JP2000030753A - Control device of battery for hybrid vehicle - Google Patents

Control device of battery for hybrid vehicle

Info

Publication number
JP2000030753A
JP2000030753A JP10200321A JP20032198A JP2000030753A JP 2000030753 A JP2000030753 A JP 2000030753A JP 10200321 A JP10200321 A JP 10200321A JP 20032198 A JP20032198 A JP 20032198A JP 2000030753 A JP2000030753 A JP 2000030753A
Authority
JP
Japan
Prior art keywords
battery
soc
hybrid vehicle
control device
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10200321A
Other languages
Japanese (ja)
Other versions
JP3915258B2 (en
Inventor
Toyoaki Nakagawa
豊昭 中川
Takeji Tanjo
雄児 丹上
Hideaki Horie
英明 堀江
Takeshi Iwai
健 岩井
Takaaki Abe
孝昭 安部
Mikio Kawai
幹夫 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP20032198A priority Critical patent/JP3915258B2/en
Publication of JP2000030753A publication Critical patent/JP2000030753A/en
Application granted granted Critical
Publication of JP3915258B2 publication Critical patent/JP3915258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a vehicle to run some distance even after a battery mounted on a hybrid vehicle deteriorated by a replacing level. SOLUTION: A deteriorated state of a battery for a hybrid vehicle is detected, a target SOC of the battery is set, and charge/discharge of the battery is controlled so that the SOC of the battery becomes the target SOC. Some distance of running is possible even after the deterioration state of the battery for the hybrid vehicle reached a level requiring replacement, and a driver can afford the time until replacement and have an easy mind.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ハイブリッド車両
に用いられる電池の制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a battery used in a hybrid vehicle.

【0002】[0002]

【従来の技術とその問題点】一般に、電池は、劣化の進
行にともなって内部抵抗が増加し、入出力が低下すると
いう特性がある。そのため、所定の入出力が得られなく
なった時点で電池の寿命と判断し、電池の交換を促して
いる。
2. Description of the Related Art Generally, a battery has a characteristic that the internal resistance increases and the input / output decreases with the progress of deterioration. Therefore, when the predetermined input / output can no longer be obtained, it is determined that the life of the battery has expired, and replacement of the battery is prompted.

【0003】ところで、ハイブリッド車両には大容量の
電池が搭載されるので、電池交換は費用と作業が比較的
大掛かりになる。したがって、搭載電池が交換レベルま
で劣化しても、ある程度の距離を走行可能にし、交換ま
でに時間的な余裕を持たせることが望ましい。
[0003] By the way, since a large-capacity battery is mounted on a hybrid vehicle, replacing the battery requires relatively large cost and work. Therefore, even if the mounted battery is deteriorated to the replacement level, it is desirable to allow the vehicle to travel for a certain distance and to allow time before the replacement.

【0004】本発明の目的は、ハイブリッド車両の搭載
電池が交換レベルまで劣化したときに、ある程度の距離
を走行可能にすることにある。
An object of the present invention is to enable a hybrid vehicle to travel a certain distance when the battery mounted on the hybrid vehicle has deteriorated to a replacement level.

【0005】[0005]

【課題を解決するための手段】(1) 請求項1の発明
は、ハイブリッド車両用電池の劣化状態を検出する劣化
検出手段と、劣化状態検出値に基づいて電池の目標SO
Cを設定するSOC設定手段と、電池のSOCを検出す
るSOC検出手段と、SOC検出値が目標SOCとなる
ように電池の充放電を制御する制御手段とを備えること
により、上記目的を達成する。 (2) 請求項2のハイブリッド車両用電池の制御装置
は、電池の温度を検出する温度検出手段を備え、SOC
設定手段によって、劣化状態検出値と温度検出値とに基
づいて目標SOCを設定するようにしたものである。 (3) 請求項3のハイブリッド車両用電池の制御装置
は、劣化検出手段によって、電池の内部抵抗を検出して
劣化状態を判断するようにしたものである。 (4) 請求項4のハイブリッド車両用電池の制御装置
は、制御手段によって、目標SOCに応じて入力電力を
制限するようにしたものである。 (5) 請求項5のハイブリッド車両用電池の制御装置
は、電池はリチウムイオン電池である。
According to a first aspect of the present invention, there is provided a deterioration detecting means for detecting a deterioration state of a battery for a hybrid vehicle, and a target SO of the battery based on the deterioration state detection value.
The above object is achieved by providing an SOC setting means for setting C, an SOC detection means for detecting the SOC of the battery, and a control means for controlling charging and discharging of the battery so that the SOC detection value becomes the target SOC. . (2) A control device for a battery for a hybrid vehicle according to a second aspect of the present invention includes a temperature detecting unit for detecting a temperature of the battery.
The setting means sets the target SOC based on the deterioration state detection value and the temperature detection value. (3) In the battery control device for a hybrid vehicle according to the third aspect, the deterioration detecting means determines the deterioration state by detecting the internal resistance of the battery. (4) In the control device for a battery for a hybrid vehicle according to a fourth aspect, the control means limits the input power according to the target SOC. (5) In the control device for a hybrid vehicle battery according to claim 5, the battery is a lithium ion battery.

【0006】[0006]

【発明の効果】(1) 請求項1の発明によれば、ハイ
ブリッド車両用電池の劣化状態を検出して電池の目標S
OCを設定し、電池のSOCが目標SOCとなるように
電池の充放電を制御するようにしたので、ハイブリッド
車両用電池の劣化状態が交換を要するレベルに達しても
ある程度の距離を走行することができ、交換までに時間
的な余裕を持たせることができるため、乗員に安心感を
与えることができる。 (2) 請求項2の発明によれば、電池の劣化状態検出
値と温度検出値とに基づいて目標SOCを設定し、電池
のSOCが目標SOCとなるように電池の充放電を制御
するようにした。電池の劣化状態に応じて目標SOCを
引き上げると出力を上げることができるが、逆に入力を
制限する必要がある。ところが、電池の温度が上がれば
出力も上昇するので、劣化の進行により目標SOCを引
き上げる場合に電池の温度が高ければ目標SOCを上げ
なくてもよく、電池の入力余裕を考慮した最適な目標S
OCを設定することができる。 (3) 請求項3の発明によれば、電池の内部抵抗を検
出して劣化状態を判断するようにしたので、車両の運行
中にも電池の劣化状態を簡便に、正確に判断することが
できる。 (4) 請求項4の発明によれば、目標SOCに応じて
入力電力を制限するようにしたので、電池の劣化にとも
なって目標SOCを引き上げた場合に、電池のSOCを
目標値に正確に制御することができる。 (5) 請求項5の発明によれば、SOCに対する入出
力特性の傾きが比較的大きなリチウムイオン電池に本発
明を適用すると、上述した効果がより顕著になる。
(1) According to the first aspect of the present invention, the deterioration state of the battery for a hybrid vehicle is detected and the target S of the battery is detected.
Since the OC is set and the charging and discharging of the battery is controlled so that the SOC of the battery becomes the target SOC, the vehicle must travel a certain distance even if the deterioration state of the battery for the hybrid vehicle reaches a level requiring replacement. The passengers can be given a sense of security because they can have enough time before the replacement. (2) According to the second aspect of the present invention, the target SOC is set based on the battery deterioration state detection value and the temperature detection value, and the charging and discharging of the battery is controlled so that the battery SOC becomes the target SOC. I made it. The output can be increased by raising the target SOC in accordance with the state of deterioration of the battery, but the input must be limited. However, since the output increases as the battery temperature rises, the target SOC need not be increased if the battery temperature is high when the target SOC is increased due to the progress of deterioration.
OC can be set. (3) According to the third aspect of the present invention, the deterioration state is determined by detecting the internal resistance of the battery, so that the deterioration state of the battery can be easily and accurately determined even during operation of the vehicle. it can. (4) According to the fourth aspect of the invention, the input power is limited according to the target SOC. Therefore, when the target SOC is increased due to the deterioration of the battery, the SOC of the battery is accurately adjusted to the target value. Can be controlled. (5) According to the fifth aspect of the present invention, when the present invention is applied to a lithium ion battery having a relatively large slope of input / output characteristics with respect to SOC, the above-described effects become more remarkable.

【0007】[0007]

【発明の実施の形態】図1は一実施の形態の構成を示す
図である。図において、太い実線は機械力の伝達経路を
示し、太い破線は電力線を示す。また、細い実線は制御
線を示し、二重線は油圧系統を示す。この車両のパワー
トレインは、モーター1、エンジン2、クラッチ3、モ
ーター4、無段変速機5、減速装置6、差動装置7およ
び駆動輪8から構成される。モーター1の出力軸、エン
ジン2の出力軸およびクラッチ3の入力軸は互いに連結
されており、また、クラッチ3の出力軸、モーター4の
出力軸および無段変速機5の入力軸は互いに連結されて
いる。
FIG. 1 is a diagram showing the configuration of an embodiment. In the figure, a thick solid line indicates a transmission path of mechanical force, and a thick broken line indicates a power line. A thin solid line indicates a control line, and a double line indicates a hydraulic system. The power train of this vehicle includes a motor 1, an engine 2, a clutch 3, a motor 4, a continuously variable transmission 5, a reduction gear 6, a differential gear 7, and driving wheels 8. The output shaft of the motor 1, the output shaft of the engine 2, and the input shaft of the clutch 3 are connected to each other, and the output shaft of the clutch 3, the output shaft of the motor 4, and the input shaft of the continuously variable transmission 5 are connected to each other. ing.

【0008】クラッチ3締結時はエンジン2とモーター
4が車両の推進源となり、クラッチ3解放時はモーター
4のみが車両の推進源となる。エンジン2および/また
はモーター4の駆動力は、無段変速機5、減速装置6お
よび差動装置7を介して駆動輪8へ伝達される。無段変
速機5には油圧装置9から圧油が供給され、ベルトのク
ランプと潤滑がなされる。油圧装置9のオイルポンプ
(不図示)はモーター10により駆動される。
When the clutch 3 is engaged, the engine 2 and the motor 4 serve as propulsion sources for the vehicle. When the clutch 3 is released, only the motor 4 serves as a propulsion source for the vehicle. The driving force of the engine 2 and / or the motor 4 is transmitted to the drive wheels 8 via the continuously variable transmission 5, the reduction gear 6, and the differential 7. Pressure oil is supplied from the hydraulic device 9 to the continuously variable transmission 5 to clamp and lubricate the belt. An oil pump (not shown) of the hydraulic device 9 is driven by a motor 10.

【0009】モータ1,4,10は三相同期電動機また
は三相誘導電動機などの交流機であり、モーター1は主
としてエンジン始動と発電に用いられ、モーター4は主
として車両の推進と制動に用いられる。また、モーター
10は油圧装置9のオイルポンプ駆動用である。なお、
モーター1,4,10には交流機に限らず直流電動機を
用いることもできる。また、クラッチ3締結時に、モー
ター1を車両の推進と制動に用いることもでき、モータ
ー4をエンジン始動や発電に用いることもできる。
The motors 1, 4, and 10 are AC machines such as a three-phase synchronous motor or a three-phase induction motor. The motor 1 is mainly used for starting and generating electric power, and the motor 4 is mainly used for propulsion and braking of a vehicle. . The motor 10 is for driving the oil pump of the hydraulic device 9. In addition,
The motors 1, 4, and 10 are not limited to AC machines, and DC motors can be used. Further, when the clutch 3 is engaged, the motor 1 can be used for propulsion and braking of the vehicle, and the motor 4 can be used for starting the engine and generating power.

【0010】クラッチ3はパウダークラッチであり、伝
達トルクがほぼ励磁電流に比例するので伝達トルクを調
節することができる。無段変速機5はベルト式やトロイ
ダル式などの無段変速機であり、変速比を無段階に調節
することができる。
The clutch 3 is a powder clutch, and the transmission torque can be adjusted because the transmission torque is almost proportional to the exciting current. The continuously variable transmission 5 is a continuously variable transmission of a belt type, a toroidal type, or the like, and can continuously adjust the speed ratio.

【0011】モーター1,4,10はそれぞれ、インバ
ーター11,12,13により駆動される。なお、モー
ター1,4,10に直流電動機を用いる場合には、イン
バーターの代わりにDC/DCコンバーターを用いる。
インバーター11〜13は共通のDCリンク14を介し
てメインバッテリー15に接続されており、メインバッ
テリー15の直流充電電力を交流電力に変換してモータ
ー1,4,10へ供給するとともに、モーター1,4の
交流発電電力を直流電力に変換してメインバッテリー1
5を充電する。なお、インバーター11〜13は互いに
DCリンク14を介して接続されているので、回生運転
中のモーターにより発電された電力をメインバッテリー
15を介さずに直接、力行運転中のモーターへ供給する
ことができる。
The motors 1, 4, and 10 are driven by inverters 11, 12, and 13, respectively. When a DC motor is used for the motors 1, 4, and 10, a DC / DC converter is used instead of the inverter.
The inverters 11 to 13 are connected to a main battery 15 via a common DC link 14, convert DC charging power of the main battery 15 into AC power, supply the AC power to the motors 1, 4, 10, and 4 is converted into DC power and the main battery 1
Charge 5. Since the inverters 11 to 13 are connected to each other via the DC link 14, the power generated by the motor during the regenerative operation can be directly supplied to the motor during the power running operation without passing through the main battery 15. it can.

【0012】メインバッテリー15はリチウムイオン電
池である。なお、メインバッテリー15には、ニッケル
水素電池や鉛電池などの他の種類の電池を用いることが
できる。
The main battery 15 is a lithium ion battery. Note that another type of battery such as a nickel-metal hydride battery or a lead battery can be used as the main battery 15.

【0013】コントローラー16は、マイクロコンピュ
ーターとその周辺部品や各種アクチュエータなどを備
え、エンジン2の回転速度や出力トルク、クラッチ3の
伝達トルク、モーター1,4,10の回転速度や出力ト
ルク、無段変速機5の変速比、メインバッテリー15の
SOCなどを制御する。
The controller 16 includes a microcomputer and its peripheral parts, various actuators, etc., and controls the rotation speed and output torque of the engine 2, the transmission torque of the clutch 3, the rotation speed and output torque of the motors 1, 4, and 10. The gear ratio of the transmission 5 and the SOC of the main battery 15 are controlled.

【0014】コントローラー16には、図2に示すよう
に、車両のキースイッチ20、SOC検出装置21、温
度センサー22、電圧センサー23、電流センサー24
などが接続される。SOC検出装置21はメインバッテ
リー15のSOC(充電状態)を検出し、温度センサー
22はメインバッテリー15の温度を検出する。また、
電圧センサー23はメインバッテリー15の端子電圧を
検出し、電流センサー24はメインバッテリー15の充
放電電流を検出する。
As shown in FIG. 2, the controller 16 includes a vehicle key switch 20, an SOC detecting device 21, a temperature sensor 22, a voltage sensor 23, and a current sensor 24.
Are connected. The SOC detection device 21 detects the SOC (charge state) of the main battery 15, and the temperature sensor 22 detects the temperature of the main battery 15. Also,
The voltage sensor 23 detects a terminal voltage of the main battery 15, and the current sensor 24 detects a charge / discharge current of the main battery 15.

【0015】ここで、この実施の形態の電池のSOC制
御について説明する。図3は、リチウムイオン電池のS
OCに対する入出力特性を示す。図において、実線は新
品のときの特性を示し、破線は劣化時の特性を示す。一
般に、電池は、SOCが増加すると出力が増加して入力
が減少する。この性質を利用すれば、電池が劣化して出
力が低下したら、SOCを高くすることによって劣化に
よる出力低下分をある程度、補償することができる。
Here, the SOC control of the battery of this embodiment will be described. FIG. 3 shows the S of the lithium ion battery.
This shows input / output characteristics with respect to OC. In the figure, the solid line shows the characteristics when the device is new, and the broken line shows the characteristics when the device is deteriorated. Generally, as the SOC increases, the output of the battery increases and the input decreases. If this property is used, when the battery is deteriorated and the output is reduced, the output can be compensated to some extent by increasing the SOC by increasing the SOC.

【0016】一方、ハイブリッド車両では、メインバッ
テリーのSOCが常に目標値あるいは目標範囲に入るよ
うに、充放電を制御している。具体的には、SOCの目
標値を50%に、あるいは目標範囲を30〜70%に設
定し、走行中、メインバッテリーのSOCを検出して検
出値が目標値近傍になるように、あるいは目標範囲に入
るように、メインバッテリーの充放電を制御している。
On the other hand, in a hybrid vehicle, charging and discharging are controlled so that the SOC of the main battery always falls within a target value or a target range. Specifically, the target value of the SOC is set to 50% or the target range is set to 30 to 70%, and the SOC of the main battery is detected during traveling so that the detected value becomes close to the target value, or The charge and discharge of the main battery is controlled to fall within the range.

【0017】そこで、この実施の形態では、メインバッ
テリー15の劣化状態を検出し、劣化状態が交換を要す
るレベルに達したら警告を行うとともに、劣化の進行に
応じてSOCの目標値または目標範囲の下限値を上げ、
劣化にともなう出力低下を補償する。これにより、メイ
ンバッテリーが交換レベルまで劣化しても、ある程度の
走行距離が確保され、時間的な余裕を持って電池交換を
行うことができる。
Therefore, in this embodiment, the deterioration state of the main battery 15 is detected, a warning is issued when the deterioration state reaches a level requiring replacement, and the SOC target value or target range is set in accordance with the progress of deterioration. Raise the lower limit,
Compensates for output reduction due to deterioration. As a result, even if the main battery deteriorates to the replacement level, a certain traveling distance is secured, and the battery can be replaced with sufficient time.

【0018】しかし、SOCの目標値または目標範囲の
下限値を上げることは、図3から明らかなように、電池
の入力余裕が低下することになるため、SOC目標値の
変更にともなって入力を制限する必要がある。なお、ハ
イブリッド車両では、通常、メインバッテリーへの入力
は回生制動モードにおいて行われるので、回生受け入れ
電力を制限する。
However, increasing the target value of SOC or the lower limit of the target range, as is apparent from FIG. 3, decreases the input margin of the battery. It needs to be restricted. In a hybrid vehicle, the input to the main battery is usually performed in the regenerative braking mode, so that the regenerative reception power is limited.

【0019】電池はまた、温度が高いほど出力が増加す
る特性がある。そこで、この実施の形態では電池の劣化
状態と電池の温度に応じて目標SOCを設定し、劣化が
進むほど目標SOCを高くし、電池の温度が高いほど目
標SOCを低くする。
The battery also has the characteristic that the output increases as the temperature increases. Therefore, in this embodiment, the target SOC is set according to the state of deterioration of the battery and the temperature of the battery, and the target SOC is set higher as the deterioration proceeds, and the target SOC is set lower as the temperature of the battery is higher.

【0020】次に、電池の劣化状態の検出方法について
説明する。上述したように、電池は劣化するにつれてそ
の内部抵抗が増加するので、内部抵抗を検出して劣化状
態を知ることができる。電池の内部抵抗は、開放電圧と
充放電時の端子電圧との差を充放電電流で除して求める
ことができる。さらに正確に求めるには、放電時の端子
電圧と電流をサンプリングし、サンプリングデータを直
線回帰して電圧−電流特性を求め、その傾きから内部抵
抗を知ることができる。また、SOCに対する出力容量
を演算により求め、新品時の出力容量と比較して劣化状
態を検出することもできる。
Next, a method for detecting the state of deterioration of the battery will be described. As described above, since the internal resistance of the battery increases as it deteriorates, the internal resistance can be detected to determine the state of deterioration. The internal resistance of the battery can be determined by dividing the difference between the open-circuit voltage and the terminal voltage during charge / discharge by the charge / discharge current. For more accurate determination, the terminal voltage and current at the time of discharge are sampled, the voltage-current characteristics are determined by linearly regressing the sampled data, and the internal resistance can be known from the slope. Further, the output capacity with respect to the SOC can be obtained by calculation, and the deterioration state can be detected by comparing with the output capacity at the time of new product.

【0021】図4は、一実施の形態のSOC制御を示す
フローチャートである。このフローチャートにより、一
実施の形態の動作を説明する。コントローラー16は、
車両のキースイッチ20がON位置に設定されるとこの制
御プログラムを繰り返し実行する。ステップ1におい
て、上述した方法によりメインバッテリー15の劣化状
態を検出するとともに、温度センサー22によりメイン
バッテリー15の温度を検出する。なお、メインバッテ
リー15に温度センサーを設置しない場合は、空調用の
外気温センサーの検出値をバッテリー温度に代用しても
よい。続くステップ2で、メインバッテリー15の劣化
状態が交換を要するレベルに達していたら警告を行う。
ステップ3では、メインバッテリー15の劣化状態と温
度Tbに応じた目標SOCを設定する。
FIG. 4 is a flowchart showing the SOC control according to one embodiment. The operation of the embodiment will be described with reference to this flowchart. The controller 16
When the key switch 20 of the vehicle is set to the ON position, the control program is repeatedly executed. In step 1, the deterioration state of the main battery 15 is detected by the method described above, and the temperature of the main battery 15 is detected by the temperature sensor 22. When a temperature sensor is not installed in the main battery 15, the detection value of the outside air temperature sensor for air conditioning may be substituted for the battery temperature. In the following step 2, a warning is issued if the state of deterioration of the main battery 15 has reached a level requiring replacement.
In step 3, a target SOC is set according to the deterioration state of the main battery 15 and the temperature Tb.

【0022】図5および図6は、メインバッテリーのS
OCに対する新品時の出力特性(実線)と劣化時の出力
特性(破線)を示す。図5に示すように、メインバッテ
リー15のSOCを目標値50%に制御する場合には、
新品時にはP1の出力が得られるが、劣化するとP3の
出力しか得られなくなる。そこで、劣化時に目標SOC
を50%から75%に引き上げると、新品時の出力P1
には及ばないまでも、P3よりも高いP2の出力が得ら
れる。
FIGS. 5 and 6 show the S of the main battery.
The output characteristics when the product is new (solid line) and the output characteristics when deteriorated (broken line) with respect to OC are shown. As shown in FIG. 5, when controlling the SOC of the main battery 15 to the target value of 50%,
When new, the output of P1 is obtained, but when it deteriorates, only the output of P3 is obtained. Therefore, at the time of deterioration, the target SOC
Is raised from 50% to 75%, the output P1 when new
If not, an output of P2 higher than P3 is obtained.

【0023】一方、図6に示すように、メインバッテリ
ー15のSOCを目標範囲30〜70%に制御する場合
には、新品時には少なくともP13の出力が得られる
が、劣化すると最悪状態ではP15の出力しか得られな
くなる。そこで、劣化時に目標SOC範囲の下限値を3
0%から50%に引き上げると、新品時の最低出力P1
3には及ばないまでもそれに近いP14の最低出力が得
られる。
On the other hand, as shown in FIG. 6, when the SOC of the main battery 15 is controlled to the target range of 30 to 70%, at least the output of P13 is obtained when the battery is new, but the output of P15 is obtained in the worst case when it deteriorates. You can only get it. Therefore, the lower limit value of the target SOC range is set to 3
When it is raised from 0% to 50%, the minimum output P1 when new
A minimum output of P14 which is close to, if not equal to 3, is obtained.

【0024】メインバッテリー15の劣化状態と温度に
応じた目標SOCを設定した後、ステップ4でSOC検
出装置21によりメインバッテリー15のSOCを検出
し、続くステップ5で、SOC検出値が目標値となるよ
うにメインバッテリー15の充放電を制御する。このと
き、新品時よりも目標SOCを高く設定した場合には、
メインバッテリー15への回生受け入れ電力を目標SO
Cに応じて制限する。
After setting the target SOC in accordance with the state of deterioration and temperature of the main battery 15, the SOC of the main battery 15 is detected by the SOC detection device 21 in step 4, and in step 5, the SOC detection value is set to the target value. The charge / discharge of the main battery 15 is controlled in such a manner. At this time, if the target SOC is set higher than when the product is new,
Target regenerative power to main battery 15
Limit according to C.

【0025】以上の一実施の形態の構成において、電圧
センサー23、電流センサー24およびコントローラー
16が劣化検出手段を、コントローラー16がSOC設
定手段および制御手段を、SOC検出装置21がSOC
検出手段を、温度センサー22が温度検出手段をそれぞ
れ構成する。
In the configuration of the above embodiment, the voltage sensor 23, the current sensor 24, and the controller 16 serve as deterioration detecting means, the controller 16 serves as SOC setting means and control means, and the SOC detecting device 21 serves as SOC.
The temperature sensor 22 constitutes a temperature detecting means, and the temperature sensor 22 constitutes a temperature detecting means.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 一実施の形態の構成を示す図である。FIG. 1 is a diagram showing a configuration of an embodiment.

【図2】 図1に続く、一実施の形態の構成を示す図で
ある。
FIG. 2 is a diagram illustrating a configuration of an embodiment following FIG. 1;

【図3】 リチウムイオン電池のSOCに対する入出力
特性を示す図である。
FIG. 3 is a diagram showing input / output characteristics of a lithium ion battery with respect to SOC.

【図4】 一実施の形態のSOC制御を示すフローチャ
ートである。
FIG. 4 is a flowchart illustrating SOC control according to one embodiment.

【図5】 一実施の形態による劣化時の出力特性の改善
結果を説明する図である。
FIG. 5 is a diagram illustrating an improvement result of output characteristics at the time of deterioration according to an embodiment.

【図6】 一実施の形態による劣化時の出力特性の改善
結果を説明する図である。
FIG. 6 is a diagram illustrating an improvement result of output characteristics at the time of deterioration according to an embodiment.

【符号の説明】[Explanation of symbols]

1、4、10 モーター 2 エンジン 3 クラッチ 5 無段変速機 6 減速装置 7 差動装置 11〜13 インバーター 14 DCリンク 15 メインバッテリー 16 コントローラー 20 キースイッチ 21 SOC検出装置 22 温度センサー 23 電圧センサー 24 電流センサー 1, 4, 10 Motor 2 Engine 3 Clutch 5 Continuously variable transmission 6 Reduction gear 7 Differential device 11-13 Inverter 14 DC link 15 Main battery 16 Controller 20 Key switch 21 SOC detection device 22 Temperature sensor 23 Voltage sensor 24 Current sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02J 7/00 H02J 7/00 X (72)発明者 堀江 英明 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 岩井 健 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 安部 孝昭 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 川合 幹夫 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) H02J 7/00 H02J 7/00 X (72) Inventor Hideaki Horie 2 Takara-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor (72) Inventor Takeshi Iwai, Nissan Motor Co., Ltd., 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Prefecture (72) Inventor Takaaki Abe 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa, Nissan Motor Co., Ltd. (72) Inventor Mikio Kawai Nissan Motor Co., Ltd., 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ハイブリッド車両用電池の劣化状態を検出
する劣化検出手段と、 前記劣化状態検出値に基づいて前記電池の目標SOCを
設定するSOC設定手段と、 前記電池のSOCを検出するSOC検出手段と、 前記SOC検出値が前記目標SOCとなるように前記電
池の充放電を制御する制御手段とを備えることを特徴と
するハイブリッド車両用電池の制御装置。
1. A deterioration detection means for detecting a deterioration state of a battery for a hybrid vehicle, an SOC setting means for setting a target SOC of the battery based on the deterioration state detection value, and an SOC detection for detecting an SOC of the battery And control means for controlling charging and discharging of the battery so that the SOC detection value becomes the target SOC.
【請求項2】請求項1に記載のハイブリッド車両用電池
の制御装置において、 前記電池の温度を検出する温度検出手段を備え、 前記SOC設定手段は、前記劣化状態検出値と前記温度
検出値とに基づいて目標SOCを設定することを特徴と
するハイブリッド車両用電池の制御装置。
2. The control device for a battery for a hybrid vehicle according to claim 1, further comprising: a temperature detecting unit for detecting a temperature of the battery, wherein the SOC setting unit is configured to detect the deterioration state detection value and the temperature detection value. A control device for a battery for a hybrid vehicle, wherein a target SOC is set based on the target SOC.
【請求項3】請求項1または請求項2に記載のハイブリ
ッド車両用電池の制御装置において、 前記劣化検出手段は、前記電池の内部抵抗を検出して劣
化状態を判断することを特徴とするハイブリッド車両用
電池の制御装置。
3. The hybrid vehicle battery control device according to claim 1, wherein said deterioration detecting means detects an internal resistance of said battery to determine a deterioration state. Control device for vehicle battery.
【請求項4】請求項1〜3のいずれかの項に記載のハイ
ブリッド車両用電池の制御装置において、 前記制御手段は、前記目標SOCに応じて入力電力を制
限することを特徴とするハイブリッド車両用電池の制御
装置。
4. The hybrid vehicle battery control device according to claim 1, wherein said control means limits the input power in accordance with said target SOC. Battery control device.
【請求項5】請求項1〜4のいずれかの項に記載のハイ
ブリッド車両用電池の制御装置において、 前記電池はリチウムイオン電池であることを特徴とする
ハイブリッド車両用電池の制御装置。
5. The control device for a hybrid vehicle battery according to claim 1, wherein the battery is a lithium ion battery.
JP20032198A 1998-07-15 1998-07-15 Control device for battery for hybrid vehicle Expired - Fee Related JP3915258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20032198A JP3915258B2 (en) 1998-07-15 1998-07-15 Control device for battery for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20032198A JP3915258B2 (en) 1998-07-15 1998-07-15 Control device for battery for hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2000030753A true JP2000030753A (en) 2000-01-28
JP3915258B2 JP3915258B2 (en) 2007-05-16

Family

ID=16422366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20032198A Expired - Fee Related JP3915258B2 (en) 1998-07-15 1998-07-15 Control device for battery for hybrid vehicle

Country Status (1)

Country Link
JP (1) JP3915258B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000125415A (en) * 1998-10-15 2000-04-28 Nissan Motor Co Ltd Hybrid vehicle
JP2000324616A (en) * 1999-05-06 2000-11-24 Nissan Motor Co Ltd Charge/discharge controlling device for hybrid vehicle
JP2001069608A (en) * 1999-08-31 2001-03-16 Honda Motor Co Ltd Battery controller for hybrid car
JP2001157369A (en) * 1999-11-26 2001-06-08 Sanyo Electric Co Ltd Method of controlling charging and discharging of battery
WO2001070533A2 (en) * 2000-03-21 2001-09-27 Nissan Motor Co., Ltd. Control device for hybrid vehicle
WO2003041240A1 (en) * 2000-05-30 2003-05-15 Matsushita Electric Industrial Co., Ltd. Method and apparatus for controlling charge/discharge of lead battery
JP2005080330A (en) * 2003-08-28 2005-03-24 Toyota Motor Corp Controller of electric storage mechanism
JP2007151216A (en) * 2005-11-24 2007-06-14 Honda Motor Co Ltd Controller of motor driven vehicle
JP2007242400A (en) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd Battery pack
JP2007252063A (en) * 2006-03-15 2007-09-27 Yamaha Motor Electronics Co Ltd Charge control device of battery, and charge/discharge control device of battery
WO2009109821A1 (en) 2008-03-03 2009-09-11 Nissan Motor Co., Ltd. Hybrid vehicle drive control apparatus
JP2010249797A (en) * 2009-03-26 2010-11-04 Primearth Ev Energy Co Ltd State determination device and control device of secondary battery
WO2010146681A1 (en) * 2009-06-18 2010-12-23 トヨタ自動車株式会社 Battery system, and battery system mounted vehicle
WO2011145546A1 (en) * 2010-05-20 2011-11-24 トヨタ自動車株式会社 Electrically driven vehicle and control method for same
JP2012085452A (en) * 2010-10-12 2012-04-26 Honda Motor Co Ltd Control device for lithium ion battery
JP2012138362A (en) * 2012-02-20 2012-07-19 Nissan Motor Co Ltd Battery pack
JP2012218599A (en) * 2011-04-11 2012-11-12 Toyota Motor Corp Device and method for controlling hybrid vehicle
JP2013106481A (en) * 2011-11-15 2013-05-30 Toyota Motor Corp Control apparatus for power storage device
JP2014044206A (en) * 2008-06-16 2014-03-13 Sumitomo Heavy Ind Ltd Shovel
CN104467072A (en) * 2013-09-24 2015-03-25 株式会社电装 Charge control device, vehicle having same and charge control method
KR101509897B1 (en) * 2013-07-02 2015-04-06 현대자동차주식회사 Method for Battery SOC Control for Vehicle
JP2016068673A (en) * 2014-09-29 2016-05-09 富士重工業株式会社 Control device of vehicle, and vehicle
US9343920B2 (en) 2010-07-13 2016-05-17 Honda Motor Co., Ltd. Storage capacity management system
JP2016115521A (en) * 2014-12-15 2016-06-23 トヨタ自動車株式会社 Charger
JP2016124536A (en) * 2014-12-26 2016-07-11 株式会社リコー Operation mode control device, method for controlling operation mode, movable body, output control device, charge discharge control device, and electronic device
EP3072729A3 (en) * 2015-03-25 2016-10-05 Toyota Jidosha Kabushiki Kaisha Electric vehicle and control method for electric vehicle
JP2017010727A (en) * 2015-06-19 2017-01-12 トヨタ自動車株式会社 Control apparatus for lithium ion secondary battery
JP2017168328A (en) * 2016-03-16 2017-09-21 東京電力ホールディングス株式会社 Apparatus for controlling charged state
JP2018074681A (en) * 2016-10-26 2018-05-10 トヨタ自動車株式会社 Vehicle
JP2019078572A (en) * 2017-10-20 2019-05-23 本田技研工業株式会社 Power supply system and vehicle
US10355509B2 (en) 2015-08-21 2019-07-16 Panasonic Intellectual Property Management Co., Ltd. Management apparatus, charge and discharge control apparatus, power storage system, and charge and discharge control method
JP2020072490A (en) * 2018-10-29 2020-05-07 トヨタ自動車株式会社 Electric vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06351166A (en) * 1993-06-08 1994-12-22 Nippondenso Co Ltd Charging controller for vehicle
JPH08214469A (en) * 1995-01-31 1996-08-20 Nippondenso Co Ltd Power generation controller for vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06351166A (en) * 1993-06-08 1994-12-22 Nippondenso Co Ltd Charging controller for vehicle
JPH08214469A (en) * 1995-01-31 1996-08-20 Nippondenso Co Ltd Power generation controller for vehicle

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000125415A (en) * 1998-10-15 2000-04-28 Nissan Motor Co Ltd Hybrid vehicle
JP2000324616A (en) * 1999-05-06 2000-11-24 Nissan Motor Co Ltd Charge/discharge controlling device for hybrid vehicle
JP2001069608A (en) * 1999-08-31 2001-03-16 Honda Motor Co Ltd Battery controller for hybrid car
JP2001157369A (en) * 1999-11-26 2001-06-08 Sanyo Electric Co Ltd Method of controlling charging and discharging of battery
WO2001070533A3 (en) * 2000-03-21 2003-04-03 Nissan Motor Control device for hybrid vehicle
JP2001268708A (en) * 2000-03-21 2001-09-28 Nissan Motor Co Ltd Hybrid vehicle control device
KR100439144B1 (en) * 2000-03-21 2004-07-05 닛산 지도우샤 가부시키가이샤 Control device for hybrid vehicle
WO2001070533A2 (en) * 2000-03-21 2001-09-27 Nissan Motor Co., Ltd. Control device for hybrid vehicle
WO2003041240A1 (en) * 2000-05-30 2003-05-15 Matsushita Electric Industrial Co., Ltd. Method and apparatus for controlling charge/discharge of lead battery
JP2005080330A (en) * 2003-08-28 2005-03-24 Toyota Motor Corp Controller of electric storage mechanism
US7610124B2 (en) 2005-11-24 2009-10-27 Honda Motor Co., Ltd. Control device for motor-driven vehicle
JP2007151216A (en) * 2005-11-24 2007-06-14 Honda Motor Co Ltd Controller of motor driven vehicle
JP2007242400A (en) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd Battery pack
JP2007252063A (en) * 2006-03-15 2007-09-27 Yamaha Motor Electronics Co Ltd Charge control device of battery, and charge/discharge control device of battery
JP2009208567A (en) * 2008-03-03 2009-09-17 Nissan Motor Co Ltd Hybrid car
WO2009109821A1 (en) 2008-03-03 2009-09-11 Nissan Motor Co., Ltd. Hybrid vehicle drive control apparatus
JP4697247B2 (en) * 2008-03-03 2011-06-08 日産自動車株式会社 Hybrid vehicle
EP2247481A4 (en) * 2008-03-03 2016-08-10 Nissan Motor Hybrid vehicle drive control apparatus
US8210986B2 (en) 2008-03-03 2012-07-03 Nissan Motor Co., Ltd. Hybrid vehicle drive control apparatus
JP2014044206A (en) * 2008-06-16 2014-03-13 Sumitomo Heavy Ind Ltd Shovel
JP2010249797A (en) * 2009-03-26 2010-11-04 Primearth Ev Energy Co Ltd State determination device and control device of secondary battery
US8741459B2 (en) 2009-03-26 2014-06-03 Panasonic Ev Energy Co., Ltd. State judging device and control device of secondary battery
WO2010146681A1 (en) * 2009-06-18 2010-12-23 トヨタ自動車株式会社 Battery system, and battery system mounted vehicle
US8531154B2 (en) 2009-06-18 2013-09-10 Toyota Jidosha Kabushiki Kaisha Battery system and battery system-equipped vehicle
CN102905949A (en) * 2010-05-20 2013-01-30 丰田自动车株式会社 Electrically driven vehicle and control method for same
JP2013227017A (en) * 2010-05-20 2013-11-07 Toyota Motor Corp Electric vehicle
JP2011240863A (en) * 2010-05-20 2011-12-01 Toyota Motor Corp Electrically driven vehicle and control method for same
WO2011145546A1 (en) * 2010-05-20 2011-11-24 トヨタ自動車株式会社 Electrically driven vehicle and control method for same
US9327591B2 (en) 2010-05-20 2016-05-03 Toyota Jidosha Kabushiki Kaisha Electrically powered vehicle and method for controlling same
US9343920B2 (en) 2010-07-13 2016-05-17 Honda Motor Co., Ltd. Storage capacity management system
CN102447140A (en) * 2010-10-12 2012-05-09 本田技研工业株式会社 Lithium-ion battery controlling apparatus
JP2012085452A (en) * 2010-10-12 2012-04-26 Honda Motor Co Ltd Control device for lithium ion battery
US8305085B2 (en) 2010-10-12 2012-11-06 Honda Motor Co., Ltd. Lithium-ion battery controlling apparatus and electric vehicle
JP2012218599A (en) * 2011-04-11 2012-11-12 Toyota Motor Corp Device and method for controlling hybrid vehicle
JP2013106481A (en) * 2011-11-15 2013-05-30 Toyota Motor Corp Control apparatus for power storage device
JP2012138362A (en) * 2012-02-20 2012-07-19 Nissan Motor Co Ltd Battery pack
KR101509897B1 (en) * 2013-07-02 2015-04-06 현대자동차주식회사 Method for Battery SOC Control for Vehicle
CN104467072A (en) * 2013-09-24 2015-03-25 株式会社电装 Charge control device, vehicle having same and charge control method
JP2015065716A (en) * 2013-09-24 2015-04-09 株式会社デンソー Charge control device, vehicle having the same, and charge control method
CN104467072B (en) * 2013-09-24 2018-07-20 株式会社电装 Battery charge controller, the vehicle and charge control method for having the device
JP2016068673A (en) * 2014-09-29 2016-05-09 富士重工業株式会社 Control device of vehicle, and vehicle
JP2016115521A (en) * 2014-12-15 2016-06-23 トヨタ自動車株式会社 Charger
JP2016124536A (en) * 2014-12-26 2016-07-11 株式会社リコー Operation mode control device, method for controlling operation mode, movable body, output control device, charge discharge control device, and electronic device
JP2020045097A (en) * 2014-12-26 2020-03-26 株式会社リコー Operation mode control device and movable body
CN106004473A (en) * 2015-03-25 2016-10-12 丰田自动车株式会社 Electric vehicle and control method for electric vehicle
JP2016182022A (en) * 2015-03-25 2016-10-13 トヨタ自動車株式会社 Electric vehicle and control method therefor
US9744874B2 (en) 2015-03-25 2017-08-29 Toyota Jidosha Kabushiki Kaisha Electric vehicle and control method for electric vehicle
EP3072729A3 (en) * 2015-03-25 2016-10-05 Toyota Jidosha Kabushiki Kaisha Electric vehicle and control method for electric vehicle
JP2017010727A (en) * 2015-06-19 2017-01-12 トヨタ自動車株式会社 Control apparatus for lithium ion secondary battery
US10355509B2 (en) 2015-08-21 2019-07-16 Panasonic Intellectual Property Management Co., Ltd. Management apparatus, charge and discharge control apparatus, power storage system, and charge and discharge control method
JP2017168328A (en) * 2016-03-16 2017-09-21 東京電力ホールディングス株式会社 Apparatus for controlling charged state
JP2018074681A (en) * 2016-10-26 2018-05-10 トヨタ自動車株式会社 Vehicle
JP2019078572A (en) * 2017-10-20 2019-05-23 本田技研工業株式会社 Power supply system and vehicle
US10690726B2 (en) 2017-10-20 2020-06-23 Honda Motor Co., Ltd. Power supply system and vehicle
JP2020072490A (en) * 2018-10-29 2020-05-07 トヨタ自動車株式会社 Electric vehicle
JP7070332B2 (en) 2018-10-29 2022-05-18 トヨタ自動車株式会社 Electric vehicle

Also Published As

Publication number Publication date
JP3915258B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
JP3915258B2 (en) Control device for battery for hybrid vehicle
JP3044880B2 (en) Drive control device for series hybrid vehicles
JP3449226B2 (en) Battery control device for hybrid vehicle
JP4081855B2 (en) Battery temperature riser
US7015676B2 (en) Battery control apparatus
EP1319548B1 (en) Hybrid vehicle and control method therefor
US5804973A (en) Control device in an electric vehicle
US6555927B1 (en) Vehicular engine starting control apparatus and vehicular engine starting control method
CN103717434B (en) The actuating device of vehicle
JPH0998515A (en) Engine controller for hybrid vehicle
CN103180166B (en) Control apparatus and control method for electrically driven vehicle
KR20050030047A (en) Four wheel drive apparatus utilizing motor and controlling method thereof
JP2008295300A (en) Power restrictions arrangement of vehicle equipped with capacitor
JP3268107B2 (en) Electric vehicle control device
JPH11136808A (en) Power generation controller for hybrid vehicle
JP4496696B2 (en) Secondary battery temperature rise control device
JP3170969B2 (en) Hybrid vehicle motor voltage controller
JP3635047B2 (en) Electric vehicle battery control device
JP2007501000A (en) Automobile and related electronic control device
JP3200493B2 (en) Control device for engine drive generator for electric vehicle
JP3772730B2 (en) Deterioration diagnosis device for vehicle battery
US11404988B2 (en) Inverter control method, and inverter control apparatus
JP3750567B2 (en) Apparatus and method for calculating output deterioration of secondary battery
JPH07250403A (en) Controller for electric vehicle
KR20200000068A (en) Control apparatus and method for generating drive torque command of eco-friendly vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees