JP2000036320A - Operation control system and operating method for battery consisting of sodium-sulfur cells - Google Patents

Operation control system and operating method for battery consisting of sodium-sulfur cells

Info

Publication number
JP2000036320A
JP2000036320A JP10201484A JP20148498A JP2000036320A JP 2000036320 A JP2000036320 A JP 2000036320A JP 10201484 A JP10201484 A JP 10201484A JP 20148498 A JP20148498 A JP 20148498A JP 2000036320 A JP2000036320 A JP 2000036320A
Authority
JP
Japan
Prior art keywords
battery
module
module battery
sodium
row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10201484A
Other languages
Japanese (ja)
Other versions
JP3486110B2 (en
Inventor
Toshiyuki Kawaguchi
敏幸 川口
Hiroyuki Abe
浩幸 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
NGK Insulators Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Tokyo Electric Power Co Inc filed Critical NGK Insulators Ltd
Priority to JP20148498A priority Critical patent/JP3486110B2/en
Publication of JP2000036320A publication Critical patent/JP2000036320A/en
Application granted granted Critical
Publication of JP3486110B2 publication Critical patent/JP3486110B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an operation control system and operating method which introduce the operation such that the charging/discharging power of a module battery train in failure is decreased in the event of failure in a unit cell while charging/discharging power of a failless module battery train is increased and which compensate the shortage of power due to the failure with the failless module battery trains. SOLUTION: A battery operation control system is structured so that a plurality of module batteries 10 each consisting of a plurality of sodium-sulfur cells are connected together electrically. Battery trains 20 are formed from these module batteries 10, and an AC-DC converter device 30 is connected with each module battery train 20, and independent control of the charging/discharging operation is performed for each module battery train connected with the AC-DC converter device 30. When a failure occurs in any module battery train 20, its charging/discharging power is decreased while the charging and discharging power of the other battery trains 20 remaining failless are increased so that shortage of the power due to failure is compensated with the failless module battery trains 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、複数のナトリウ
ム−硫黄電池で構成されるモジュール電池の複数個を電
気的に接続して成るバッテリーの運転制御システム及び
その運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery operation control system in which a plurality of module batteries each including a plurality of sodium-sulfur batteries are electrically connected, and an operation method thereof.

【0002】[0002]

【従来の技術】 ナトリウム−硫黄電池は、一方に陰極
活物質である溶融金属ナトリウム、他方には陽極活物質
である溶融硫黄を配し、両者をナトリウムイオンに対し
て選択的な透過性を有するベータアルミナ固体電解質で
隔離し、300〜350℃で作動させる高温二次電池で
ある。
2. Description of the Related Art A sodium-sulfur battery has molten metal sodium as a cathode active material on one side and molten sulfur as an anode active material on the other side, and both have selective permeability to sodium ions. A high-temperature secondary battery operated at 300 to 350 ° C., isolated by a beta-alumina solid electrolyte.

【0003】 ナトリウム−硫黄電池を用いたバッテリ
ーは、上記のような構成を有する単電池を複数個接続
し、断熱容器に収容して成るモジュール電池を、さらに
複数個直列及び/又は並列に接続して構成される。図8
は、ナトリウム−硫黄電池を用いたバッテリーの構成を
示す概略図で、複数個のモジュール電池1により複数列
のモジュール電池列2を構成し、各モジュール電池列2
を並列に接続した後、複数の交直変換装置(インバー
タ)3を並列接続したものと直列に接続してバッテリー
が構成されている。
In a battery using a sodium-sulfur battery, a plurality of cells having the above-described configuration are connected, and a plurality of module batteries housed in a heat insulating container are further connected in series and / or parallel. It is composed. FIG.
Is a schematic diagram showing a configuration of a battery using a sodium-sulfur battery. A plurality of module batteries 1 are used to form a plurality of module battery rows 2.
Are connected in parallel, and then a plurality of AC / DC converters (inverters) 3 are connected in series to one connected in parallel to form a battery.

【0004】 このようなナトリウム−硫黄電池を用い
たバッテリーの運転は、第一休止段階、放電段階、第二
休止段階、充電段階からなるサイクルを繰り返して行わ
れる。放電段階においては、溶融ナトリウムが電子を放
出してナトリウムイオンとなり、これが固体電解質管を
透過して陽極側に移動し、硫黄及び外部回路を通ってき
た電子と反応して多硫化ナトリウムを生成し、所定の電
圧を発生させる。一方、充電時においては、放電とは逆
にナトリウム及び硫黄の生成反応が起こる。このバッテ
リーにおける充放電特性を図7のグラフに示す。
The operation of a battery using such a sodium-sulfur battery is performed by repeating a cycle including a first pause stage, a discharge stage, a second pause stage, and a charge stage. In the discharge stage, the molten sodium releases electrons to become sodium ions, which pass through the solid electrolyte tube and move to the anode side, react with sulfur and the electrons that have passed through the external circuit to produce sodium polysulfide. , And generates a predetermined voltage. On the other hand, at the time of charging, a reaction of producing sodium and sulfur occurs in reverse to discharging. The charge / discharge characteristics of this battery are shown in the graph of FIG.

【0005】 このようなナトリウム−硫黄電池を用い
たバッテリーにおいては、放電時、各モジュール電池列
2で発生した直流電圧を交直変換装置3を介して交流電
圧に変換し、変圧器(トランス)4を介して取り出さ
れ、送電される。そして、各モジュール電池列2の電圧
を検知する電池制御手段5、および、交直変換装置3を
制御する交直変換装置制御手段6が設けられている。
In a battery using such a sodium-sulfur battery, at the time of discharge, a DC voltage generated in each module battery row 2 is converted into an AC voltage via an AC / DC converter 3, and a transformer (transformer) 4 is provided. Is taken out and transmitted. Further, a battery control means 5 for detecting the voltage of each module battery row 2 and an AC / DC converter control means 6 for controlling the AC / DC converter 3 are provided.

【0006】[0006]

【発明が解決しようとする課題】 しかしながら、図8
に示すような構成のバッテリーにおいては、複数個のモ
ジュール電池列2のうちの1つの単電池に故障が発生し
た場合、故障したモジュール電池列の充放電能力(容
量)が低下することにより、図6のように、放電可能な
時間が設定時間に比して短縮し、そのため、他のモジュ
ール電池列の運転も故障したモジュール電池列の放電時
間に合わせる必要があった。すなわち、従来の構成のバ
ッテリーでは、モジュール電池列2の単電池に1つでも
故障が発生すれば、その故障したモジュール電池列の能
力に合わせて充放電の運転を行う必要があった。
However, FIG.
In the battery having the configuration shown in FIG. 1, when a failure occurs in one of the plurality of module battery rows 2, the charge / discharge capacity (capacity) of the failed module battery row is reduced. As shown in FIG. 6, the dischargeable time is shorter than the set time, and therefore, it is necessary to adjust the operation of other module battery arrays to the discharge time of the failed module battery array. That is, in the battery of the conventional configuration, if even one of the cells in the module battery row 2 fails, the charging / discharging operation needs to be performed in accordance with the capacity of the failed module battery row.

【0007】 本発明は、かかる従来の課題に鑑みてな
されたものであり、その目的とするところは、単電池故
障発生時には、故障したモジュール電池列の充放電電力
を減少させ、健全なモジュール電池列の充放電電力を増
加させる運転を行うことにより、故障発生による不足電
力量を健全なモジュール電池列によって補償する運転制
御システムとその運転方法を提供することにある。
The present invention has been made in view of such a conventional problem, and an object of the present invention is to reduce the charge / discharge power of a failed module battery array when a single battery failure occurs, thereby achieving a healthy module battery. It is an object of the present invention to provide an operation control system and an operation method thereof, in which an operation for increasing the charge / discharge power of a row is performed to compensate for a shortage of power due to a failure with a healthy row of module batteries.

【0008】[0008]

【課題を解決するための手段】 すなわち、本発明によ
れば、複数のナトリウム−硫黄電池で構成されるモジュ
ール電池の複数個を電気的に接続して成るバッテリーの
運転制御システムであって、複数個のモジュール電池に
より複数列のモジュール電池列を構成するとともに、各
モジュール電池列に対してそれぞれ交直変換装置を接続
し、この交直変換装置に接続したモジュール電池列ごと
に独立して充放電の運転を制御することを特徴とするナ
トリウム−硫黄電池からなるバッテリーの運転制御シス
テム、が提供される。
That is, according to the present invention, there is provided a battery operation control system in which a plurality of module batteries each including a plurality of sodium-sulfur batteries are electrically connected. A plurality of module battery rows are constituted by the plurality of module batteries, and an AC / DC converter is connected to each module battery row, and charge / discharge operation is independently performed for each module battery row connected to the AC / DC converter. And an operation control system for a battery including a sodium-sulfur battery.

【0009】 本発明の運転制御システムにおいては、
モジュール電池列に故障が発生した時、当該故障モジュ
ール電池列の充放電電力を減少させるとともに、その他
の健全なモジュール電池列の充放電電力を増加させ、故
障発生による不足電力量を健全なモジュール電池列によ
って補償することが望ましい。
In the operation control system of the present invention,
When a failure occurs in a module battery row, the charge / discharge power of the failed module battery row is reduced, and the charge / discharge power of other healthy module battery rows is increased, thereby reducing the power shortage due to the failure. It is desirable to compensate by columns.

【0010】 また本発明によれば、複数のナトリウム
−硫黄電池で構成されるモジュール電池の複数個を電気
的に接続して成るバッテリーであって、複数個のモジュ
ール電池により複数列のモジュール電池列を構成すると
ともに、各モジュール電池列に対してそれぞれ交直変換
装置を接続し、この交直変換装置に接続したモジュール
電池列ごとに独立して充放電の運転を制御するバッテリ
ーの運転方法において、モジュール電池列に故障が発生
した時、当該故障モジュール電池列の充放電電力を減少
させるとともに、その他の健全なモジュール電池列の充
放電電力を増加させ、故障発生による不足電力量を健全
なモジュール電池列によって補償することを特徴とする
ナトリウム−硫黄電池からなるバッテリーの運転方法、
が提供される。
Further, according to the present invention, there is provided a battery in which a plurality of module batteries each including a plurality of sodium-sulfur batteries are electrically connected, and a plurality of module battery rows including the plurality of module batteries are provided. And an AC / DC converter connected to each module battery row, and independently controlling the charging / discharging operation for each module battery row connected to the AC / DC converter. When a failure occurs in a row, the charge / discharge power of the failed module battery row is reduced, and the charge / discharge power of other healthy module battery rows is increased, and the power shortage due to the failure is reduced by the healthy module battery row. A method of operating a battery comprising a sodium-sulfur battery, wherein the method comprises:
Is provided.

【0011】[0011]

【発明の実施の形態】 以下、本発明の実施の形態を図
面に基づいて詳細に説明する。図1は本発明に係るバッ
テリーの運転制御システムの基本構成の一例を示す概略
説明図、図2は本発明に係るバッテリーの運転制御シス
テムの基本構成の他の例を示す概略説明図である。な
お、図1と図2の構成の相違は、図1ではトランスが1
台であるのに対し、図2ではトランスが2台であること
であり、その他の構成は同じである。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic explanatory diagram showing an example of the basic configuration of the battery operation control system according to the present invention, and FIG. 2 is a schematic explanatory diagram showing another example of the basic configuration of the battery operation control system according to the present invention. The difference between the configurations shown in FIGS. 1 and 2 is that in FIG.
In FIG. 2, the number of transformers is two, and the other configuration is the same.

【0012】 図1〜2において、複数個のモジュール
電池10により複数列のモジュール電池列20を構成
し、各モジュール電池列20に対してそれぞれ交直変換
装置(インバータ)30を接続している。そして、この
交直変換装置30は双方向交直変換装置であって、それ
に接続したモジュール電池列20の列単位ごとに独立し
て充放電運転の制御をするために、各モジュール電池列
20のそれぞれにおける電圧を検知して各モジュール電
池列20の故障を判別する電池制御手段40と、この電
池制御手段40からの信号を受け、各モジュール電池列
20の出力の増減指令を各交直変換装置30に送信する
交直変換装置制御手段50を設けている。なお、60は
トランスを示す。
In FIG. 1 and FIG. 2, a plurality of module battery rows 20 are constituted by a plurality of module batteries 10, and an AC / DC converter (inverter) 30 is connected to each of the module battery rows 20. The AC / DC converter 30 is a two-way AC / DC converter, and controls the charge / discharge operation independently for each column unit of the module battery column 20 connected thereto. A battery control means 40 for detecting a voltage to determine a failure in each module battery array 20; AC / DC conversion device control means 50 is provided. Reference numeral 60 denotes a transformer.

【0013】 上記の構成において、バッテリーの充放
電運転を行うが、モジュール電池列20のいずれかに故
障が発生した場合には、電池制御手段40がその出力の
変動、低下を検知して故障の発生を判別する。そして、
電池制御手段40がモジュール電池列20の故障を判別
すると、電池制御手段40は、信号を交直変換装置制御
手段50に送信して、その内容に基づき、交直変換装置
制御手段50は各交直変換装置30に信号を送信して、
故障したモジュール電池列20の充放電電力を所定量減
少させるようその電圧を下げさせるとともに、その他の
健全なモジュール電池列20の充放電電力を所定量増加
させるようその電圧を上げさせることを指令する。
In the above configuration, the battery is charged / discharged. When a failure occurs in any of the battery modules 20, the battery control means 40 detects a change or decrease in the output and detects the failure. Determine occurrence. And
When the battery control means 40 determines that the module battery array 20 has failed, the battery control means 40 transmits a signal to the AC / DC conversion device control means 50, and based on the content thereof, the AC / DC conversion device control means 50 Send a signal to 30
A command is issued to lower the voltage so as to reduce the charge / discharge power of the failed module battery row 20 by a predetermined amount, and to increase the voltage so as to increase the charge / discharge power of the other healthy module battery rows 20 by a predetermined amount. .

【0014】 このようにして、故障したモジュール電
池列20の充放電電力を減少させるとともに、その他の
健全なモジュール電池列20の充放電電力を増加させる
ことにより、故障発生による不足電力量を健全なモジュ
ール電池列20によって補償することができる。
In this manner, the charge / discharge power of the failed module battery row 20 is reduced and the charge / discharge power of the other healthy module battery rows 20 is increased, so that the power shortage due to the occurrence of the failure can be reduced to a healthy level. Compensation can be provided by the module battery train 20.

【0015】 次に、本発明をより具体的に説明する。
以下、制御システムの条件を記す。 (1)システム規模 …2MW (2)モジュール電池列…500kW (3)電池構成 …図1に示す構成のシステム 50kWのモジュール電池10が10個集まってモジュ
ール電池列20を構成し、このモジュール電池列20を
4列設けたものである。このモジュール電池10は、3
60本の単電池から構成されている。また、単電池は、
初期容量を115%とした。
Next, the present invention will be described more specifically.
The conditions of the control system are described below. (1) System scale: 2 MW (2) Module battery array: 500 kW (3) Battery configuration: System having the configuration shown in FIG. 1 Ten module batteries 10 of 50 kW are assembled to form a module battery array 20, and this module battery array 20 are provided in four rows. This module battery 10 has 3
It is composed of 60 single cells. In addition, unit cell,
The initial capacity was 115%.

【0016】 単電池の故障は1本故障とし、制御運転
範囲としては健全なモジュール電池列の出力が105
%、故障モジュール電池列の運転範囲を出力85%と設
定した。この運転モードを図3に示す。
A single cell failure is regarded as one failure, and the output of a healthy module battery array is 105 as a control operation range.
% And the operating range of the failed module battery array was set to 85% output. This operation mode is shown in FIG.

【0017】 以上の条件下、バッテリーの充放電運転
を行う。図5は本システムの制御アルゴリズムを示して
おり、電池制御手段40により常時各モジュール電池列
20の電圧を監視する。次いで、各モジュール電池列2
0の放電末開路電圧を比較することにより、各モジュー
ル電池列20の電池故障の有無を判別する。上記の放電
末開路電圧の比較により、A〜Dの4列のモジュール電
池列20のいずれかに電池故障が発生したことが判別し
た場合、OR回路70により、次回の放電時から、各モ
ジュール電池列20の出力を、表1に示すように出力調
整した動作モードとなるよう、電池制御手段40から信
号を各交直変換装置30に送信する。この場合の充放電
特性を図4に示す。
Under the above conditions, the battery is charged and discharged. FIG. 5 shows a control algorithm of the present system. The battery control means 40 constantly monitors the voltage of each module battery array 20. Then, each module battery row 2
By comparing the open circuit voltage at the discharge end of 0, the presence or absence of a battery failure in each module battery array 20 is determined. If it is determined from the comparison of the open circuit voltages at the end of discharge that a battery failure has occurred in any of the four module battery rows 20 from A to D, the OR circuit 70 starts to charge each module battery from the next discharge. A signal is transmitted from the battery control means 40 to each AC / DC converter 30 so that the output of the column 20 becomes an operation mode in which the output is adjusted as shown in Table 1. FIG. 4 shows the charge / discharge characteristics in this case.

【0018】[0018]

【表1】 [Table 1]

【0019】 図4に示すように、本制御システムによ
れば、故障したモジュール電池列20の出力を85%に
下げ、一方、健全なモジュール電池列20の出力を10
5%に上げることにより、放電時間を健全時と同様に8
時間行うことができ、その結果、バッテリーの充放電電
力(容量)の低下を15%補償することができる。ま
た、モジュール電池の点検時には、一列単位で停止し点
検することもできるため、点検時においてもバッテリー
の運転を停止する必要がない。
As shown in FIG. 4, according to the present control system, the output of the failed module battery array 20 is reduced to 85%, while the output of the healthy module battery array 20 is reduced by 10%.
By increasing the discharge time to 5%, the discharge time becomes 8
This can be performed for a time, and as a result, a decrease in the charge / discharge power (capacity) of the battery can be compensated by 15%. Further, at the time of inspection of the module battery, it is possible to stop and inspect the battery in units of one row, so that it is not necessary to stop the operation of the battery at the time of inspection.

【0020】[0020]

【発明の効果】 以上説明したように、本発明によれ
ば、単電池の故障期間のみ、当該故障電池を含むモジュ
ール電池列の出力を所定量下げるとともに、その下げた
出力に相当する出力分を、健全なモジュール電池列の出
力を増加させることにより補償する制御運転を行うた
め、コストにほとんど影響しない範囲の出力増加で故障
モジュール電池列の出力を補償することができる。
As described above, according to the present invention, the output of the module battery array including the failed battery is reduced by a predetermined amount only during the failure period of the cell, and the output corresponding to the reduced output is reduced. In addition, since the control operation for compensating by increasing the output of the healthy module battery array is performed, the output of the failed module battery array can be compensated with an increase in the output that hardly affects the cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係るバッテリーの運転制御システム
の基本構成の一例を示す概略説明図である。
FIG. 1 is a schematic explanatory diagram showing an example of a basic configuration of a battery operation control system according to the present invention.

【図2】 本発明に係るバッテリーの運転制御システム
の基本構成の他の例を示す概略説明図である。
FIG. 2 is a schematic explanatory diagram showing another example of the basic configuration of the battery operation control system according to the present invention.

【図3】 本発明の実施態様の運転モードの一例を示す
グラフである。
FIG. 3 is a graph showing an example of an operation mode according to the embodiment of the present invention.

【図4】 本発明の実施態様における電池故障時のバッ
テリーの充放電特性を示すグラフである。
FIG. 4 is a graph showing charge / discharge characteristics of a battery when a battery fails in an embodiment of the present invention.

【図5】 本発明の実施態様のシステム制御アルゴリズ
ムである。
FIG. 5 is a system control algorithm according to an embodiment of the present invention.

【図6】 従来の電池故障時のバッテリーの充放電特性
を示すグラフである。
FIG. 6 is a graph showing charge / discharge characteristics of a conventional battery when a battery fails.

【図7】 健全時のバッテリーの充放電特性を示すグラ
フである。
FIG. 7 is a graph showing charge / discharge characteristics of a battery in a normal state.

【図8】 従来のバッテリーの構成を示す概略図であ
る。
FIG. 8 is a schematic diagram showing a configuration of a conventional battery.

【符号の説明】[Explanation of symbols]

10…モジュール電池、20…モジュール電池列、30
…交直変換装置(インバータ)、40…電池制御手段、
50…交直変換装置制御手段。
10 ... Module battery, 20 ... Module battery row, 30
... AC / DC converter (inverter), 40 ... battery control means,
50: AC / DC converter control means.

フロントページの続き (72)発明者 阿部 浩幸 愛知県名古屋市瑞穂区須田町2番56号 日 本碍子株式会社内 Fターム(参考) 5G003 AA01 BA04 CA14 CC07 CC08 DA07 DA14 DA15 DA18 GB06 5H029 AJ00 AK04 AL13 5H030 AS01 BB01 Continued on the front page (72) Inventor Hiroyuki Abe 2-56, Suda-cho, Mizuho-ku, Nagoya-shi, Aichi Japan F Co., Ltd. F-term (reference) 5G003 AA01 BA04 CA14 CC07 CC08 DA07 DA14 DA15 DA18 GB06 5H029 AJ00 AK04 AL13 5H030 AS01 BB01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数のナトリウム−硫黄電池で構成され
るモジュール電池の複数個を電気的に接続して成るバッ
テリーの運転制御システムであって、 複数個のモジュール電池により複数列のモジュール電池
列を構成するとともに、各モジュール電池列に対してそ
れぞれ交直変換装置を接続し、この交直変換装置に接続
したモジュール電池列ごとに独立して充放電の運転を制
御することを特徴とするナトリウム−硫黄電池からなる
バッテリーの運転制御システム。
1. A battery operation control system comprising a plurality of module batteries comprising a plurality of sodium-sulfur batteries, wherein the plurality of module batteries are electrically connected to each other. A sodium-sulfur battery, comprising: connecting and connecting an AC / DC converter to each module battery row, and independently controlling charging / discharging operation for each module battery row connected to the AC / DC converter. Battery operation control system.
【請求項2】 モジュール電池列に故障が発生した時、
当該故障モジュール電池列の充放電電力を減少させると
ともに、その他の健全なモジュール電池列の充放電電力
を増加させ、故障発生による不足電力量を健全なモジュ
ール電池列によって補償することを特徴とする請求項1
記載のバッテリーの運転制御システム。
2. When a failure occurs in a module battery row,
The charge / discharge power of the failed module battery row is reduced, and the charge / discharge power of other healthy module battery rows is increased, and the insufficient power amount due to the occurrence of the failure is compensated by the healthy module battery row. Item 1
An operation control system for the battery according to the above.
【請求項3】 複数のナトリウム−硫黄電池で構成され
るモジュール電池の複数個を電気的に接続して成るバッ
テリーであって、複数個のモジュール電池により複数列
のモジュール電池列を構成するとともに、各モジュール
電池列に対してそれぞれ交直変換装置を接続し、この交
直変換装置に接続したモジュール電池列ごとに独立して
充放電の運転を制御するバッテリーの運転方法におい
て、 モジュール電池列に故障が発生した時、当該故障モジュ
ール電池列の充放電電力を減少させるとともに、その他
の健全なモジュール電池列の充放電電力を増加させ、故
障発生による不足電力量を健全なモジュール電池列によ
って補償することを特徴とするナトリウム−硫黄電池か
らなるバッテリーの運転方法。
3. A battery formed by electrically connecting a plurality of module batteries including a plurality of sodium-sulfur batteries, wherein the plurality of module batteries form a plurality of module battery rows, In the battery operation method in which an AC / DC converter is connected to each module battery row and the charge / discharge operation is controlled independently for each module battery row connected to the AC / DC converter, a failure occurs in the module battery row. In this case, the charging / discharging power of the failed module battery row is reduced, and the charging / discharging power of other healthy module battery rows is increased, and the shortage of power due to the occurrence of the failure is compensated by the healthy module battery row. A method for operating a battery comprising a sodium-sulfur battery.
JP20148498A 1998-07-16 1998-07-16 Operation control system and operation method for battery comprising sodium-sulfur battery Expired - Lifetime JP3486110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20148498A JP3486110B2 (en) 1998-07-16 1998-07-16 Operation control system and operation method for battery comprising sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20148498A JP3486110B2 (en) 1998-07-16 1998-07-16 Operation control system and operation method for battery comprising sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JP2000036320A true JP2000036320A (en) 2000-02-02
JP3486110B2 JP3486110B2 (en) 2004-01-13

Family

ID=16441837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20148498A Expired - Lifetime JP3486110B2 (en) 1998-07-16 1998-07-16 Operation control system and operation method for battery comprising sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JP3486110B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012210081A (en) * 2011-03-30 2012-10-25 Sanyo Electric Co Ltd Electric power supply system
WO2013080797A1 (en) * 2011-11-30 2013-06-06 日本電気株式会社 Power system and method for controlling same
WO2015029832A1 (en) * 2013-08-30 2015-03-05 日本碍子株式会社 Device, method, and program for specifying abnormality-occurrence area of secondary battery system
JP5887426B2 (en) * 2012-12-20 2016-03-16 株式会社日立製作所 Power storage system
CN109449341A (en) * 2018-12-18 2019-03-08 中国华能集团清洁能源技术研究院有限公司 A kind of battery energy storage system framework

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012210081A (en) * 2011-03-30 2012-10-25 Sanyo Electric Co Ltd Electric power supply system
WO2013080797A1 (en) * 2011-11-30 2013-06-06 日本電気株式会社 Power system and method for controlling same
JPWO2013080797A1 (en) * 2011-11-30 2015-04-27 日本電気株式会社 Electric power system and control method thereof
US9608449B2 (en) 2011-11-30 2017-03-28 Nec Corporation Power system and control method of the power system
JP5887426B2 (en) * 2012-12-20 2016-03-16 株式会社日立製作所 Power storage system
US9595842B2 (en) 2012-12-20 2017-03-14 Hitachi, Ltd. Electricity storage system
WO2015029832A1 (en) * 2013-08-30 2015-03-05 日本碍子株式会社 Device, method, and program for specifying abnormality-occurrence area of secondary battery system
JPWO2015029832A1 (en) * 2013-08-30 2017-03-02 日本碍子株式会社 Apparatus, method, and program for identifying abnormality occurrence site of secondary battery system
CN109449341A (en) * 2018-12-18 2019-03-08 中国华能集团清洁能源技术研究院有限公司 A kind of battery energy storage system framework

Also Published As

Publication number Publication date
JP3486110B2 (en) 2004-01-13

Similar Documents

Publication Publication Date Title
US8221911B2 (en) Method for operating redox flow battery and redox flow battery cell stack
US4797566A (en) Energy storing apparatus
EP1143595B1 (en) Emergency power system
EP2434573B1 (en) Method for calculating number of healthy strings of sodium-sulfur battery and failure detection method using same
US8957545B2 (en) Prioritization circuit and electric power supply system
JP6614010B2 (en) Battery system
KR102635600B1 (en) Battery formation device, control method of battery formation device, and control system
EP1803203B1 (en) Apparatus and method for charging an accumulator
JP2000036320A (en) Operation control system and operating method for battery consisting of sodium-sulfur cells
WO2014049670A1 (en) Storage battery control device, storage battery management system and electricity storage system
JPH0629029A (en) Fuel cell operating method
JPH0946926A (en) Distributed power unit
KR101957841B1 (en) Solar Power Storage Battery Balancing Device
US11509142B2 (en) Electrical power system
KR20070025834A (en) Hybrid power supply system of fuel cell and battery with linear voltage profile and operating method
US20230163344A1 (en) Secondary battery pack, charger and discharger
JP2001211560A (en) Charging-discharging device
CN116865316A (en) Modularized energy-storage bidirectional converter
US11056724B2 (en) Power storage system
JP2595585B2 (en) Fuel cell generator
JPS63217930A (en) Fuel cell generator
JP2021083145A (en) DC power supply
KR20230072019A (en) Uninterruptible charger and discharger
JP2000306599A (en) Modular battery
Caldwell et al. Advanced nickel/hydrogen dependent pressure vessel (DPV) cell and battery concepts

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term