, when the rescue team arrives in the area where the ship is in distress, the rescue team must track the beacon of another frequency emitted by EPIRB to determine the position of distress.

【0003】そこで、近年、GPS(Glbal Po
sitioning System)の高精度航法シス
テムが全世界的に普及しつつあり、その精度は誤差がわ
ずか数十m程度と極めて高いという特徴を有する。そこ
で、GPS受信機を船舶や浮標等に搭載して高精度の位
置情報を直接静止衛星に送信し海難救助や各種海事情報
の収集に利用することが行われている。しかし、静止衛
星は極軌道衛星と比べて高度が三十万Km以上とはるか
に離れているために浮標等からの電波を静止衛星に到達
させるにはアンテナの指向性が常に静止衛星の方向と一
致していることが必要となる。
[0003] Therefore, in recent years, GPS (Glbal Po
A high-accuracy navigation system of a positioning system is becoming widespread worldwide, and its accuracy is characterized by an extremely high error of only about several tens of meters. Therefore, a GPS receiver is mounted on a ship, a buoy, or the like, and high-precision position information is directly transmitted to a geostationary satellite to be used for salvage and collection of various maritime information. However, since geostationary satellites are far more than 300,000 km above polar orbit satellites, the directivity of the antenna is always in the direction of the geostationary satellites in order for radio waves from buoys to reach them. It must be consistent.

【0004】図2は、GPS受信機によって検知した自
機位置を静止衛星に送信するための従来の自機位置情報
送信浮標の一例を示すもので、同図(a)にブロック
図、同図(b)に設置状態を示す。同図(a)に示すよ
うに、方位検知手段1の出力と方位メモリ2の出力と自
機位置検知手段5の出力とを制御器3に入力し、該制御
器3の出力を方向転換手段8と自機位置情報送信手段6
とに供給し、アンテナ4を備えた前記自機位置検知手段
5と前記自機位置情報送信手段6と前記指向性アンテナ
7とを直列に接続して構成したものである。以下、図示
した従来例について、その動作を詳細に説明する。
FIG. 2 shows an example of a conventional buoy for transmitting own position information for transmitting the own position detected by a GPS receiver to a geostationary satellite. FIG. 2 (a) is a block diagram and FIG. (B) shows the installation state. As shown in FIG. 1A, the output of the azimuth detecting means 1, the output of the azimuth memory 2, and the output of the own device position detecting means 5 are input to the controller 3, and the output of the controller 3 is changed to the direction changing means. 8 and own device position information transmitting means 6
And the self-position detecting means 5 having the antenna 4, the self-position information transmitting means 6, and the directional antenna 7 are connected in series. Hereinafter, the operation of the illustrated conventional example will be described in detail.

【0005】図2(a)に示すように、自機位置情報検
知手段5はGPS受信機であって、複数衛星の電波を受
信してた浮標の現在位置の緯度および経度を検出するも
のであり、方位検知手段1は指向性アンテナ7の指向方
向を検知する電子コンパスである。制御器3は予め方位
メモリ2にストアしてある静止衛星位置情報を読み出
し、自機位置情報検知手段5から得られる前記浮標の現
在位置および方位検出手段1から得られる前記指向性ア
ンテナ7の指向方向と比較して、指向性アンテナ7が静
止衛星と対峙するに必要な浮標本体の回転角度を算出
し、方向転換手段8に供給する。この方向転換手段8
は、図2(b)に示すように、例えば、浮標が風を受け
傾いている場合は浮標中心軸から偏心した位置の浮標内
頭部に取り付けた錘9を浮標中心軸線に直交する面内で
移動可能とし浮標本体を前記回転角度分右または左回り
に回転させ、またほぼ無風状態の場合は浮標下部両側面
に設置したスクリュウ10等を水中モ−タ等を駆動し浮
標本体を前記回転角度分右または左回りに回転させて、
指向性アンテナ7の方位を静止衛星の方位に転換する。
さらに、制御器3はこの指向性アンテナ7の方向を固定
して自機位置情報送信手段6を起動し前記浮標の現在位
置情報を静止衛星に送信するものである。
As shown in FIG. 2A, the self-location information detecting means 5 is a GPS receiver for detecting the latitude and longitude of the current position of a buoy which has received radio waves from a plurality of satellites. The azimuth detecting means 1 is an electronic compass for detecting the directional direction of the directional antenna 7. The controller 3 reads out the geostationary satellite position information stored in advance in the azimuth memory 2 and directs the current position of the buoy obtained from the own device position information detecting means 5 and the directivity of the directional antenna 7 obtained from the azimuth detecting means 1. Compared with the direction, the rotation angle of the floating specimen required for the directional antenna 7 to face the geostationary satellite is calculated and supplied to the direction changing means 8. This direction changing means 8
As shown in FIG. 2 (b), for example, when the buoy is inclined by wind, the weight 9 attached to the buoy inner head at a position eccentric from the buoy central axis is in a plane orthogonal to the buoy central axis. And the floating specimen is rotated clockwise or counterclockwise by the rotation angle. In the case of almost no wind, the underwater motor or the like drives the screw 10 and the like installed on both sides of the lower part of the buoy to rotate the floating specimen. Rotate clockwise or counterclockwise by an angle
The direction of the directional antenna 7 is changed to the direction of the geostationary satellite.
Further, the controller 3 fixes the direction of the directional antenna 7, activates its own position information transmitting means 6, and transmits the current position information of the buoy to the geostationary satellite.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、以上説
明したような従来の自機位置情報送信浮標では、アンテ
ナの仰角と水平角度を浮標全体の方向を転換するこよう
に制御しているため、風や波浪等による浮標本体の上下
および左右の運動に迅速に追従出来ないことがあるとい
う欠点があった。また、方向転換手段としてスクリュウ
等の浮標外側面に露出した機構を用いているために、波
動等の衝撃および海水による侵食、着藻等外部環境によ
る機構の劣化が生じ易く、定期的に海水から引き上げて
点検するといった保守上の煩雑さが問題となっていた。
本発明は上述したような従来の自機位置情報送信浮標に
係わる諸問題を解決するためになされたものであって、
機器及びまたはシステム構成を複雑にすることなく、外
部環境による指向性アンテナの制御精度の劣化を防止
し、また取扱いも容易とした自機位置情報送信浮標を提
供することを目的とする。
However, in the conventional buoy for transmitting the position information of the own vehicle as described above, since the elevation angle and the horizontal angle of the antenna are controlled so as to change the direction of the entire buoy, the wind There is a disadvantage that it may not be possible to quickly follow the vertical and horizontal movements of the floating specimen due to waves and waves. In addition, because the mechanism that is exposed to the outside surface of the buoy such as a screw is used as the direction changing means, the mechanism is likely to be degraded by shocks such as waves, erosion by seawater, and the external environment such as algal deposition. The trouble of maintenance such as pulling up and checking was a problem.
The present invention has been made in order to solve the problems related to the conventional self-location information transmission buoy as described above,
It is an object of the present invention to provide a buoy for transmitting position information of a self-owned vehicle that does not deteriorate the control accuracy of a directional antenna due to an external environment without complicating a device and / or a system configuration, and that is easy to handle.

【0007】[0007]

【課題を解決するための手段】上述の目的を達成するた
めに本発明においては、自機位置情報を検知する手段
と、前記自機位置情報を静止衛星に送信するための送信
機および指向性アンテナと、前記静止衛星の位置情報を
ストアするためのメモリと、自機方位とを検知する手段
を備えた自機位置情報送信浮標において、前記浮標内に
ジャイロスコ−プ構造を設置するとともに該ジャイロス
コ−プ構造に前記指向性アンテナを固定し、前記自機位
置情報と前記自機方位とに基づいて前記メモリから静止
衛星の方位を求め、前記指向性アンテナの仰角と水平角
度を算出して前記ジャイロスコ−プを制御することを特
徴とする自機位置情報送信浮標の手段を備えるよう構成
する。
In order to achieve the above-mentioned object, the present invention provides means for detecting own-location information, a transmitter for transmitting the own-location information to a geostationary satellite, and directivity. In a buoy equipped with an antenna, a memory for storing the position information of the geostationary satellite, and a means for detecting the azimuth of the own vehicle, a gyroscopic structure is installed in the buoy and the gyroscopic structure is installed. The directional antenna is fixed to a loop structure, the orientation of the geostationary satellite is obtained from the memory based on the own location information and the own orientation, and the elevation angle and horizontal angle of the directional antenna are calculated. The apparatus is provided with means for transmitting buoys for transmitting own position information, which is characterized by controlling a gyroscopic scope.

【0008】[0008]

【発明の実施の形態】以下、図示した実施の形態に基づ
いて本発明を詳細に説明する。図1(a)は、本発明の
自機位置情報送信浮標を実現するための装置の一実施例
を示すブロック図であり、図1(b)は設置状態を示
す。同図(a)に示すように、方位検知手段11の出力
と方位メモリ12の出力と自機位置検知手段15の出力
とを制御器13に入力し、該制御器13の出力を指向性
制御手段18と自機位置情報送信手段16とに供給し、
アンテナ14を備えた前記自機位置検知手段15と前記
自機位置情報送信手段16と前記指向性アンテナ17と
を直列に接続して構成される。以下、図示した実施例に
ついて、その動作を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on illustrated embodiments. FIG. 1A is a block diagram showing an embodiment of an apparatus for realizing the buoy for transmitting own-location information of the present invention, and FIG. 1B shows an installed state. As shown in FIG. 1A, the output of the azimuth detecting means 11, the output of the azimuth memory 12, and the output of the self-location detecting means 15 are input to the controller 13, and the output of the controller 13 is controlled by the directivity control. To the means 18 and the own device position information transmitting means 16,
The position detecting means 15 having the antenna 14, the position information transmitting means 16, and the directional antenna 17 are connected in series. Hereinafter, the operation of the illustrated embodiment will be described in detail.

【0009】図1(a)に示す自機位置検知手段15は
GPS受信機であって、複数衛星の電波を受信して浮標
の現在位置の緯度および経度を検出するものであり、方
位検知手段11は自機の方位を検知する電子コンパス等
である。制御器13は予め方位メモリ12にストアして
ある静止衛星位置情報を読み出し、自機位置検知手段1
5から得られる前記浮標の現在位置と方位検知手段11
から得られる自機の方位とから浮標の現在位置と磁北か
らの変位量を求め、前記静止衛星位置情報を前記浮標の
現在位置および前記自機の方位と比較し、指向性アンテ
ナ17を静止衛星に指向するに必要な仰角および水平角
度とを算出し、指向性制御手段18に供給する。この指
向性制御手段18は、図1(b)に示すように、ジャイ
ロスコ−プ19上に指向性アンテナ17を配置したもの
で、この指向性アンテナ17の指向パタンの水平面の中
心線は電子コンパスの磁北に合わせている。前記制御器
13は前記指向性アンテナ17の仰角と水平角度とをそ
れぞれ独立したモ−タにより駆動してジャイロスコ−プ
19の方向を制御することにより指向性アンテナ17の
方位を静止衛星の方位に指向させることを可能とするも
のである。即ち、浮標本体が上下および左右に運動して
もジャイロスコ−プ19とモ−タによって仰角は一定に
保持されることになる。また、指向性アンテナ17の水
平角度は常に電子コンパスの方位変化量に対応して、制
御器13が新たな水平角度を随時算出してアンテナの指
向性が静止衛星に向かうよう制御する。さらに、制御器
13はこのように指向性アンテナ17の方向制御を継続
しながら自機位置情報送信手段16を起動し前記浮標の
現在位置情報を静止衛星に送信するものである。
The self-position detecting means 15 shown in FIG. 1 (a) is a GPS receiver which receives radio waves from a plurality of satellites and detects the latitude and longitude of the current position of the buoy. Reference numeral 11 denotes an electronic compass or the like for detecting the direction of the own device. The controller 13 reads out the geostationary satellite position information stored in the azimuth memory 12 in advance,
5. The current position of the buoy and the azimuth detecting means 11 obtained from
The buoy's current position and the amount of displacement from magnetic north are obtained from the azimuth of the own buoy, and the geostationary satellite position information is compared with the buoy's current position and the azimuth of the own aircraft. The elevation angle and the horizontal angle necessary for directing the light to the target are calculated and supplied to the directivity control means 18. As shown in FIG. 1B, the directivity control means 18 has a directional antenna 17 disposed on a gyroscopic scope 19, and the center line of the directional pattern of the directional antenna 17 in the horizontal plane is an electronic compass. Align with the magnetic north. The controller 13 controls the direction of the gyroscopic scope 19 by driving the elevation angle and the horizontal angle of the directional antenna 17 by independent motors, so that the azimuth of the directional antenna 17 becomes the azimuth of the geostationary satellite. It is possible to point it. That is, even if the floating specimen moves up and down and left and right, the elevation angle is kept constant by the gyroscope 19 and the motor. The horizontal angle of the directional antenna 17 always corresponds to the azimuth change amount of the electronic compass, and the controller 13 calculates a new horizontal angle as needed to control the directivity of the antenna toward the geostationary satellite. Further, the controller 13 activates its own position information transmitting means 16 while continuing the directional control of the directional antenna 17, and transmits the current position information of the buoy to the geostationary satellite.

【0010】[0010]

【発明の効果】本発明は指向性アンテナを含む指向性制
御手段にジャイロスコ−プ構造を使用することにより、
風や波浪等による浮標本体の上下および左右の運動に対
しても良好なアンテナ指向性が得られ、また浮標外に露
出する機構をなくすことにより、波動等の衝撃および海
水による侵食、着藻等外部環境による指向性アンテナの
制御精度の劣化が生じることがなく且つ定期的に海水か
ら引き上げて保守点検する必要もなく、高信頼度、長寿
命の浮標を提供することが可能であり、従来の自機位置
情報送信浮標と比較してその効果は大である。
According to the present invention, a gyroscopic structure is used for directivity control means including a directional antenna.
Good antenna directivity can be obtained even for vertical and horizontal movements of the floating specimen due to wind and waves, and by eliminating the mechanism exposed outside the buoy, impacts due to waves and erosion by seawater, algal deposition, etc. It is possible to provide a buoy with high reliability and long life without the deterioration of the control accuracy of the directional antenna due to the external environment and without the necessity of periodically pulling out of the seawater for maintenance and inspection. The effect is great as compared with the buoy for transmitting the position information of the own device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる自機位置情報送信浮標の実施例
を示すブロック図および設置状態を示す図である。
FIG. 1 is a block diagram showing an embodiment of a buoy for transmitting own position information according to the present invention and a diagram showing an installation state.

【図2】従来の自機位置情報送信浮標の一例を示すブロ
ック図および設置状態を示す図である。
FIG. 2 is a block diagram illustrating an example of a conventional buoy for transmitting own-location information and a diagram illustrating an installation state.

【符号の説明】[Explanation of symbols]

1、11…方位検知手段、2、12…方位メモリ、3、
13…制御機、4、14…アンテナ,5,15…自機位
置検知手段、6,16…自機位置情報送信手段,7、1
7…指向性アンテナ、8…方向転換手段、9…錘、10
…スクリュウ、18…指向性制御手段、19…ジャイロ
スコ−プ、
1, 11 ... azimuth detecting means, 2, 12 ... azimuth memory, 3,
13 ... Controller, 4, 14 ... Antenna, 5,15 ... Local position detection means, 6,16 ... Local position information transmission means, 7, 1
7 directional antenna, 8 direction changing means, 9 weight, 10
... Screw, 18 ... Directivity control means, 19 ... Gyroscope,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】自機位置情報を検知する手段と、前記自機
位置情報を静止衛星に送信するための送信機および指向
性アンテナと、該指向性アンテナを指向すべき方位情報
をストアするためのメモリと、自機方位を検知する手段
とを備えた自機位置情報送信浮標において、前記浮標内
にジャイロスコ−プ構造を設置するとともに該ジャイロ
スコ−プ構造に前記指向性アンテナを固定し、前記自機
位置情報と前記自機方位とに基づいて前記メモリから静
止衛星の方位を求め、前記指向性アンテナの仰角と水平
角度を算出して前記ジャイロスコ−プを制御することを
特徴とする自機位置情報送信浮標。
1. A means for detecting own-location information, a transmitter and a directional antenna for transmitting the own-location information to a geostationary satellite, and storing azimuth information to which the directional antenna should be directed. A gyroscopic structure in the buoy, and the directional antenna is fixed to the gyroscopic structure. The gyroscope is controlled by obtaining an orientation of a geostationary satellite from the memory based on the location information of the own device and the azimuth of the own device, calculating an elevation angle and a horizontal angle of the directional antenna. Location information buoy.
JP10207497A 1998-07-23 1998-07-23 Positional information transmitting buoy Pending JP2000038188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10207497A JP2000038188A (en) 1998-07-23 1998-07-23 Positional information transmitting buoy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10207497A JP2000038188A (en) 1998-07-23 1998-07-23 Positional information transmitting buoy

Publications (1)

Publication Number Publication Date
JP2000038188A true JP2000038188A (en) 2000-02-08

Family

ID=16540702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10207497A Pending JP2000038188A (en) 1998-07-23 1998-07-23 Positional information transmitting buoy

Country Status (1)

Country Link
JP (1) JP2000038188A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101231972B1 (en) * 2011-08-29 2013-02-08 한밭대학교 산학협력단 Self-moving buoy
KR101273660B1 (en) * 2011-03-16 2013-06-10 한국해양과학기술원 Auto Directional Oceanographic Observation Station
KR101313306B1 (en) * 2011-09-02 2013-09-30 (주)컨벡스 Buoy type robot for monitoring conditions
KR101313546B1 (en) 2011-10-31 2013-10-01 (주)컨벡스 Camera robot of buoy type
KR101313545B1 (en) * 2011-09-02 2013-10-01 (주)컨벡스 Self power generating robot of buoy type
KR20190080366A (en) * 2017-12-28 2019-07-08 주식회사 로봇밸리 unmanned observation vehicle
WO2022137441A1 (en) * 2020-12-24 2022-06-30 日本電信電話株式会社 Radio communication device and control method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101273660B1 (en) * 2011-03-16 2013-06-10 한국해양과학기술원 Auto Directional Oceanographic Observation Station
KR101231972B1 (en) * 2011-08-29 2013-02-08 한밭대학교 산학협력단 Self-moving buoy
KR101313306B1 (en) * 2011-09-02 2013-09-30 (주)컨벡스 Buoy type robot for monitoring conditions
KR101313545B1 (en) * 2011-09-02 2013-10-01 (주)컨벡스 Self power generating robot of buoy type
KR101313546B1 (en) 2011-10-31 2013-10-01 (주)컨벡스 Camera robot of buoy type
KR20190080366A (en) * 2017-12-28 2019-07-08 주식회사 로봇밸리 unmanned observation vehicle
KR102109370B1 (en) 2017-12-28 2020-05-12 (주)애니토이 unmanned observation vehicle
WO2022137441A1 (en) * 2020-12-24 2022-06-30 日本電信電話株式会社 Radio communication device and control method

Similar Documents

Publication Publication Date Title
US7483337B2 (en) System and method for extending GPS to divers and underwater vehicles
US11059553B2 (en) Autonomous ocean data collection
US5577942A (en) Station keeping buoy system
US7969822B2 (en) System and method for extending GPS to divers and underwater vehicles
ES2352000T3 (en) METHODS AND SYSTEMS FOR NAVIGATING UNDER WATER.
US11899104B2 (en) Navigation system for underwater vehicles
US9223002B2 (en) System and method for determining the position of an underwater vehicle
RU2119172C1 (en) Method of remote control over unmanned underwater craft and device for its implementation
JP3488365B2 (en) Ocean mobile and ocean mobile management system
JP4716214B2 (en) Ship entry / exit berth support method and system
US10597128B2 (en) Diver navigation, information and safety buoy
CN108955678A (en) A kind of deep-sea vehicle communication location navigation time service integral method and system
EP0776510A1 (en) Anchorless boat positioning employing global positioning system
US20060178829A1 (en) Global acoustic positioning system and device
JP2000038188A (en) Positional information transmitting buoy
JP2003215230A (en) Position detection system for underwater moving body and its method
JP2002250766A (en) Method and system for underwater towed body position measurement
JP3128744B2 (en) Information transmission buoy
JPH06289132A (en) Ones own position measuring type sonobuoy device and its position computing system
JPH1090017A (en) Multi-purpose pod floating at fixed point of sea level
US3691978A (en) Apparatus for the automatic navigation of a sailing vessel
JPH0755911A (en) Oceanographic survey system
JPH10206178A (en) Guiding system for moving body
JP4237098B2 (en) Underwater exploration buoy and its antenna mounting and holding method
JPH05193554A (en) Self position information transmission buoy

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20050705

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080523