JP2000033409A - Method for controlling plate thickness in reversible rolling mill - Google Patents

Method for controlling plate thickness in reversible rolling mill

Info

Publication number
JP2000033409A
JP2000033409A JP10200293A JP20029398A JP2000033409A JP 2000033409 A JP2000033409 A JP 2000033409A JP 10200293 A JP10200293 A JP 10200293A JP 20029398 A JP20029398 A JP 20029398A JP 2000033409 A JP2000033409 A JP 2000033409A
Authority
JP
Japan
Prior art keywords
deformation resistance
rolling
frequency
thickness deviation
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10200293A
Other languages
Japanese (ja)
Other versions
JP3384330B2 (en
Inventor
Masaki Ueda
雅基 植田
Masamori Yasuda
昌守 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP20029398A priority Critical patent/JP3384330B2/en
Publication of JP2000033409A publication Critical patent/JP2000033409A/en
Application granted granted Critical
Publication of JP3384330B2 publication Critical patent/JP3384330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce a plate thickness deviation due to variation in deformation resistance as small as possible. SOLUTION: In a plate rolling in which rolling of not less than two passes is applied to a material 1 to be rolled which is pulled out of a coil, after measuring a plate thickness deviation to target plate thickness on the outlet side of the (n-1)th (n>=2) pass, the Fourier transformation of the signals of the obtained plate thickness deviation on the outlet side is executed and a frequency distribution is determined. Based on the diameter of the coil and the moving speed of the material to be rolled, the frequency due to variation in deformation resistance in the longitudinal direction which periodically appears, is determined. Using this frequency, the frequency determined before and preset threshold value, whether the periodic change in the deformation resistance has influence upon the thickness deviation on the outlet side or not, is judged. In the case that it is judged that the deviation is affected, a feed-forward AGC control gain at the n-th pass is corrected. Consequently, the thickness deviation caused by irregularity in the deformation resistance is drastically reduce. Further, the data to be stored can be reduced. Moreover, the higher accuracy of tracking is unnecessitated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は特にリバース圧延機
を用いて被圧延材を圧延する際の板厚制御方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a thickness of a material to be rolled, particularly when a material to be rolled is rolled using a reverse rolling mill.

【0002】[0002]

【従来の技術】圧延機における板厚制御方法としては、
一般に、圧延機入側の板厚偏差を測定(又は推定)し、
この測定点(又は推定点)が圧延機を通過する際に操作
量を変更することにより、入側板厚偏差の影響が出側板
厚偏差に現れないようにするフイードフォワード制御
と、圧延機出側の板厚偏差を測定(又は推定)して操作
量を変更することにより出側板厚を目標値に一致させる
フィードバック制御がある。
2. Description of the Related Art As a method for controlling the thickness of a rolling mill,
Generally, the thickness deviation at the entrance to the rolling mill is measured (or estimated),
By changing the manipulated variable when this measurement point (or estimated point) passes through the rolling mill, feed-forward control that prevents the influence of the incoming side sheet thickness deviation from appearing on the outgoing side sheet thickness deviation, There is feedback control for measuring (or estimating) the sheet thickness deviation on the side and changing the manipulated variable so that the outlet sheet thickness matches the target value.

【0003】ここで操作量としては、被圧延材の寸法や
圧延設備に応じて、圧延機の圧下位置、または被圧延材
の張力、あるいはこの張力を変更するための圧延ロール
のロール速度が用いられている。特に、上述のフイード
フォワード制御においては、圧延機の出側板厚と目標板
厚との偏差が零になるように、予め設定したゲインを用
いて圧下位置調整量又は張力調整量を演算するので、こ
のゲインの設定を高精度に行う必要がある。
[0003] Here, as the manipulated variable, the rolling position of the rolling mill, the tension of the material to be rolled, or the roll speed of the rolling roll for changing this tension is used depending on the size of the material to be rolled and the rolling equipment. Have been. In particular, in the above-described feedforward control, the roll-down position adjustment amount or the tension adjustment amount is calculated using a preset gain so that the deviation between the delivery side plate thickness of the rolling mill and the target plate thickness becomes zero. It is necessary to set this gain with high accuracy.

【0004】ところで、冷間圧延では母材の長手方向の
変形抵抗むらに起因して板厚偏差が発生する。母材の長
手方向の変形抵抗むらは、冷間圧延の上工程である熱間
圧延で圧延・巻取りされたコイル置き台に載置した母材
コイルを放熱によって冷却する際、コイル置き台に接触
している部分の冷却速度と、コイル置き台に接触してい
ない部分の冷却速度が異なることによって発生する。
[0004] In the cold rolling, thickness deviation occurs due to uneven deformation resistance in the longitudinal direction of the base material. Non-uniform deformation resistance in the longitudinal direction of the base material, when cooling the base metal coil placed on the coil stand rolled and wound by hot rolling, which is the upper process of cold rolling, by heat radiation, the coil stand This is caused by the difference between the cooling rate of the part that is in contact and the cooling rate of the part that is not in contact with the coil holder.

【0005】また、冷間圧延工程の前に母材コイルを焼
鈍する場合にも、コイル外周部が均一に焼鈍されないこ
とによって、同様に変形抵抗むらが発生する。この様な
変形抵抗むらは冷間圧延での板厚偏差の原因となるた
め、変形抵抗むらが顕著に現れる高炭素鋼板及び高珪素
鋼板を冷間圧延する場合には、変形抵抗むらに起因する
板厚偏差を低減することが要求されている。
[0005] Also, in the case where the base material coil is annealed before the cold rolling step, deformation resistance non-uniformity also occurs because the coil outer peripheral portion is not uniformly annealed. Such deformation resistance unevenness causes a thickness deviation in cold rolling, so when cold rolling a high carbon steel sheet and a high silicon steel sheet in which the deformation resistance unevenness is conspicuous, it is caused by the deformation resistance unevenness. It is required to reduce the thickness deviation.

【0006】この要求に対して、圧延機入・出側の板
厚や圧延荷重から変形抵抗を求め、この値を用いて次工
程又は次パスの制御に反映させる方法(特開昭55−8
6616号公報)、圧延中の材料の変形抵抗を圧延デ
ータから推定又は実測し、予め考えていた変形抵抗との
ずれ分を張力で補正する方法(特開昭57−19321
6号公報、特開昭58−3714号公報)、また、タ
ンデム圧延機におけるi−1スタンドでの実測値に基づ
く変形抵抗の推定値を用い、iスタンドの圧下位置又は
i−1スタンドの張力を制御する方法(特開昭58−1
10113号公報、特開昭60−99421号公報)等
が開示されている。
In response to this demand, a method is used in which the deformation resistance is determined from the thickness and rolling load at the entrance and exit of the rolling mill, and this value is used in the control of the next step or the next pass using this value (Japanese Patent Application Laid-Open No. 55-878)
No. 6616), a method of estimating or actually measuring the deformation resistance of a material being rolled from rolling data, and correcting the deviation from the previously considered deformation resistance by tension (Japanese Patent Laid-Open No. 57-19321).
No. 6, JP-A-58-3714), and using the estimated value of the deformation resistance based on the measured value at the i-1 stand in the tandem rolling mill, the rolling position of the i stand or the tension of the i-1 stand. (Japanese Patent Laid-Open No. 58-1)
No. 10113, JP-A-60-99421) and the like.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、の特
開昭55−86616号公報に開示されている方法で
は、板全長の変形抵抗データを記憶し、かつ、長手方向
位置を正確にトラッキングする必要があるため、変形抵
抗データが膨大となってシステムが煩雑となる。また、
トラッキングずれにより、逆に板厚偏差が悪くなる可能
性があるので、トラッキングに高い精度が要求されると
いう問題がある。
However, in the method disclosed in Japanese Patent Application Laid-Open No. 55-86616, it is necessary to store the deformation resistance data of the entire length of the plate and to accurately track the longitudinal position. Therefore, the deformation resistance data becomes enormous and the system becomes complicated. Also,
On the contrary, there is a possibility that the deviation of the plate thickness becomes worse due to the tracking deviation, so that there is a problem that high accuracy is required for the tracking.

【0008】また、の特開昭57−193216号公
報や特開昭58−3714号公報に開示されている方法
では、現在の圧延パス内での変形抵抗のずれ量を、実測
値に基づく張力制御によって補正するため、フィードバ
ック制御と同様に、実際には時間遅れが発生するという
問題がある。
In the methods disclosed in JP-A-57-193216 and JP-A-58-3714, the displacement amount of the deformation resistance in the current rolling pass is determined by a tension based on an actually measured value. Since the correction is performed by the control, there is a problem that a time delay actually occurs similarly to the feedback control.

【0009】さらに、の特開昭58−110113号
公報や特開昭60−99421号公報に開示されている
方法は、使用できる圧延機はタンデム圧延機に限定され
ているので、この方法をリバース圧延機に適用するに際
しては、上述の特開昭55−86616号公報に開示さ
れている方法と同様の問題が発生する。
Further, the methods disclosed in JP-A-58-110113 and JP-A-60-99421 are limited to tandem rolling mills. When applied to a rolling mill, the same problem as the method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 55-86616 occurs.

【0010】本発明は上記した従来の問題点に鑑みてな
されたものであり、変形抵抗の変動に起因する板厚偏差
を可及的に低減することができるリバース圧延機におけ
る板厚制御方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and provides a method of controlling a sheet thickness in a reverse rolling mill capable of reducing a sheet thickness deviation caused by a change in deformation resistance as much as possible. To provide.

【0011】[0011]

【課題を解決するための手段】上記した目的を達成する
ために、本発明に係るリバース圧延機における板厚制御
方法は、測定した出側板厚偏差から演算した周波数と、
被圧延材長手方向の変形抵抗の変動による周波数、及び
予め設定したしきい値を用いて変形抵抗の周期的変化が
出側板厚偏差に影響を及ぼしているか否かを判定し、影
響を及ぼしていると判定した場合には、次回のパスのフ
イードフォワードAGC制御ゲインを修正することとし
ている。そして、このようにすることで、変形抵抗変動
に起因する板厚偏差を効果的に低減できるようになる。
In order to achieve the above-mentioned object, a method for controlling a thickness of a reverse rolling mill according to the present invention comprises the steps of:
The frequency due to the variation of the deformation resistance in the longitudinal direction of the material to be rolled, and whether or not the periodic change in the deformation resistance is affecting the exit side sheet thickness deviation using a preset threshold value is determined. If it is determined that there is, the feedforward AGC control gain of the next pass is corrected. By doing so, the thickness deviation due to the deformation resistance variation can be effectively reduced.

【0012】[0012]

【発明の実施の形態】本発明に係るリバース圧延機にお
ける板厚制御方法は、コイルから引き出した被圧延材に
2パス以上の圧延を施す板圧延において、n−1 (n≧
2)パス目の出側目標板厚に対する板厚偏差を測定した
後、得られた出側板厚偏差の信号をフーリエ変換して周
波数分布を求めると共に、前記コイルの直径及び被圧延
材の移動速度に基づいて、周期的に現れる被圧延材長手
方向の変形抵抗の変動による周波数を求め、この周波数
と前記演算した周波数、及び予め設定したしきい値を用
いて、変形抵抗の周期的変化が出側板厚偏差に影響を及
ぼしているか否かを判定し、影響を及ぼしていると判定
した場合には、nパス目のフイードフォワードAGC制
御ゲインを修正するものである。
BEST MODE FOR CARRYING OUT THE INVENTION A method for controlling a thickness of a reverse rolling mill according to the present invention is characterized in that, in plate rolling in which a material to be rolled out of a coil is rolled in two or more passes, n-1 (n ≧
2) After measuring the thickness deviation with respect to the exit target thickness at the pass, the obtained signal of the exit thickness deviation is Fourier-transformed to obtain a frequency distribution, and the diameter of the coil and the moving speed of the material to be rolled. The frequency due to the fluctuation of the deformation resistance in the longitudinal direction of the material to be rolled which appears periodically is obtained based on the above, and the periodic change of the deformation resistance is obtained using this frequency, the calculated frequency, and a preset threshold value. It is determined whether or not the side plate thickness deviation is affected. If it is determined that the side plate thickness deviation is affected, the feedforward AGC control gain of the nth pass is corrected.

【0013】以下、本発明の板厚制御方法の原理を圧下
位置を調整する場合を例にして説明する。圧延機入側の
被圧延材の厚さと、予め設定された入側目標厚さとの差
である入側板厚偏差をΔH、圧延機出側の被圧延材の厚
さと、予め設定された出側目標厚さとの差である出側板
厚偏差をΔhとすると、変形抵抗むらΔkmが発生して
いるときの圧延荷重変動ΔPは、下記の数式1で表すこ
とができる。なお、入側板厚偏差ΔHは、単に特性解析
用として用いており、実際の制御には必ずしも必要では
ない。
Hereinafter, the principle of the thickness control method of the present invention will be described by taking as an example the case where the rolling position is adjusted. ΔH, the thickness difference between the thickness of the material to be rolled on the entry side of the rolling mill and a preset target thickness on the entry side, ΔH, the thickness of the material to be rolled on the exit side of the rolling mill, and the preset exit side Assuming that the deviation of the exit side plate thickness, which is the difference from the target thickness, is Δh, the rolling load variation ΔP when the deformation resistance unevenness Δkm is generated can be expressed by the following formula 1. It should be noted that the entry-side plate thickness deviation ΔH is simply used for characteristic analysis and is not always necessary for actual control.

【0014】[0014]

【数1】ΔP=(∂P/∂H)ΔH+(∂P/∂h)Δ
h+(∂P/∂km)Δkm 但し、∂P/∂H :入側厚さに対する圧延荷重変動の
影響係数 ∂P/∂h :出側厚さに対する圧延荷重変動の影響係
数 ∂P/∂km:変形抵抗むらに対する圧延荷重変動の影
響係数
ΔP = (∂P / ∂H)) H + () P / ∂h))
h + (∂P / ∂km) Δkm where ∂P / ∂H: Influence coefficient of rolling load variation on entry side thickness ∂P / ∂h: Influence coefficient of rolling load variation on exit side thickness ∂P / ∂km : Influence coefficient of rolling load fluctuation on deformation resistance unevenness

【0015】この圧延荷重変動ΔPの影響が出側板厚偏
差Δhに現れないようにするためには、ゲージメータ式
である下記の数式2に上記した数式1を代入し、出側板
厚偏差Δhが零になるように圧下位置操作量ΔSを下記
の数式3で求め、得られた圧下位置操作量ΔSになるよ
うに圧延機の圧下位置を操作すればよい。
In order to prevent the influence of the rolling load fluctuation ΔP from appearing in the exit side sheet thickness deviation Δh, the above equation 1 is substituted into the following equation 2 which is a gauge meter type, and the exit side sheet thickness deviation Δh The rolling position operation amount ΔS is determined by the following equation 3 so as to be zero, and the rolling position of the rolling mill may be operated so as to become the obtained rolling position operation amount ΔS.

【0016】[0016]

【数2】Δh=ΔS+(1/M)ΔP 但し、M:ミル剛性係数Δh = ΔS + (1 / M) ΔP where M: Mill stiffness coefficient

【0017】[0017]

【数3】ΔS=−(1/M){(∂P/∂H)ΔH+
(∂P/∂km)Δkm}
ΔS = − (1 / M) {(∂P / ∂H) ΔH +
(∂P / ∂km) Δkm}

【0018】ところで、主に変形抵抗むらΔkmによっ
て入側板厚偏差がΔHだけ生じている場合、変形抵抗む
らΔkmと入側板厚偏差ΔHとは同位相であるため、両
者の関係は、下記の数式4で表すことができる。
Incidentally, when the entrance side thickness deviation ΔH is mainly caused by the deformation resistance irregularity Δkm, since the deformation resistance irregularity Δkm and the entrance side thickness deviation ΔH have the same phase, the relationship between the two is expressed by the following equation. 4 can be represented.

【0019】[0019]

【数4】Δkm=α・ΔH 但し、α:比例係数Δkm = α · ΔH where α: proportional coefficient

【0020】この数式4より上記数式3は下記の数式5
のように表すことができ、この数式5におけるαの値を
調整することによって、出側厚み偏差Δhに対する変形
抵抗むらΔkmの影響を低減することができる。
From the above equation (4), the above equation (3) is replaced by the following equation (5).
By adjusting the value of α in Equation 5, it is possible to reduce the influence of the uneven deformation resistance Δkm on the outlet thickness deviation Δh.

【0021】[0021]

【数5】ΔS=−G・ΔH 但し、G=(1/M){(∂P/∂H)+α・(∂P/
∂km)}
ΔS = −G · ΔH where G = (1 / M) {(∂P / ∂H) + α · (∂P /
∂km)}

【0022】この考え方に基づき、リバース圧延機のよ
うに、ゲインGi でiパス目の圧延を施した被圧延材に
ついて(i+1)パス目の圧延をする場合を考える。i
パス目の圧延でのコイル長手方向の変形抵抗むらΔkm
を、例えば次の数式6にて算出する。
Based on this concept, a case is considered in which the (i + 1) th pass rolling is performed on the material to be subjected to the ith pass rolling with the gain Gi as in a reverse rolling mill. i
Non-uniform deformation resistance Δkm in the longitudinal direction of the coil during rolling in the pass
Is calculated by, for example, the following Expression 6.

【0023】[0023]

【数6】Δkm=〔{M−(∂Pi /∂hi )}Δhi
+{M・Gi −(∂Pi /∂Hi )}ΔHi 〕/(∂P
i /∂kmi ) 但し、∂Pi /∂hi :iパス目の出側厚さに対する圧
延荷重変動の影響係数 ∂Pi /∂Hi :iパス目の入側厚さに対する圧延荷重
変動の影響係数 ∂Pi /∂kmi :iパス目の変形抵抗むらに対する圧
延荷重変動の影響係数
Δkm = [{M- (∂Pi / ∂hi)} Δhi
+ {M · Gi − (∂Pi / ∂Hi)} ΔHi] / (∂P
i / ∂kmi) where ∂Pi / ∂hi is the coefficient of influence of the rolling load variation on the outgoing thickness at the i-th pass. ∂Pi / Hi is the coefficient of influence of the rolling load variation on the incoming thickness at the i-th pass. Pi / ∂kmi: Coefficient of influence of rolling load fluctuation on deformation resistance unevenness at the i-th pass

【0024】また、(i+1)パス目の入側板厚偏差Δ
Hi+1 はiパス目の出口板厚偏差Δhi と等しいため、
上記した数式4から、(i+1)パス目の比例定数αi+
1 は下記の数式7で表すことができ、この数式7から
(i+1)パス目のゲインが下記の数式8のように求め
られる。
Also, the (i + 1) th pass-side sheet thickness deviation Δ in the pass
Since Hi + 1 is equal to the exit thickness deviation Δhi of the i-th pass,
From equation (4) above, the proportionality constant αi + of the (i + 1) th pass
1 can be expressed by the following equation 7, and from this equation 7, the gain of the (i + 1) th pass is obtained as in the following equation 8.

【0025】[0025]

【数7】 αi+1 =〔{M−(∂Pi /∂hi )}Δhi +{M・Gi −(∂P/∂Hi )}ΔHi 〕/{(∂Pi /∂kmi )・Δhi }Αi + 1 = [{M− (∂Pi / ∂hi)} Δhi + {M · Gi− (∂P / ∂Hi)} ΔHi] / {(∂Pi / ∂kmi) ・ Δhi}

【0026】[0026]

【数8】Gi+1 =(1/M)・{∂Pi+1 /∂Hi+1 +
αi+1 ・(∂Pi+1 /∂kmi+1 )}
## EQU8 ## Gi + 1 = (1 / M). {∂Pi + 1 / ∂Hi + 1 +
αi + 1 · ({Pi + 1 / ∂kmi + 1)}

【0027】このゲインGi+1 を(i+1)パス目の圧
延に当たって予め設定しておくことによって、被圧延材
の先頭から変形抵抗むらに起因する板厚偏差を低減する
ことができる。
By setting the gain Gi + 1 in advance in the rolling of the (i + 1) th pass, it is possible to reduce the thickness deviation caused by uneven deformation resistance from the head of the material to be rolled.

【0028】長手方向の変形抵抗むらの主たるものは、
熱間圧延後の冷却むらや冷間圧延前に母材コイルを焼鈍
する場合の焼きむら等であり、これらの原因による変形
抵抗むらはコイルの一巻きの周期で発生することが多
く、またコイルの外径側と内径側ではその変形抵抗むら
の度合いが異なる場合が多い。
The main cause of the deformation resistance unevenness in the longitudinal direction is as follows.
These include uneven cooling after hot rolling and uneven annealing when the base material coil is annealed before cold rolling.Deformation resistance unevenness due to these causes often occurs in one turn of the coil. In many cases, the degree of the deformation resistance unevenness differs between the outer diameter side and the inner diameter side.

【0029】従って、コイル全長にわたって同じ程度の
変形抵抗むらにはならず、コイル長手方向でその度合い
が変化していく。この変形抵抗むらをコイル長手方向全
長にわたって逐次記憶し、次回のパスにてその変形抵抗
むらに起因する板厚偏差を低減するためには、コイル長
手方向位置のトラッキングを非常な高精度で行う必要が
ある。また、圧延後の出側板厚偏差が変形抵抗変動によ
るものか、それともその他の外乱による厚み変動なのか
を判定する必要もある。
Therefore, the same degree of deformation resistance nonuniformity does not occur over the entire length of the coil, but the degree of the change varies in the longitudinal direction of the coil. This deformation resistance unevenness is stored sequentially over the entire length in the coil longitudinal direction, and tracking of the coil longitudinal position must be performed with extremely high accuracy in order to reduce the thickness deviation due to the deformation resistance unevenness in the next pass. There is. It is also necessary to determine whether the exit side sheet thickness deviation after rolling is due to deformation resistance variation or thickness variation due to other disturbances.

【0030】そこで、本発明では出側厚さの実測値、お
よび圧延速度から板厚偏差の周波数解析を行うと共に、
コイル外径、圧延速度から、周期的に現れる被圧延材の
変形抵抗の変動による周波数を求め、演算して得られた
板厚偏差の周波数分布が変形抵抗むらによるものか否か
を判定する。
Therefore, in the present invention, the frequency analysis of the sheet thickness deviation is performed based on the measured value of the delivery side thickness and the rolling speed, and
From the coil outer diameter and the rolling speed, a frequency due to the change in the deformation resistance of the material to be rolled which periodically appears is determined, and it is determined whether or not the frequency distribution of the sheet thickness deviation obtained by the calculation is due to the deformation resistance unevenness.

【0031】このとき、周波数解析を行うには、ある程
度の時間の圧延データが必要となるが、その時間単位で
コイル長手方向をm(m≧2)分割した形で周波数演算
を行い、そのスペクトル強度が予め設定したしきい値を
超える場合に、変形抵抗むらが出側板厚に影響を及ぼし
ていると判定し、上記の数式7に基づいて、変形抵抗む
らによって発生する板厚変動を修正するのに必要なゲイ
ンの修正量を計算し、数式8によって得られた修正ゲイ
ンを用いて圧下位置を調整する。
At this time, in order to perform frequency analysis, rolling data for a certain period of time is required. However, frequency calculation is performed in a form in which the longitudinal direction of the coil is divided into m (m ≧ 2) in time units, and the spectrum is calculated. If the strength exceeds a preset threshold value, it is determined that the deformation resistance unevenness is affecting the exit side plate thickness, and the thickness change caused by the deformation resistance unevenness is corrected based on Equation 7 above. Is calculated, and the rolling down position is adjusted using the correction gain obtained by equation (8).

【0032】この修正ゲインは、仮に上記の周波数演算
を行った区間でほぼ一定としても、変形抵抗むらに起因
する厚さ変動を十分に修正することができる。また、記
憶すべきデータも少なくて済む。さらに、トラッキング
に関しても、入側厚さの周波数が変形抵抗むらと同じで
あるので、従来のフイードフォワード制御において、上
記の修正後ゲインを用いるだけで良いため、高度なトラ
ッキング精度を必要とすることもない。
Even if this correction gain is almost constant in the section where the above-mentioned frequency calculation is performed, it is possible to sufficiently correct the thickness fluctuation caused by the uneven deformation resistance. Also, less data needs to be stored. Furthermore, regarding the tracking, since the frequency of the entrance thickness is the same as the deformation resistance unevenness, in the conventional feedforward control, only the above-mentioned corrected gain need be used, so that a high tracking accuracy is required. Not even.

【0033】[0033]

【実施例】以下、本発明に係るリバース圧延機における
板厚制御方法を図1に示す一実施例に基づいて説明す
る。図1は本発明の板厚制御方法を実施するリバース圧
延機のブロック図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for controlling the thickness of a reverse rolling mill according to the present invention will be described with reference to an embodiment shown in FIG. FIG. 1 is a block diagram of a reverse rolling mill that implements the sheet thickness control method of the present invention.

【0034】図1において、1は被圧延材であり、ペイ
オフリール2から矢印の方向に引き出された被圧延材1
は、デフレクタロール3を介して上下のワ一クロール4
間に導かれ、これら上下のワ一クロール4によって圧延
される。圧延された被圧延材1はデフレクタロ−ル5を
通過後、テンションリール6に巻き取られる。以上は奇
数パスの場合であり、偶数パスの場合にはこれと逆の流
れとなる。
In FIG. 1, reference numeral 1 denotes a rolled material, which is a rolled material 1 pulled out from a payoff reel 2 in the direction of the arrow.
Are the upper and lower work rolls 4 via the deflector rolls 3.
It is guided between the rolls and rolled by these upper and lower work rolls 4. The rolled material 1 passes through a deflector roll 5 and is wound on a tension reel 6. The above is the case of the odd-numbered path, and the flow is the reverse of the case of the even-numbered path.

【0035】デフレクタロール3とワークロ−ル4、及
びワークロ−ル4とデフレクタロール5の間には、夫々
被圧延材1の入側厚さと出側厚さを測定する厚さ計7,
8が配置されている。そして、これら厚さ計7,8は、
それぞれ前記した測定値と予め与えられた入側目標厚さ
又は出側目標厚さとの偏差ΔH,Δhを算出し、これら
の算出値を周波数分析器9に出力する。周波数分析器9
は、厚さ計7,8から送られた入側板厚偏差ΔH及び出
側板厚偏差Δhの周波数分析を行う。
Between the deflector roll 3 and the work roll 4, and between the work roll 4 and the deflector roll 5, there are thickness gauges 7 for measuring the incoming side thickness and the outgoing side thickness of the material 1 to be rolled, respectively.
8 are arranged. And these thickness gauges 7 and 8
Deviations ΔH and Δh between the measured values described above and predetermined entrance-side target thickness or exit-side target thickness are calculated, and these calculated values are output to the frequency analyzer 9. Frequency analyzer 9
Performs a frequency analysis of the inboard thickness deviation ΔH and the outboard thickness deviation Δh sent from the thickness gauges 7 and 8.

【0036】厚さ計7,8の近傍には、被圧延材1の入
側速度及び出側速度を測定するタッチロ−ル10,11
が配置されており、該タッチロール10,11によって
測定された入側速度及び出側速度も前述の周波数分析器
9に送られる。周波数分析器9は、入側板厚偏差ΔH及
び出側板厚偏差Δhをフーリエ変換して、各周波数に対
する周波数分布を求め、これらの分析結果をゲイン演算
器12に与える。
In the vicinity of the thickness gauges 7 and 8, there are touch rolls 10 and 11 for measuring the entrance speed and the exit speed of the material 1 to be rolled.
Are arranged, and the entrance speed and the exit speed measured by the touch rolls 10 and 11 are also sent to the frequency analyzer 9 described above. The frequency analyzer 9 Fourier-transforms the inlet-side sheet thickness deviation ΔH and the outlet-side sheet thickness deviation Δh to obtain a frequency distribution for each frequency, and provides the analysis result to the gain calculator 12.

【0037】また、ペイオフリール2にはコイルの直径
を測定する径測定計(図示せず)が備えつけられてお
り、測定されたコイル直径は周波数分析器9を介してゲ
イン演算器12に与えられる。ゲイン演算器12は、こ
のコイル直径に基づいて、入側変形抵抗むらの周波数及
び出側変形抵抗むらの周波数を算出し、この周波数と、
上記周波数分析器9から与えられた分析結果を用いて、
変形抵抗むらの影響が大きいかどうかを判定する。この
判定は、予め設定したしきい値と上述の周波数分析結果
の厚み偏差のスペクトル強度を比較し、この強度がしき
い値を超えている場合には影響が大きいと判定する。
The payoff reel 2 is provided with a diameter measuring instrument (not shown) for measuring the diameter of the coil, and the measured coil diameter is given to the gain calculator 12 via the frequency analyzer 9. . The gain calculator 12 calculates the frequency of the irregular deformation resistance on the input side and the frequency of the irregular deformation resistance on the basis of the coil diameter.
Using the analysis result given from the frequency analyzer 9,
It is determined whether the influence of the deformation resistance unevenness is large. In this determination, the threshold value set in advance is compared with the spectrum intensity of the thickness deviation of the above-mentioned frequency analysis result, and if the intensity exceeds the threshold value, it is determined that the influence is large.

【0038】そして、ゲイン演算器12は、変形抵抗む
らの影響が大きいと判定した場合、前述した数式6、数
式7及び数式8を用いて、次回のパスのゲインを予め計
算しておく。このゲインは圧下位置操作量演算器13に
送られ、圧下位置操作量演算器13は、変形抵抗むらの
影響を低減するのに必要な上記ゲインを用いて、圧下位
置操作量を求め、これを圧下位置制御器14に与えて、
圧下装置15の位置を調整する。なお、圧下位置操作量
演算器13には、タッチロール10及び厚さ計7からの
信号を受けて被圧延材1の長手方向位置をトラッキング
するトラッキング装置16からの信号も入力され、圧下
位置操作量を求める際の参考とされている。
When the gain calculator 12 determines that the influence of the deformation resistance unevenness is large, the gain of the next pass is calculated in advance by using the above-described equations 6, 7, and 8. This gain is sent to the rolling position operation amount calculator 13, which calculates the rolling position operation amount by using the gain necessary to reduce the influence of the deformation resistance unevenness, and calculates this amount. Given to the rolling position controller 14,
The position of the screw-down device 15 is adjusted. In addition, the signal from the tracking device 16 which receives the signal from the touch roll 10 and the thickness gauge 7 and tracks the longitudinal position of the material 1 to be rolled is also input to the rolling position operation amount calculator 13, and the rolling position operation is performed. It is used as a reference when determining the amount.

【0039】ちなみに、各測定値のサンプリング周期を
20msecとした場合、−回の解析に必要なサンプリ
ング時間は、上記のように、周波数解析を行うのに必要
な時間ということで、20.48sec(サンプリング
データの1024点分)となる。従って、コイル長手方
向全長は、各パスで要した時間と、この周波数解析に必
要な時間(20.48sec)によりm(m≧2)分割
されることになる。
By the way, when the sampling period of each measured value is set to 20 msec, the sampling time required for the negative analysis is the time required for performing the frequency analysis as described above, which is 20.48 sec ( 1024 points of sampling data). Therefore, the total length in the coil longitudinal direction is divided into m (m ≧ 2) by the time required for each pass and the time (20.48 sec) required for the frequency analysis.

【0040】次に、実際に本発明の板厚制御方法を用い
て圧延を行った場合の一例を示す。図2は板厚が2.0
mm、板幅が950mmの母材を、圧延前に焼鈍工程を
経た高炭素鋼板をリバース圧延機で複数パス(i−1パ
ス)圧延した後に、iパス目の圧延を行った時の出側板
厚偏差であり、図2の区間(a)(b)(c)はそれぞ
れ上記のように20.48secの間の周波数演算を行
った区間を示す。
Next, an example of the case where rolling is actually performed by using the sheet thickness control method of the present invention will be described. FIG. 2 shows that the thickness is 2.0
mm, a high-carbon steel sheet that has undergone an annealing step before rolling is rolled through a plurality of passes (i-1 pass) of a base material having a width of 950 mm by a reverse rolling mill, and then a delivery plate when the i-th rolling is performed. This is the thickness deviation, and the sections (a), (b), and (c) in FIG. 2 indicate the sections in which the frequency calculation for 20.48 sec was performed as described above.

【0041】この例では、各区間により板厚偏差が異な
っており、それぞれの区間における周波数演算の結果を
図3に示す。図2の区間(a)(b)では、図3(a)
(b)に示すように、0.42Hz、0.45Hzとい
う出側板厚偏差の周波数分布が得られている。これは、
コイル外径、圧延速度から演算されたコイルー巻きに相
当する周波数であり、変形抵抗の変動による板厚偏差が
現れているものと推定される(0.42Hzから0.4
5Hzへの変化はコイル外径の変化によるもの)。
In this example, the thickness deviation differs in each section, and the result of the frequency calculation in each section is shown in FIG. In the sections (a) and (b) of FIG.
As shown in (b), the frequency distribution of the exit side plate thickness deviation of 0.42 Hz and 0.45 Hz is obtained. this is,
It is a frequency corresponding to the coil-winding calculated from the coil outer diameter and the rolling speed, and it is estimated that a sheet thickness deviation due to a change in deformation resistance appears (from 0.42 Hz to 0.4
The change to 5 Hz is due to the change in the coil outer diameter).

【0042】また、図2の区間(c)では、図3(c)
に示すように、このコイルー巻きに相当する周波数0.
47Hzの部分にはほとんど周波数が現れておらず、こ
の区間では変形抵抗のむらが無いと考えられる。今回
は、周波数強度1μmをしきい値としていたので、図2
の区間(a)及び(b)では変形抵抗むらによる板厚偏
差が発生していると判断し、上記の数式7及び数式8を
用いて、図2の各区間におけるゲイン修正量、つまり修
正ゲインを演算し、この演算の結果得られた修正ゲイン
を用いて、i+1パス目の圧延を行った。
In the section (c) of FIG. 2, FIG.
As shown in FIG.
A frequency hardly appears at the portion of 47 Hz, and it is considered that there is no variation in deformation resistance in this section. In this case, the frequency intensity was set to 1 μm as the threshold value.
In sections (a) and (b), it is determined that a sheet thickness deviation due to deformation resistance unevenness has occurred, and using the above equations 7 and 8, the amount of gain correction in each section of FIG. Was calculated, and the (i + 1) th pass was rolled using the corrected gain obtained as a result of this calculation.

【0043】そのときのi+1パス目の出側板厚偏差の
結果を図4に示す。本発明の板厚制御方法を適用した場
合、図2のようにiパス目に発生した板厚偏差はi+1
パス目では修正ゲインを用いて圧延したことにより大幅
に低減されており、変形抵抗のむらによる板厚偏差が修
正されているのが明らかである。一方、従来のフィード
フォワード制御を行った場合の結果を図5に示すが、こ
の場合、iパス目に発生した板厚偏差はi+1パス目で
低減されていない。
FIG. 4 shows the result of the deviation of the exit side plate thickness in the (i + 1) th pass at that time. When the sheet thickness control method of the present invention is applied, the sheet thickness deviation generated at the i-th pass as shown in FIG.
At the pass, the rolling has been significantly reduced by using the correction gain, and it is apparent that the thickness deviation due to uneven deformation resistance has been corrected. On the other hand, FIG. 5 shows a result when the conventional feedforward control is performed. In this case, the thickness deviation occurring at the i-th pass is not reduced at the (i + 1) -th pass.

【0044】しきい値については、今回1μmとしてい
るが、これは被圧延材の材質、出側目標板厚等によって
それぞれ適正な値があり、それに応じて設定される。ま
た、変形抵抗むら以外の外乱、例えばバックアップロー
ルやワークロールといった圧延機のロールの偏心等によ
って発生する出側板厚偏差と区別するには、変形抵抗む
ら以外に周期的に発生すると推定される周波数を予め計
算しておき、これと比較することで、容易に区分すると
いうことが可能である。
The threshold value is set to 1 μm this time, but there are appropriate values depending on the material of the material to be rolled, the target thickness of the delivery side, and the like, and are set accordingly. In addition, in order to distinguish from a disturbance other than the deformation resistance unevenness, for example, the output side sheet thickness deviation caused by eccentricity of a roll of a rolling mill such as a backup roll or a work roll, a frequency estimated to occur periodically other than the deformation resistance unevenness is used. Can be calculated in advance and compared with this to easily classify.

【0045】本実施例では、圧下位置を調整する場合に
ついて説明したが、被圧延材の張力を調整したり、また
被圧延材の張力を調整するために、圧延ロールのロール
速度を調整するようにしても良い。
In this embodiment, the case where the rolling position is adjusted has been described. However, in order to adjust the tension of the material to be rolled or to adjust the tension of the material to be rolled, the roll speed of the rolling roll is adjusted. You may do it.

【0046】[0046]

【発明の効果】以上説明したように、本発明に係るリバ
ース圧延機における板厚制御方法によれば、変形抵抗む
らに起因する板厚偏差を大幅に低減することが出来る。
また、記憶すべきデータも少なくて済む。さらに、トラ
ッキングに関しても、入側厚さの周波数が変形抵抗むら
と同じであるので、従来のフイードフォワード制御にお
いて、修正後ゲインを用いるだけで良く、高度なトラッ
キング精度を必要とすることもない。
As described above, according to the method for controlling the thickness of the reverse rolling mill according to the present invention, the thickness deviation caused by uneven deformation resistance can be greatly reduced.
Also, less data needs to be stored. Further, regarding the tracking, since the frequency of the entrance thickness is the same as the deformation resistance unevenness, in the conventional feedforward control, it is sufficient to use only the corrected gain, and there is no need for a high tracking accuracy. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の板厚制御方法を実施するリバース圧延
機のブロック図である。
FIG. 1 is a block diagram of a reverse rolling mill for implementing a thickness control method of the present invention.

【図2】圧延前に焼鈍工程を経た高炭素鋼板をリバース
圧延機で複数パス(i−1パス)圧延した後に、iパス
目の圧延を行った時の出側板厚偏差であり、(a)〜
(c)は区間を示す。
FIG. 2 is a drawing-side sheet thickness deviation when a high-carbon steel sheet that has undergone an annealing step before rolling is rolled in a plurality of passes (i-1 pass) by a reverse rolling mill and then subjected to an i-th pass rolling; ) ~
(C) shows a section.

【図3】(a)〜(c)は図2のそれぞれの区間におけ
る周波数演算の結果を示したものである。
3 (a) to 3 (c) show the results of frequency calculation in each section of FIG.

【図4】周波数演算の結果から各区間における修正ゲイ
ンを演算し、この演算の結果得られた修正ゲインを用い
て、i+1パス目の圧延を行った結果を示す図である。
FIG. 4 is a diagram showing a result of calculating a correction gain in each section from a result of a frequency calculation, and performing a (i + 1) th pass rolling using the correction gain obtained as a result of the calculation.

【図5】従来のフィードフォワード制御を行った場合の
図4と同じ結果を示す図である。
FIG. 5 is a diagram showing the same result as FIG. 4 when conventional feedforward control is performed.

【符号の説明】[Explanation of symbols]

1 被圧延材 7 厚さ計 8 厚さ計 9 周波数分析器 12 ゲイン演算器 13 圧下位置操作量演算器 DESCRIPTION OF SYMBOLS 1 Rolled material 7 Thickness gauge 8 Thickness gauge 9 Frequency analyzer 12 Gain calculator 13 Reduction position operation amount calculator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 コイルから引き出した被圧延材に2パス
以上の圧延を施す板圧延において、n−1 (n≧2)パ
ス目の出側目標板厚に対する板厚偏差を測定した後、得
られた出側板厚偏差の信号をフーリエ変換して周波数分
布を求めると共に、前記コイルの直径及び被圧延材の移
動速度に基づいて、周期的に現れる被圧延材長手方向の
変形抵抗の変動による周波数を求め、この周波数と前記
演算した周波数、及び予め設定したしきい値を用いて、
変形抵抗の周期的変化が出側板厚偏差に影響を及ぼして
いるか否かを判定し、影響を及ぼしていると判定した場
合には、nパス目のフイードフォワードAGC制御ゲイ
ンを修正することを特徴としたリバース圧延機における
板厚制御方法。
In a sheet rolling in which a material to be rolled out of a coil is subjected to rolling in two or more passes, a sheet thickness deviation with respect to an output target sheet thickness of an n-1 (n ≧ 2) pass is measured. The Fourier transform is performed on the output side plate thickness deviation signal to obtain a frequency distribution, and based on the diameter of the coil and the moving speed of the rolled material, the frequency due to the fluctuation of the deformation resistance in the longitudinal direction of the rolled material that periodically appears. Using this frequency and the calculated frequency, and a preset threshold value,
It is determined whether or not the periodic change in the deformation resistance is affecting the exit side sheet thickness deviation. If it is determined that the influence is affecting, the feedforward AGC control gain of the nth pass is corrected. A method for controlling the thickness of a reverse rolling mill.
JP20029398A 1998-07-15 1998-07-15 Thickness control method in reverse rolling mill Expired - Fee Related JP3384330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20029398A JP3384330B2 (en) 1998-07-15 1998-07-15 Thickness control method in reverse rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20029398A JP3384330B2 (en) 1998-07-15 1998-07-15 Thickness control method in reverse rolling mill

Publications (2)

Publication Number Publication Date
JP2000033409A true JP2000033409A (en) 2000-02-02
JP3384330B2 JP3384330B2 (en) 2003-03-10

Family

ID=16421916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20029398A Expired - Fee Related JP3384330B2 (en) 1998-07-15 1998-07-15 Thickness control method in reverse rolling mill

Country Status (1)

Country Link
JP (1) JP3384330B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1491268A2 (en) * 2003-06-25 2004-12-29 ABB PATENT GmbH Method for cold rolling metal strip
JP2012086252A (en) * 2010-10-20 2012-05-10 Sumitomo Metal Ind Ltd Method of controlling plate thickness in reversing rolling mill
CN102794313A (en) * 2011-05-25 2012-11-28 株式会社神户制钢所 Automatic plate thickness control method and rolling mill
DE102016116076A1 (en) 2015-09-16 2017-03-16 Hitachi, Ltd. Plant control device, rolling control device, plant control method and plant control program
DE102017210609A1 (en) 2016-07-01 2018-01-04 Hitachi, Ltd. A plant control device, a rolling control device, a method for controlling a plant and a program for controlling a plant
JP2019126833A (en) * 2018-01-26 2019-08-01 株式会社神戸製鋼所 Gauge control device and method for rolling mill, and rolling mill
DE102021207390A1 (en) 2020-08-11 2022-02-17 Hitachi, Ltd. PLANT CONTROL DEVICE, ROLLER CONTROL DEVICE, PLANT CONTROL METHOD AND PLANT CONTROL PROGRAM

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7137549B2 (en) 2019-11-14 2022-09-14 株式会社日立製作所 PLANT CONTROL DEVICE AND PLANT CONTROL METHOD
JP2022036755A (en) * 2020-08-24 2022-03-08 株式会社日立製作所 Apparatus and method for plant control
JP2023163603A (en) 2022-04-28 2023-11-10 株式会社日立製作所 Control system and control method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1491268A2 (en) * 2003-06-25 2004-12-29 ABB PATENT GmbH Method for cold rolling metal strip
EP1491268A3 (en) * 2003-06-25 2006-02-15 ABB PATENT GmbH Method for cold rolling metal strip
JP2012086252A (en) * 2010-10-20 2012-05-10 Sumitomo Metal Ind Ltd Method of controlling plate thickness in reversing rolling mill
CN102794313A (en) * 2011-05-25 2012-11-28 株式会社神户制钢所 Automatic plate thickness control method and rolling mill
DE102016116076A1 (en) 2015-09-16 2017-03-16 Hitachi, Ltd. Plant control device, rolling control device, plant control method and plant control program
JP2017058932A (en) * 2015-09-16 2017-03-23 株式会社日立製作所 Plant control device, rolling control device, plant control method and plant control program
KR20170033224A (en) 2015-09-16 2017-03-24 가부시키가이샤 히타치세이사쿠쇼 Plant control apparatus, rolling control apparatus, plant control method, and recording medium storing plant control program
DE102016116076B4 (en) 2015-09-16 2024-01-18 Hitachi, Ltd. Plant control device, rolling control device, plant control method and plant control program
KR20180003998A (en) 2016-07-01 2018-01-10 가부시키가이샤 히타치세이사쿠쇼 Plant control device, rolling control device, plant control method, and plant control program
DE102017210609A1 (en) 2016-07-01 2018-01-04 Hitachi, Ltd. A plant control device, a rolling control device, a method for controlling a plant and a program for controlling a plant
DE102017210609B4 (en) 2016-07-01 2024-03-28 Hitachi, Ltd. Plant control device, rolling control device, method for controlling a plant and computer program
JP2019126833A (en) * 2018-01-26 2019-08-01 株式会社神戸製鋼所 Gauge control device and method for rolling mill, and rolling mill
JP6990116B2 (en) 2018-01-26 2022-01-12 株式会社神戸製鋼所 Roller plate thickness control device and method, and rolling mill
DE102021207390A1 (en) 2020-08-11 2022-02-17 Hitachi, Ltd. PLANT CONTROL DEVICE, ROLLER CONTROL DEVICE, PLANT CONTROL METHOD AND PLANT CONTROL PROGRAM
KR20220020198A (en) 2020-08-11 2022-02-18 가부시끼가이샤 히다치 세이사꾸쇼 Plant control apparatus, rolling control apparatus, plant control method and plant control program
CN114074120A (en) * 2020-08-11 2022-02-22 株式会社日立制作所 Plant control device, rolling control device, plant control method, and plant control program
CN114074120B (en) * 2020-08-11 2023-10-31 株式会社日立制作所 Plant control device, rolling control device, plant control method, and computer-readable recording medium

Also Published As

Publication number Publication date
JP3384330B2 (en) 2003-03-10

Similar Documents

Publication Publication Date Title
JPS6121729B2 (en)
JP5581964B2 (en) Thickness control method in reverse rolling mill
JP3384330B2 (en) Thickness control method in reverse rolling mill
KR100685038B1 (en) Thickness control apparatus in rolling mill
US6513358B2 (en) Method and device for controlling flatness
JP2008043967A (en) Method for controlling shape of plate in hot rolling
JP3201301B2 (en) Method and apparatus for controlling thickness of material to be rolled
JP3520868B2 (en) Steel sheet manufacturing method
JP2002172406A (en) Method for correcting plate thickness by rolling mill
JP2970264B2 (en) Thickness control device of tandem rolling mill
JP3521081B2 (en) Strip width control method in hot finishing mill
JP2861854B2 (en) Flattening method of tapered thick steel plate
JPH08252624A (en) Method for controlling finishing temperature in continuous hot rolling
JP4227686B2 (en) Edge drop control method during cold rolling
JP2950182B2 (en) Manufacturing method of tapered steel plate
JPH11123427A (en) Method for controlling shape of rolled stock and device therefor
JP2003136116A (en) Method for controlling plate thickness
JPH09201612A (en) Method for controlling thickness and tension of metallic strip in tandem cold rolling mill
JPH08187504A (en) Manufacture of tapered steel sheet
JP2628966B2 (en) Rolling control method in hot strip finishing mill
JP3466523B2 (en) Thickness control method
JP3152524B2 (en) Method of controlling thickness of rolled material in hot continuous rolling
JPH09174129A (en) Method for controlling rolling in hot strip finishing mill
KR790001893B1 (en) Shape control method for tandem rolling mill
JPH08150406A (en) Thickness controller for cold tandem mill

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121227

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131227

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131227

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131227

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees