JP2012138362A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2012138362A
JP2012138362A JP2012034339A JP2012034339A JP2012138362A JP 2012138362 A JP2012138362 A JP 2012138362A JP 2012034339 A JP2012034339 A JP 2012034339A JP 2012034339 A JP2012034339 A JP 2012034339A JP 2012138362 A JP2012138362 A JP 2012138362A
Authority
JP
Japan
Prior art keywords
thin
battery
discharging
batteries
remaining capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012034339A
Other languages
Japanese (ja)
Inventor
Yuji Tanjo
雄児 丹上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2012034339A priority Critical patent/JP2012138362A/en
Publication of JP2012138362A publication Critical patent/JP2012138362A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery pack capable of making degrees of deterioration of a plurality of thin batteries which constitute a battery pack as uniform as possible.SOLUTION: The battery pack makes degrees of deterioration of a plurality of thin batteries as uniform as possible even if a temperature variation exists among temperatures of the plurality of thin batteries by reducing a residual capacity ratio more against a full charge capacity of each thin battery at charging and discharging for thin batteries 1B and 1C whose temperatures at charging and discharging are higher and by reducing a residual capacity ratio more against a full charge capacity of each thin battery at charging and discharging for thin batteries 1B and 1C which are positioned inside in a lamination direction.

Description

本発明は、例えば電池要素をフィルム外装体に収容した薄型電池を複数積層してなる組電池に関する。   The present invention relates to an assembled battery formed by laminating a plurality of thin batteries in which battery elements are housed in a film outer package, for example.

従来より、複数の薄型電池を積層して形成された組電池が、下記の特許文献1などにて知られている。   Conventionally, an assembled battery formed by laminating a plurality of thin batteries is known in Patent Document 1 below.

この特許文献1に記載された組電池は、複数の薄型電池を重ね合わせてボックスに収容した構成となっており、当該ボックス内の複数の薄型電池のそれぞれの薄型電池のセル電圧が均一となるように制御している。   The assembled battery described in Patent Document 1 has a configuration in which a plurality of thin batteries are stacked and accommodated in a box, and the cell voltage of each thin battery of the plurality of thin batteries in the box becomes uniform. So that it is controlled.

特開2003−346748号公報JP 2003-346748 A

しかしながら、上述した組電池においては、特定の薄型電池の劣化度合いが大きくなった場合、すなわち組電池全体において劣化度合いに大きな不均衡が生じた場合には、劣化度合いが大きい薄型電池を交換する必要があるが、特定の薄型電池を交換するためには組電池をボックスから取り出して組電池を分解するなどの分解作業が必要となってしまう。   However, in the above-described assembled battery, when the degree of deterioration of a specific thin battery becomes large, that is, when a large imbalance occurs in the degree of deterioration of the entire assembled battery, it is necessary to replace the thin battery having a large degree of deterioration. However, in order to replace a specific thin battery, a disassembly work such as taking out the assembled battery from the box and disassembling the assembled battery becomes necessary.

一方、組電池全体を交換する場合には、劣化度合いが大きくない薄型電池も交換する必要があり、費用が高くなってしまうという問題がある。このように、従来より、組電池を構成する各薄型電池の劣化度合いを極力均一にすることが望まれていた。 On the other hand, when the entire assembled battery is replaced, it is necessary to replace a thin battery that does not have a large degree of deterioration, which increases the cost. Thus, conventionally, it has been desired to make the deterioration degree of each thin battery constituting the assembled battery as uniform as possible.

そこで、本発明は、上述した実情に鑑みて提案されたものであり、組電池を構成する複数の薄型電池の劣化度合いを極力均一にさせる組電池を提供することを目的とする。   Then, this invention is proposed in view of the above-mentioned situation, and it aims at providing the assembled battery which makes the deterioration degree of the some thin battery which comprises an assembled battery uniform as much as possible.

本発明は、複数の薄型電池を電気的に接続して成る組電池であって、充放電時の各薄型電池の満充電容量に対する残容量割合を、充放電時の温度が低い薄型電池は、充放電時の温度が高い薄型電池に対して、低い残容量割合とした。   The present invention is an assembled battery formed by electrically connecting a plurality of thin batteries, the remaining capacity ratio with respect to the full charge capacity of each thin battery at the time of charging / discharging, the thin battery having a low temperature at the time of charging / discharging, A low remaining capacity ratio was set for a thin battery having a high temperature during charging and discharging.

また、本発明は、充放電時の各薄型電池の満充電容量に対する残容量割合を、積層方向外側に位置する薄型電池は、積層方向内側に位置する薄型電池に対して、低い残容量割合とした。   Further, the present invention relates to the remaining capacity ratio with respect to the full charge capacity of each thin battery at the time of charging / discharging, and the thin battery positioned on the outer side in the stacking direction has a lower remaining capacity ratio than the thin battery positioned on the inner side in the stacking direction. did.

本発明に係る組電池によれば、充放電時の温度が高い薄型電池は充放電時の各薄型電池の満充電容量に対する残容量割合を低くし、又は、積層方向内側に位置する薄型電池は充放電時の各薄型電池の満充電容量に対する残容量割合を低くすることによって、複数の薄型電池に温度のばらつきがある場合であっても、複数の薄型電池の劣化度合いを極力均一にさせることができる。   According to the assembled battery according to the present invention, the thin battery having a high temperature during charging / discharging reduces the remaining capacity ratio with respect to the full charge capacity of each thin battery during charging / discharging, or the thin battery positioned on the inner side in the stacking direction is By reducing the ratio of the remaining capacity to the full charge capacity of each thin battery during charging and discharging, even if there is a variation in temperature among multiple thin batteries, the degree of deterioration of the multiple thin batteries can be made as uniform as possible. Can do.

本発明によって制御される組電池の構成を示す平面図、側面図、回路図であ る。FIG. 3 is a plan view, a side view, and a circuit diagram showing a configuration of an assembled battery controlled by the present invention. 薄型電池の温度と内部抵抗の上昇率との関係を示す図である。It is a figure which shows the relationship between the temperature of a thin battery, and the raise rate of internal resistance. 薄型電池の残容量(SOC)と内部抵抗の上昇率との関係を示す図である。It is a figure which shows the relationship between the remaining capacity (SOC) of a thin battery, and the increase rate of internal resistance. 本発明を適用した組電池の使用時間と内部抵抗の変化との関係と、比較例で ある組電池の使用時間と内部抵抗の変化との関係とを示す図である。It is a figure which shows the relationship between the usage time of the assembled battery to which this invention is applied, and the change of internal resistance, and the relationship between the usage time of the assembled battery which is a comparative example, and a change of internal resistance. 実際に薄型電池の温度を検知して、薄型電池の電圧を制御する構成を示すブ ロック図である。It is a block diagram showing a configuration for actually detecting the temperature of a thin battery and controlling the voltage of the thin battery. 各薄型電池の残容量を制御する処理手順を示すフローチャートである。It is a flowchart which shows the process sequence which controls the remaining capacity of each thin battery.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明は、例えば図1に示すように構成された組電池を充放電させる時の制御方法に適用される。   The present invention is applied to a control method for charging / discharging an assembled battery configured as shown in FIG. 1, for example.

図1(a)に組電池を構成する薄型電池1の平面図を示すように、各薄型電池1は、外装フィルム1aにより電池要素を収容し、当該電池要素から外部に電池端子1b,1cを露出させて、電池要素周囲の外装フィルム1a外周部の接合面を融着して形成してなる。   As shown in the plan view of the thin battery 1 constituting the assembled battery in FIG. 1 (a), each thin battery 1 accommodates a battery element by an exterior film 1a, and battery terminals 1b and 1c are externally provided from the battery element. It is formed by exposing and bonding the joint surface of the outer peripheral portion of the exterior film 1a around the battery element.

この組電池は、同一構成の薄型電池1からなるものとする。 This assembled battery shall consist of the thin battery 1 of the same structure.

組電池は、図1(b)に側面図を示すように、4枚の薄型電池1A,1B,1C,1D上下方向)の外側に薄型電池1A,1Dが配設され、積層方向の内側に薄型電池1B,1Cが配設されている。   As shown in the side view of FIG. 1B, the assembled battery has thin batteries 1A, 1D arranged outside the four thin batteries 1A, 1B, 1C, 1D in the vertical direction, and inside the stacking direction. Thin batteries 1B and 1C are provided.

それぞれの薄型電池1A,1B,1C,1Dの電池端子1b,1cには、接続線2A,2B,2C,2D,2Eが引き出されている。例えば、薄型電池1Aから引き出された接続線2Aが電気機器(図示せず)の正極と接続され、薄型電池1Dから引き出された接続線2Eが電気機器の負極と接続されて、電気機器へ電力を供給する。この組電池は、図1(c)に示すように、薄型電池1A,1B,1C,1Dを直列接続させてなる。   Connection lines 2A, 2B, 2C, 2D, and 2E are drawn out from the battery terminals 1b and 1c of the thin batteries 1A, 1B, 1C, and 1D, respectively. For example, the connection line 2A drawn from the thin battery 1A is connected to the positive electrode of the electric device (not shown), and the connection line 2E drawn from the thin battery 1D is connected to the negative electrode of the electric device to supply power to the electric device. Supply. As shown in FIG. 1C, this assembled battery is formed by connecting thin batteries 1A, 1B, 1C, and 1D in series.

このような組電池は、電気機器への電力供給時に、薄型電池1A,1B,1C,1Dのそれぞれによって電力を充放電する。したがって、仮に、積層された薄型電池1A,1B,1C,1Dにそれぞれ同値の電流が流れた場合には、それぞれの発熱量が略同一となる。この場合、組電池を構成する複数の薄型電池1A,1B,1C,1Dのうち、積層方向の内側に配設された薄型電池1B,1Cの温度が、積層方向外側の薄型電池1A,1Dの温度よりも高くなる。図2は、薄型電池の残容量(SOC)を50%で半年間保存した時の、保存時の温度と薄型電池の内部抵抗上昇率を示したものであるが、この図2に示すように、電力充放電時の温度が高くなるほど、内部抵抗上昇率[%](すなわち劣化度)が高くなる。また、図3は、薄型電池1を各温度(25℃、45℃、55℃)で半年間保存した時の、保存時の薄型電池1の残容量と内部抵抗上昇率を示す図であるが、この図3に示されるように、薄型電池1の残容量(SOC(State Of Charge))[%]が大きくな
るほど、内部抵抗上昇率[%](すなわち劣化度)が高くなる。
Such an assembled battery charges and discharges power by each of the thin batteries 1A, 1B, 1C, and 1D when power is supplied to the electrical equipment. Therefore, if currents of the same value flow through the stacked thin batteries 1A, 1B, 1C, 1D, the amounts of heat generated are substantially the same. In this case, among the plurality of thin batteries 1A, 1B, 1C, and 1D constituting the assembled battery, the temperature of the thin batteries 1B and 1C disposed on the inner side in the stacking direction is the temperature of the thin batteries 1A and 1D on the outer side in the stacking direction. It becomes higher than the temperature. FIG. 2 shows the temperature during storage and the rate of increase in internal resistance of the thin battery when the remaining capacity (SOC) of the thin battery is stored at 50% for half a year. As shown in FIG. As the temperature during power charging / discharging increases, the rate of increase in internal resistance [%] (that is, the degree of deterioration) increases. FIG. 3 is a diagram showing the remaining capacity of the thin battery 1 and the rate of increase in internal resistance when the thin battery 1 is stored for six months at each temperature (25 ° C., 45 ° C., 55 ° C.). As shown in FIG. 3, as the remaining capacity (SOC (State Of Charge)) [%] of the thin battery 1 increases, the rate of increase in internal resistance [%] (that is, the degree of deterioration) increases.

したがって、薄型電池1の積層方向において外側に配置されていることにより、充放電時に発生する熱が放熱され易く、電力充放電時の温度が高くならない薄型電池1A、1Dの残容量を、当該薄型電池1A、1Dよりも積層方向内側に配置されて、充放電時に発生する熱が放熱され難く電力充放電時の温度が高くなる薄型電池1B、1Cの残容量よりも高くすることによって、組電池を構成する複数の薄型電池1A,1B,1C,1Dの劣化度(内部抵抗上昇率)のばらつきを抑えることができる。又は、薄型電池の残容量(SOC)と開路電圧には相関があることが知られているため、図1(c)に示したように、電力充放電時の温度が高くなる薄型電池1B,1Cの開路電圧を、当該薄型電池1B、1Cよりも電力充放電時の温度が高くならない薄型電池1A、1Dの開路電圧よりも低くしても良い。   Therefore, by arranging the thin battery 1 on the outer side in the stacking direction, the heat generated during charging / discharging is easily dissipated, and the remaining capacity of the thin batteries 1A, 1D at which the temperature during power charging / discharging does not increase is reduced. The battery pack is made higher than the remaining capacity of the thin batteries 1B and 1C, which are arranged on the inner side in the stacking direction than the batteries 1A and 1D, and the heat generated during charging / discharging is difficult to dissipate and the temperature during power charging / discharging increases. The variation in the deterioration degree (internal resistance increase rate) of the plurality of thin batteries 1A, 1B, 1C, 1D constituting the battery can be suppressed. Alternatively, since it is known that there is a correlation between the remaining capacity (SOC) of the thin battery and the open circuit voltage, as shown in FIG. The open circuit voltage of 1C may be set lower than the open circuit voltages of the thin batteries 1A and 1D in which the temperature during power charging / discharging is not higher than that of the thin batteries 1B and 1C.

また、上記内容を言い換えれば、電力充放電時の温度が高くなる薄型電池1B,1Cの残容量を、当該薄型電池1B,1Cよりも電力充放電時の温度が高くならない薄型電池1A,1Dの残容量よりも低くする、又は、電力充放電時の温度が高くならない薄型電池1A,1Dの開路電圧を、当該薄型電池1A,1Dよりも電力充放電時の温度が高くなる薄型電池1B,1Cの開路電圧よりも高くすることと同じである。   In other words, in other words, the remaining capacity of the thin batteries 1B and 1C where the temperature during power charging / discharging becomes higher is lower than that of the thin batteries 1A and 1D where the temperature during power charging / discharging is not higher than that of the thin batteries 1B and 1C. The thin batteries 1B and 1C have a lower open-circuit voltage than the remaining capacity or the temperature at the time of power charging / discharging is higher than that of the thin batteries 1A and 1D. It is the same as making it higher than the open circuit voltage.

なお、内部抵抗上昇率とは、新品時の電池の内部抵抗を1とした場合の劣化後の内部抵抗の上昇割合を%で表したものであり、つまり、新品時の電池の内部抵抗をR0、劣化後の内部抵抗をR1とした場合に、(R1−R0)/R0×100で表される数値である。   The rate of increase in internal resistance is the percentage of increase in internal resistance after deterioration when the internal resistance of the battery at the time of a new product is 1. In other words, the internal resistance of the battery at the time of a new product is expressed as R0. When the internal resistance after deterioration is R1, it is a numerical value represented by (R1-R0) / R0 × 100.

図1(c)に示す一例では、薄型電池1A,1B,1C,1Dの平均開路電圧を4[V]とし、電力充放電時の温度が高くなる薄型電池1B,1Cの開路電圧を3.95[V]とすると共に電力充放電時の温度が高くならない薄型電池1A,1Dの開路電圧を4.05[V]にしている。または、薄型電池1A,1B,1C,1Dの平均残容量を80[%]とし、電力充放電時の温度が高くなる薄型電池1B,1Cの残容量を75[%]とすると共に電力充放電時の温度が高くならない薄型電池1A,1Dの残容量を85[%]にしている。ここで、薄型電池1の残容量を高くするほど開路電圧が高くなり、逆に、開路電圧を高くするほど薄型電池1の残容量が高くなるものであり、開路電圧と残容量とには相関関係がある。   In the example shown in FIG. 1 (c), the average open circuit voltage of the thin batteries 1A, 1B, 1C, 1D is 4 [V], and the open circuit voltage of the thin batteries 1B, 1C at which the temperature during power charging / discharging becomes high is 3. The open circuit voltage of the thin batteries 1 </ b> A and 1 </ b> D at which the temperature during power charging / discharging does not increase is set to 4.05 [V]. Alternatively, the average remaining capacity of the thin batteries 1A, 1B, 1C, and 1D is set to 80 [%], the remaining capacity of the thin batteries 1B and 1C that increase the temperature during power charging and discharging is set to 75 [%], and the power charging and discharging is performed. The remaining capacity of the thin batteries 1A and 1D where the temperature does not increase is set to 85 [%]. Here, the higher the remaining capacity of the thin battery 1, the higher the open circuit voltage. Conversely, the higher the open circuit voltage, the higher the remaining capacity of the thin battery 1, and there is a correlation between the open circuit voltage and the remaining capacity. There is a relationship.

このように、電力充放電時の温度が高くなる薄型電池1B,1Cと電力充放電時の温度が高くならない薄型電池1A,1Dとで開路電圧又は残容量を変えた場合(本願)と、複数の薄型電池1で同じ開路電圧又は残容量とした場合(比較例)とで、組電池の使用時間と内部抵抗の変化との関係を図4に示す。なお、図4に示す内部抵抗の変化を測定する条件としては、充電、充電休止、放電、放電中止の4ステップの動作を繰り返し、当該充放電時の各薄型電池1の電流を定電流とした。   Thus, when the open circuit voltage or the remaining capacity is changed between the thin batteries 1B and 1C in which the temperature during power charging / discharging becomes high and the thin batteries 1A and 1D in which the temperature during power charging / discharging does not become high (this application), a plurality of FIG. 4 shows the relationship between the usage time of the assembled battery and the change in internal resistance when the thin battery 1 has the same open circuit voltage or remaining capacity (comparative example). In addition, as conditions for measuring the change of the internal resistance shown in FIG. 4, the operation of the four steps of charging, charging suspension, discharging, and discharging stop is repeated, and the current of each thin battery 1 at the time of charging / discharging is set as a constant current. .

放電条件は、電流値が10CA(6分で全容量を放電させる電流値)、放電終止電圧が2.5[V]であり、充電条件は、電流値が10CA(6分で全容量を放電させる電流値)、充電電圧が4.2[V]であり、休止時間は1分である。そして、内部抵抗は、薄型電池1を定電流で放電させた時の電圧降下を測定し、当該定電流と電圧値とからオームの法則を用いて直流抵抗を測定して求めた。   The discharge condition is a current value of 10 CA (current value that discharges the entire capacity in 6 minutes), the discharge end voltage is 2.5 [V], and the charge condition is a current value of 10 CA (discharges the entire capacity in 6 minutes). Current value), the charging voltage is 4.2 [V], and the pause time is 1 minute. The internal resistance was obtained by measuring a voltage drop when the thin battery 1 was discharged with a constant current, and measuring a direct current resistance using Ohm's law from the constant current and the voltage value.

このような測定をして得られた図4によれば、本願の内部抵抗の上昇率が、比較例として示した内部抵抗の上昇率よりも緩やかとなっている。   According to FIG. 4 obtained by such measurement, the increase rate of the internal resistance of the present application is gentler than the increase rate of the internal resistance shown as the comparative example.

このように内部抵抗の上昇率に差が発生する理由について説明する。充放電させることにより、各薄型電池1の温度が上昇するが、積層方向外側の薄型電池1A,1Dの方が積層方向内側の薄型電池1B,1Cよりも放熱性が良いために、積層方向内側の薄型電池1B,1Cの温度が、積層方向外側の薄型電池1A,1Dよりも高くなる。特に、比較例のように、複数の薄型電池1の残容量又は開路電圧を同一とした場合には、積層方向内側の薄型電池1B,1Cの内部抵抗が、積層方向外側の薄型電池1A,1Dの内部抵抗よりも高くなる。したがって、比較例における組電池は、積層方向内側の薄型電池1B,1Cの寿命が組電池自体の寿命となる。   The reason why the difference in the increase rate of the internal resistance will be described. By charging and discharging, the temperature of each thin battery 1 rises, but the thin batteries 1A and 1D on the outer side in the stacking direction have better heat dissipation than the thin batteries 1B and 1C on the inner side in the stacking direction. The temperature of the thin batteries 1B and 1C is higher than that of the thin batteries 1A and 1D on the outer side in the stacking direction. In particular, as in the comparative example, when the remaining capacity or the open circuit voltage of the plurality of thin batteries 1 is the same, the internal resistance of the thin batteries 1B and 1C on the inner side in the stacking direction is the same as the thin batteries 1A and 1D on the outer side in the stacking direction. Higher than the internal resistance. Therefore, in the assembled battery in the comparative example, the life of the thin batteries 1B and 1C on the inner side in the stacking direction is the life of the assembled battery itself.

これに対し、本願のように、積層方向内側の薄型電池1B、1Cの残容量又は開路電圧を、積層方向外側の薄型電池1A,1Dの残容量又は開路電圧よりも低くした場合には、積層方向外側の薄型電池1A,1Dの内部抵抗上昇率と積層方向内側の薄型電池1B,1Cの内部抵抗上昇率との差を小さくできるために、比較例における組電池の寿命よりも、本願の組電池の寿命を向上させることができる。   On the other hand, when the remaining capacity or open circuit voltage of the thin batteries 1B and 1C on the inner side in the stacking direction is lower than the remaining capacity or open circuit voltage of the thin batteries 1A and 1D on the outer side of the stacking direction as in the present application, Since the difference between the internal resistance increase rate of the thin batteries 1A, 1D on the outer side in the direction and the internal resistance increase rate of the thin batteries 1B, 1C on the inner side in the stacking direction can be reduced, The battery life can be improved.

すなわち、積層方向内側の薄型電池1B,1Cの残容量又は開路電圧よりも、積層方向外側の薄型電池1A,1Dの残容量又は開路電圧を高くしているために、積層方向外側の薄型電池1A,1Dの寿命を、積層方向内側の薄型電池1B,1Cの寿命に近づけていることになる。上述した例では、電力充放電時の温度が高くなる薄型電池1B,1Cの残容量と、電力充放電時の温度が高くならない薄型電池1A,1Dの残容量との差を、各薄型電池1の最大容量の10%以内にすることによって、積層方向外側の薄型電池1A,1Dの寿命と積層方向内側の薄型電池1B,1Cの寿命とを同等にすることができる。また、電力充放電時の温度が高くなる薄型電池1B,1Cの開路電圧と、電力充放電時の温度が高くならない薄型電池1A,1Dの開路電圧との差を、0.1[V]以内にすることによって、積層方向外側の薄型電池1A,1Dの寿命と積層方向内側の薄型電池1B,1Cの寿命とを同等にすることができる。   That is, since the remaining capacity or open circuit voltage of the thin batteries 1A, 1D outside the stacking direction is higher than the remaining capacity or open circuit voltage of the thin batteries 1B, 1C inside the stacking direction, the thin battery 1A outside the stacking direction. , 1D is close to that of the thin batteries 1B, 1C on the inner side in the stacking direction. In the above-described example, the difference between the remaining capacity of the thin batteries 1B and 1C where the temperature during power charging / discharging is high and the remaining capacity of the thin batteries 1A and 1D where the temperature during power charging / discharging is not high is determined for each thin battery 1. By making it within 10% of the maximum capacity, the life of the thin batteries 1A, 1D outside the stacking direction and the life of the thin batteries 1B, 1C inside the stacking direction can be made equal. Further, the difference between the open circuit voltage of the thin batteries 1B and 1C where the temperature during power charging / discharging is high and the open circuit voltage of the thin batteries 1A and 1D where the temperature during power charging / discharging is not high is within 0.1 [V]. Thus, the life of the thin batteries 1A and 1D on the outer side in the stacking direction can be made equal to the life of the thin batteries 1B and 1C on the inner side in the stacking direction.

なお、上記の残容量差又は開路電圧差よりも、電力充放電時の温度が高くなる薄型電池1B,1Cの残容量又は開路電圧と、電力充放電時の温度が高くならない薄型電池1A,1Dの残容量又は開路電圧との差を大きくしすぎると、積層方向内側の薄型電池1B,1Cと積層方向外側の薄型電池1A,1Dとの温度差よりも、積層方向内側の薄型電池1B,1Cと積層方向外側の薄型電池1A,1Dとの残容量差又は開路電圧差に起因して発生する温度差が大きくなって、積層方向外側の薄型電池1A,1Dの内部抵抗の上昇率が積層方向内側の薄型電池1B,1Cの内部抵抗の上昇率よりも大きくなってしまう。したがって、上記のように、電力充放電時の温度が高くなる薄型電池1B,1Cの残容量と、電力充放電時の温度が高くならない薄型電池1A,1Dの残容量との差を、各薄型電池1の最大容量の10%以内、又は、電力充放電時の温度が高くなる薄型電池1B,1Cの開路電圧と、電力充放電時の温度が高くならない薄型電池1A,1Dの開路電圧との差を、0.1[V]以内とすることが望ましい。   In addition, the remaining capacity or open circuit voltage of the thin batteries 1B and 1C in which the temperature during power charging / discharging becomes higher than the above remaining capacity difference or open circuit voltage difference, and the thin batteries 1A and 1D in which the temperature during power charging / discharging does not increase. If the difference between the remaining capacity or the open circuit voltage of the battery is excessively large, the temperature difference between the thin batteries 1B, 1C on the inner side in the stacking direction and the thin batteries 1A, 1D on the outer side in the stacking direction is smaller than that of the thin batteries 1B, 1C on the inner side in the stacking direction. The difference in temperature between the thin batteries 1A and 1D on the outer side in the stacking direction and the difference in the open circuit voltage is increased, and the rate of increase in internal resistance of the thin batteries 1A and 1D on the outer side in the stacking direction increases. The increase rate of the internal resistance of the inner thin batteries 1B and 1C will be larger. Therefore, as described above, the difference between the remaining capacity of the thin batteries 1B and 1C where the temperature during power charging / discharging is high and the remaining capacity of the thin batteries 1A and 1D where the temperature during power charging / discharging is not high is determined for each thin battery. The open circuit voltage of the thin batteries 1B and 1C within 10% of the maximum capacity of the battery 1 or the temperature during power charge / discharge and the open circuit voltage of the thin batteries 1A and 1D where the temperature during power charge / discharge does not increase The difference is preferably within 0.1 [V].

つぎに、本発明の他の実施の形態について説明する。上述の実施の形態が予め電力充放電時の温度が高くなる(積層方向内側の)薄型電池1B,1Cと高くならない(積層方向外側の)薄型電池1A,1Dとで残容量差又は開路電圧差を設けて接続し、組電池を形成することに対し、この実施の形態は、図5に示すように、実際に各薄型電池1A,1B,1C,1Dの温度を温度検出部3A,3B,3C,3Dによって検出して、各薄型電池1A,1B,1C,1Dの残容量又は開路電圧をバイパス回路4A,4B,4C,4Dによって制御するものである。   Next, another embodiment of the present invention will be described. In the above-described embodiment, the remaining capacity difference or the open circuit voltage difference between the thin batteries 1B and 1C (inside the stacking direction) and the thin batteries 1A and 1D (inside the stacking direction) where the temperature during power charging / discharging becomes high in advance is not high. In this embodiment, as shown in FIG. 5, the temperature of each thin battery 1A, 1B, 1C, 1D is actually set to the temperature detectors 3A, 3B, The remaining capacity or open circuit voltage of each thin battery 1A, 1B, 1C, 1D is controlled by the bypass circuits 4A, 4B, 4C, 4D.

温度検出部3A,3B,3C,3Dは、薄型電池1A,1B,1C,1Dに対応して設けられており、薄型電池1A,1B,1C,1Dの表面温度を検知する温度センサである。この温度検出部3A,3B,3C,3Dは、直接薄型電池1A,1B,1C,1Dの温度を測定する場合のみならず、各薄型電池1A,1B,1C,1Dの内部抵抗を計算して各薄型電池1A,1B,1C,1Dの温度を推定しても良い。この温度検出部3A,3B,3C,3Dの検出出力は、図示しない接続線を介して、バイパス回路4A,4B,4C,4Dに供給される。   The temperature detectors 3A, 3B, 3C, 3D are provided corresponding to the thin batteries 1A, 1B, 1C, 1D, and are temperature sensors that detect the surface temperature of the thin batteries 1A, 1B, 1C, 1D. The temperature detectors 3A, 3B, 3C, 3D not only measure the temperature of the thin batteries 1A, 1B, 1C, 1D directly, but also calculate the internal resistance of each thin battery 1A, 1B, 1C, 1D. You may estimate the temperature of each thin battery 1A, 1B, 1C, 1D. The detection outputs of the temperature detectors 3A, 3B, 3C, 3D are supplied to the bypass circuits 4A, 4B, 4C, 4D via connection lines (not shown).

バイパス回路4A,4B,4C,4Dは、薄型電池1A,1B,1C,1Dに対応して設けられており、電力充放電時において各薄型電池1A,1B,1C,1Dに流れる電流をバイパスするスイッチ回路からなる。このバイパス回路4A,4B,4C,4Dは、各薄型電池1A,1B,1C,1Dに流れる電流をバイパスすることによって、各薄型電池1A,1B,1C,1Dの残容量を調整する。   The bypass circuits 4A, 4B, 4C, and 4D are provided corresponding to the thin batteries 1A, 1B, 1C, and 1D, and bypass current flowing through the thin batteries 1A, 1B, 1C, and 1D during power charging / discharging. It consists of a switch circuit. The bypass circuits 4A, 4B, 4C, 4D adjust the remaining capacity of each thin battery 1A, 1B, 1C, 1D by bypassing the current flowing through each thin battery 1A, 1B, 1C, 1D.

このように温度検出部3A,3B,3C,3D及びバイパス回路4A,4B,4C,4Dは、図6に示すように、組電池の使用時に、所定期間ごとにステップS1で各薄型電池1A,1B,1C,1Dの温度を検出して、ステップS2以降の動作を繰り返す。なお、この処理は、組電池に接続された電気機器が起動して、組電池から電気機器に電力供給を開始したことに応じて起動する。   In this way, the temperature detectors 3A, 3B, 3C, 3D and the bypass circuits 4A, 4B, 4C, 4D, as shown in FIG. 6, each thin battery 1A, The temperature of 1B, 1C, 1D is detected, and the operation after step S2 is repeated. This process is activated in response to the start of power supply from the assembled battery to the electrical device when the electrical device connected to the assembled battery is activated.

ステップS1において、各薄型電池1A,1B,1C,1Dの内部抵抗から薄型電池1の温度を推定する場合、温度検出部3A,3B,3C,3Dは、各薄型電池1A,1B,1C,1Dの温度が高いほど内部抵抗が高くなるので、予め電池温度と内部抵抗との関係をマップ化して記憶しておき、現在のI(電流)−V(電圧)特性の傾きから内部抵抗を求め、当該内部抵抗からマップを参照して現在の電池温度を推定しても良い。なお、I−V特性から内部抵抗を求める手法としては、所定期間における電流Iと電圧Vを複数点計測して、これを直線回帰した時の傾きから内部抵抗を求める手法や、開路電圧と検出したI−V点とを結んだ直線の傾きから内部抵抗を求める手法等の公知技術がある。   In step S1, when the temperature of the thin battery 1 is estimated from the internal resistance of each thin battery 1A, 1B, 1C, 1D, the temperature detectors 3A, 3B, 3C, 3D use the thin batteries 1A, 1B, 1C, 1D. Since the internal resistance increases as the temperature of the battery increases, the relationship between the battery temperature and the internal resistance is previously mapped and stored, and the internal resistance is obtained from the slope of the current I (current) -V (voltage) characteristics. The current battery temperature may be estimated by referring to the map from the internal resistance. In addition, as a method for obtaining the internal resistance from the IV characteristics, a method for obtaining the internal resistance from the slope when the current I and the voltage V in a predetermined period are measured at a plurality of points and linearly regressing the current I and the voltage is detected. There are known techniques such as a method for obtaining the internal resistance from the slope of the straight line connecting the IV points.

次のステップS2において、図示しないコントローラによって各温度検出部3A,3B,3C,3Dで検出した電池温度を取得し、組電池において各薄型電池の温度ばらつきを算出し、ステップS3において、温度ばらつきが存在しないと判定した場合には処理を終了し、温度ばらつきが存在すると判定した場合にはステップS4に処理を進める。なお、各温度検出部3A,3B,3C,3Dで検出した全電池温度を各バイパス回路4A,4B,4C,4Dで読み込み、各バイパス回路4A,4B,4C,4Dで温度ばらつきを判定しても良い。   In the next step S2, the battery temperature detected by each temperature detector 3A, 3B, 3C, 3D is acquired by a controller (not shown), the temperature variation of each thin battery in the assembled battery is calculated, and in step S3, the temperature variation If it is determined that there is no temperature variation, the process ends. If it is determined that there is a temperature variation, the process proceeds to step S4. Note that all battery temperatures detected by the temperature detectors 3A, 3B, 3C, and 3D are read by the bypass circuits 4A, 4B, 4C, and 4D, and temperature variations are determined by the bypass circuits 4A, 4B, 4C, and 4D. Also good.

次のステップS4において、各バイパス回路4A,4B,4C,4Dによって各薄型電池1A,1B,1C,1Dの電圧を調整することによって、各薄型電池1A,1B,1C,1Dの残容量を調整する。例えば、積層方向外側の薄型電池1A,1Dの温度と比較して、積層方向内側の薄型電池1B,1Cの温度が1℃高い場合には、積層方向内側の薄型電池1B,1Cの残容量を1%〜2%程度放電させる。例えば、電圧を10mV〜20mVだけ低下させる。   In the next step S4, the remaining capacity of each thin battery 1A, 1B, 1C, 1D is adjusted by adjusting the voltage of each thin battery 1A, 1B, 1C, 1D by each bypass circuit 4A, 4B, 4C, 4D. To do. For example, when the temperature of the thin batteries 1B and 1C inside the stacking direction is 1 ° C. higher than the temperature of the thin batteries 1A and 1D outside the stacking direction, the remaining capacity of the thin batteries 1B and 1C inside the stacking direction is Discharge about 1% to 2%. For example, the voltage is decreased by 10 mV to 20 mV.

また、ステップS4においては、温度検出部3A,3B,3C,3Dによって各薄型電池1A,1B,1C,1Dの温度を検知し、バイパス回路4A,4B,4C,4Dによって最も温度が高い薄型電池の残容量を低く変更しても良く、又は、温度検出部3A,3B,3C,3Dによって各薄型電池1A,1B,1C,1Dの温度を検知し、バイパス回路4A,4B,4C,4Dによって最も温度が高い薄型電池の開路電圧を低く変更しても良い。   In step S4, the temperature of each thin battery 1A, 1B, 1C, 1D is detected by the temperature detectors 3A, 3B, 3C, 3D, and the thin battery having the highest temperature by the bypass circuits 4A, 4B, 4C, 4D. The remaining capacity of the battery may be changed low, or the temperature of each thin battery 1A, 1B, 1C, 1D is detected by the temperature detectors 3A, 3B, 3C, 3D, and the bypass circuits 4A, 4B, 4C, 4D are used. You may change the open circuit voltage of the thin battery with the highest temperature low.

これによって、図2に示した電池温度が高くなるほど、内部抵抗の上昇度合いが大きくなっても、SOCを低下させることによって内部抵抗の低下度合いを大きくすることで打ち消して、各薄型電池1A,1B,1C,1Dの劣化度合いを同一に近づける。したがって、この組電池では、組電池を構成する複数の薄型電池1A,1B,1C,1Dの劣化度合いを極力均一にさせて、電力充放電時の温度が高くなる薄型電池1B,1Cの寿命によって組電池の寿命が短くなることを回避できる。また、組電池を構成する薄型電池1A,1B,1C,1Dの寿命を略均一にすることができるので、電力充放電時の温度が高くなる薄型電池1B,1Cのみを交換する必要がなくなり、組電池の管理コストも削減できる。   Accordingly, even if the degree of increase in internal resistance increases as the battery temperature shown in FIG. 2 increases, it is canceled out by increasing the degree of decrease in internal resistance by reducing the SOC, and each thin battery 1A, 1B. , 1C, 1D are brought close to the same degree of deterioration. Therefore, in this assembled battery, the deterioration degree of the plurality of thin batteries 1A, 1B, 1C, 1D constituting the assembled battery is made uniform as much as possible, and the life of the thin batteries 1B, 1C in which the temperature during power charging / discharging becomes high is increased. It is possible to avoid shortening the life of the assembled battery. In addition, since the life of the thin batteries 1A, 1B, 1C, 1D constituting the assembled battery can be made substantially uniform, it is not necessary to replace only the thin batteries 1B, 1C where the temperature during power charging / discharging becomes high, The management cost of the assembled battery can also be reduced.

なお、上述の実施の形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。   The above-described embodiment is an example of the present invention. For this reason, the present invention is not limited to the above-described embodiment, and various modifications can be made depending on the design and the like as long as the technical idea according to the present invention is not deviated from this embodiment. Of course, it is possible to change.

すなわち、上述した組電池は、薄型電池を積層した例について説明したが、複数の薄型電池をボックスに収容して、ボックスを積層する場合であっても、薄型電池の電力充放電時の温度が高くなるボックスと、薄型電池1の電力充放電時の温度が高くならないボックスとが存在することになるので、上述のように残容量又は開路電圧を制御することによって、各ボックスの平均残容量又は平均開路電圧を制御することができる。   That is, in the above-described assembled battery, an example in which thin batteries are stacked has been described. However, even when a plurality of thin batteries are accommodated in a box and the boxes are stacked, the temperature during power charging / discharging of the thin battery is low. Since there will be a box that rises and a box where the temperature during power charging / discharging of the thin battery 1 does not rise, by controlling the remaining capacity or open circuit voltage as described above, the average remaining capacity of each box or The average open circuit voltage can be controlled.

また、上述した実施例においては、4つの薄型電池を積層した組電池を例に挙げて説明しているが、薄型電池の個数は4つに限定されず、温度が高くなる薄型電池ほどSOC又は開路電圧を低下させるという本願発明の思想を適用すれば、薄型電池の個数は適宜変更可能である。   Further, in the above-described embodiment, an explanation is given by taking an assembled battery in which four thin batteries are stacked as an example. However, the number of thin batteries is not limited to four, and a thin battery with a higher temperature has a higher SOC or If the idea of the present invention of reducing the open circuit voltage is applied, the number of thin batteries can be changed as appropriate.

1A,1B,1C,1D 薄型電池
1a 外装フィルム
1b,1c 電池端子
2A,2B,2C,2D,2E 接続線
3A,3B,3C,3D 温度検出部
4A,4B,4C,4D バイパス回路
1A, 1B, 1C, 1D Thin battery 1a Exterior film 1b, 1c Battery terminal 2A, 2B, 2C, 2D, 2E Connection line 3A, 3B, 3C, 3D Temperature detector 4A, 4B, 4C, 4D Bypass circuit

Claims (5)

複数の薄型電池を電気的に接続して成る組電池であって、
充放電時の各薄型電池の満充電容量に対する残容量割合を、充放電時の温度が低い薄型電池は、充放電時の温度が高い薄型電池に対して、低い残容量割合としたことを特徴とする組電池。
An assembled battery formed by electrically connecting a plurality of thin batteries,
The ratio of remaining capacity to the full charge capacity of each thin battery at the time of charging / discharging is characterized by a low remaining capacity ratio of the thin battery having a low temperature at the time of charging / discharging compared to the thin battery having a high temperature at the time of charging / discharging. The assembled battery.
複数の薄型電池を、該薄型電池の厚み方向に積層すると共に電気的に接続して成る組電池であって、
充放電時の各薄型電池の満充電容量に対する残容量割合を、積層方向外側に位置する薄型電池は、積層方向内側に位置する薄型電池に対して、低い残容量割合としたことを特徴とする組電池。
A battery pack in which a plurality of thin batteries are stacked in the thickness direction of the thin battery and electrically connected,
The remaining capacity ratio with respect to the full charge capacity of each thin battery at the time of charge / discharge is characterized in that the thin battery positioned on the outer side in the stacking direction has a lower remaining capacity ratio than the thin battery positioned on the inner side in the stacking direction. Assembled battery.
請求項1に記載の組電池であって、
前記複数の薄型電池を、該薄型電池の厚み方向に積層することを特徴とする組電池。
The assembled battery according to claim 1,
The assembled battery, wherein the plurality of thin batteries are stacked in the thickness direction of the thin batteries.
請求項1又は請求項3に記載の組電池であって、
各薄型電池の充放電時の温度を検出する温度検出手段を備え、
前記温度検出手段によって検出された複数の薄型電池の温度に基づいて、充放電時の温度が低い薄型電池は、充放電時の温度が高い薄型電池に対して、満充電容量に対する残容量割合が低くなるように前記各薄型電池の残容量割合を制御する残容量制御手段を備えることを特徴とする組電池。
The assembled battery according to claim 1 or 3,
Provided with temperature detection means for detecting the temperature at the time of charging and discharging each thin battery,
Based on the temperature of the plurality of thin batteries detected by the temperature detection means, the thin battery having a low temperature during charging / discharging has a remaining capacity ratio to the full charge capacity with respect to the thin battery having a high temperature during charging / discharging. A battery pack comprising: a remaining capacity control means for controlling a remaining capacity ratio of each of the thin batteries so as to be low.
請求項1乃至請求項4の何れか一項に記載の組電池であって、
前記複数の薄型電池のうち、充放電時の温度が最も低い薄型電池の満充電容量に対する残容量割合は、充放電時の温度が最も高い薄型電池の満充電容量に対する残容量割合に対して、10%以下の差であることを特徴とする組電池。
The assembled battery according to any one of claims 1 to 4,
Among the plurality of thin batteries, the remaining capacity ratio with respect to the full charge capacity of the thin battery having the lowest temperature during charging / discharging is the remaining capacity ratio with respect to the full charge capacity of the thin battery having the highest temperature during charging / discharging, A battery pack having a difference of 10% or less.
JP2012034339A 2012-02-20 2012-02-20 Battery pack Pending JP2012138362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012034339A JP2012138362A (en) 2012-02-20 2012-02-20 Battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012034339A JP2012138362A (en) 2012-02-20 2012-02-20 Battery pack

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006062690A Division JP4967382B2 (en) 2006-03-08 2006-03-08 Assembled battery

Publications (1)

Publication Number Publication Date
JP2012138362A true JP2012138362A (en) 2012-07-19

Family

ID=46675579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012034339A Pending JP2012138362A (en) 2012-02-20 2012-02-20 Battery pack

Country Status (1)

Country Link
JP (1) JP2012138362A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097407A1 (en) * 2012-12-18 2014-06-26 ボルボ ラストバグナー アクチエボラグ Power storage system
WO2015199178A1 (en) * 2014-06-25 2015-12-30 Evtd株式会社 Balance correction control device, balance correction system, and power storage system
CN113728487A (en) * 2021-06-29 2021-11-30 东莞新能安科技有限公司 Battery module, electronic device using same and assembling method of battery module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030753A (en) * 1998-07-15 2000-01-28 Nissan Motor Co Ltd Control device of battery for hybrid vehicle
JP2001190001A (en) * 1999-12-28 2001-07-10 Sanyo Electric Co Ltd Battery controller for electric car
JP2002345165A (en) * 2001-05-17 2002-11-29 Toyota Motor Corp Car battery controller and controlling method
JP2004031255A (en) * 2002-06-28 2004-01-29 Nissan Motor Co Ltd Battery pack
JP2005071784A (en) * 2003-08-25 2005-03-17 Nissan Motor Co Ltd Bipolar battery having cooling tab

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030753A (en) * 1998-07-15 2000-01-28 Nissan Motor Co Ltd Control device of battery for hybrid vehicle
JP2001190001A (en) * 1999-12-28 2001-07-10 Sanyo Electric Co Ltd Battery controller for electric car
JP2002345165A (en) * 2001-05-17 2002-11-29 Toyota Motor Corp Car battery controller and controlling method
JP2004031255A (en) * 2002-06-28 2004-01-29 Nissan Motor Co Ltd Battery pack
JP2005071784A (en) * 2003-08-25 2005-03-17 Nissan Motor Co Ltd Bipolar battery having cooling tab

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097407A1 (en) * 2012-12-18 2014-06-26 ボルボ ラストバグナー アクチエボラグ Power storage system
WO2015199178A1 (en) * 2014-06-25 2015-12-30 Evtd株式会社 Balance correction control device, balance correction system, and power storage system
JP2016010272A (en) * 2014-06-25 2016-01-18 Evtd株式会社 Balance correction control device, balance correction system and power storage system
CN106463985A (en) * 2014-06-25 2017-02-22 Evtd株式会社 Balance correction control device, balance correction system, and power storage system
US10581121B2 (en) 2014-06-25 2020-03-03 Next-E Solutions Inc. Balance correction control apparatus, balance correction system and electric storage system
CN113728487A (en) * 2021-06-29 2021-11-30 东莞新能安科技有限公司 Battery module, electronic device using same and assembling method of battery module

Similar Documents

Publication Publication Date Title
JP4967382B2 (en) Assembled battery
JP5687340B2 (en) Battery control device, battery system
EP2272148B1 (en) Apparatus and method for detecting divergence in the state-of-charge or state-of-discharge of a series string of batteries cells or capacitors cells
US9525289B2 (en) Battery control system and battery pack
JP6113145B2 (en) Balance correction device and power storage system
CN108206560B (en) Battery equalization method
TW201509061A (en) Voltage compensated active cell balancing
CN105210256B (en) Supply unit
JP5738784B2 (en) Power storage system
JP2010032412A (en) Power supply for vehicle
JPWO2012157065A1 (en) Battery control device
JP5451761B2 (en) Fast charger for supercapacitors
WO2015178075A1 (en) Battery control device
JPWO2015072510A1 (en) Storage battery, storage battery control method and program
KR20200107614A (en) Electronic device for determining State of Charge of battery device, and operating method of the electronic device
JP2013121242A (en) Soc estimation device and battery pack
JPWO2014133009A1 (en) Storage battery, storage battery control method, control device, and control method
TWI474578B (en) Battery pack with balancing management
JP2023522463A (en) Battery management system, battery pack, energy storage system and battery management method
JP2012138362A (en) Battery pack
TW201429117A (en) Power storage system
JP2014050269A (en) Equal charging system for battery pack
US20150042348A1 (en) Capacitor power supply, voltage monitoring device, method of monitoring voltage, and method of manufacturing capacitor power supply
JP4764324B2 (en) Energy equalization equipment
CN113795762A (en) Battery diagnosis device, battery diagnosis method and energy storage system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304