JP2000030745A - Secondary power source - Google Patents

Secondary power source

Info

Publication number
JP2000030745A
JP2000030745A JP10199235A JP19923598A JP2000030745A JP 2000030745 A JP2000030745 A JP 2000030745A JP 10199235 A JP10199235 A JP 10199235A JP 19923598 A JP19923598 A JP 19923598A JP 2000030745 A JP2000030745 A JP 2000030745A
Authority
JP
Japan
Prior art keywords
positive electrode
thickness
negative electrode
secondary power
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10199235A
Other languages
Japanese (ja)
Inventor
Manabu Tsushima
学 對馬
Takeshi Morimoto
剛 森本
Isamu Kuruma
勇 車
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP10199235A priority Critical patent/JP2000030745A/en
Priority to EP99113719A priority patent/EP0973180A3/en
Priority to US09/353,136 priority patent/US6294292B1/en
Publication of JP2000030745A publication Critical patent/JP2000030745A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To realize a high withstand voltage and a high capacity, and enhance fast charge/discharge cycle reliability, by making up a secondary power source out of a positive electrode mainly composed of activated carbon and having a thickness of a specific value, a negative electrode mainly composed of a carbon material capable of storing/desorbing lithium ions and having a thickness of a specific percentage of the thickness of the positive electrode, and an organic electrolyte including a lithium salt. SOLUTION: A positive electrode mainly composed of activated carbon and a negative electrode mainly composed of a carbon material capable of storing/desorbing lithium ions are disposed opposite to each other interposing a separator therebetween. The thickness of the positive electrode is 80 to 250 μm (preferably, 100 to 220 μm), and the thickness of the negative electrode, oppositely disposed thereto interposing the separator therebetween, is 7 to 60% of the thickness of the positive electrode. As the active carbon included in the positive electrode, a coconut-husk activated carbon activated by steam, or a phenol-resin activated carbon activated by steam, is used, and the carbon material used for the negative electrode has a [002] surface spacing of 0.335 to 0.410 nm by X-ray diffraction measurement. An electrolyte solvent including propylene carbonate of 70 wt.% or more is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐電圧が高く、容
量が大きく、急速充放電サイクル信頼性の高い二次電源
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary power supply having a high withstand voltage, a large capacity, and a high rapid charge / discharge cycle reliability.

【0002】[0002]

【従来の技術】従来の電気二重層キャパシタの電極に
は、正極、負極ともに活性炭を主体とする分極性電極が
使用されている。電気二重層キャパシタの耐電圧は、水
系電解液を使用すると1.2V、有機系電解液を使用す
ると2.5〜3.3Vである。電気二重層キャパシタの
エネルギは耐電圧の2乗に比例するので、耐電圧の高い
有機電解液の方が水系電解液より高エネルギである。し
かし、有機電解液を使用した電気二重層キャパシタでも
そのエネルギ密度は鉛蓄電池等の二次電池の1/10以
下であり、さらなるエネルギ密度の向上が必要とされて
いる。
2. Description of the Related Art Polarizable electrodes mainly composed of activated carbon are used for both positive and negative electrodes of conventional electric double layer capacitors. The withstand voltage of the electric double layer capacitor is 1.2 V when an aqueous electrolyte is used, and 2.5 to 3.3 V when an organic electrolyte is used. Since the energy of the electric double layer capacitor is proportional to the square of the withstand voltage, the organic electrolyte having a higher withstand voltage has higher energy than the aqueous electrolyte. However, even an electric double layer capacitor using an organic electrolyte has an energy density of 1/10 or less of a secondary battery such as a lead storage battery, and further improvement in energy density is required.

【0003】これに対し、特開昭64−14882に
は、活性炭を主体とする電極を正極とし、X線回折によ
る[002]面の面間隔が0.338〜0.356nm
である炭素材料にあらかじめリチウムイオンを吸蔵させ
た電極を負極とする上限電圧3Vの二次電源が、また、
特開平8−107048には、リチウムイオンを吸蔵、
脱離しうる炭素材料にあらかじめ化学的方法又は電気化
学的方法でリチウムイオンを吸蔵させた炭素材料を負極
に用いる電池が、また、特開平9−55342には、リ
チウムイオンを吸蔵、脱離しうる炭素材料をリチウムと
合金を形成しない多孔質集電体に担持させる負極を有す
る、上限電圧4Vの二次電源が、提案されている。しか
しこれらの二次電源は、負極の炭素材料にあらかじめリ
チウムイオンを吸蔵させる工程を必要とする問題があっ
た。
On the other hand, Japanese Patent Application Laid-Open No. 64-14882 discloses that an electrode mainly composed of activated carbon is used as a positive electrode, and the [002] plane spacing by X-ray diffraction is 0.338 to 0.356 nm.
A secondary power supply with an upper limit voltage of 3 V using an electrode in which lithium ions are previously absorbed in a carbon material as a negative electrode,
JP-A-8-107048 describes that lithium ions are occluded,
A battery using a carbon material in which lithium ions are previously absorbed by a desorbable carbon material by a chemical method or an electrochemical method as a negative electrode is disclosed in Japanese Patent Application Laid-Open No. 9-55342. A secondary power supply having an upper limit voltage of 4 V and having a negative electrode in which a material is supported on a porous current collector that does not form an alloy with lithium has been proposed. However, these secondary power supplies have a problem that a step of previously storing lithium ions in the carbon material of the negative electrode is required.

【0004】また、電気二重層キャパシタ以外に大電流
充放電可能な電源にはリチウムイオン二次電池がある。
リチウムイオン二次電池は電気二重層キャパシタに比べ
て高電圧かつ高容量という性質を有するが、抵抗が高
く、急速充放電サイクルによる寿命が電気二重層キャパ
シタに比べ著しく短い問題があった。
In addition to the electric double layer capacitor, a power source capable of charging and discharging a large current is a lithium ion secondary battery.
Lithium-ion secondary batteries have higher voltage and higher capacity than electric double-layer capacitors, but have the problems of high resistance and a significantly shorter life due to rapid charge / discharge cycles than electric double-layer capacitors.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明は、急速
充放電が可能で高耐電圧かつ高容量でエネルギ密度が高
く、充放電サイクル信頼性の高い二次電源を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a secondary power supply capable of rapid charge / discharge, high withstand voltage, high capacity, high energy density, and high charge / discharge cycle reliability. .

【0006】[0006]

【課題を解決するための手段】本発明は、活性炭を主体
とする厚さ80〜250μmの正極と、リチウムイオン
を吸蔵、脱離しうる炭素材料を主体とし厚さが正極の厚
さの7〜60%である負極と、リチウム塩を含む有機電
解液と、を有することを特徴とする二次電源を提供す
る。
According to the present invention, there is provided a positive electrode mainly composed of activated carbon having a thickness of 80 to 250 μm, and a carbon material mainly composed of a carbon material capable of occluding and releasing lithium ions having a thickness of 7 to 7 times the thickness of the positive electrode. A secondary power supply, comprising: a 60% negative electrode; and an organic electrolyte containing a lithium salt.

【0007】本明細書において、リチウムイオンを吸
蔵、脱離しうる炭素材料を主体とする負極と集電体とを
接合して一体化させたものを負極体という。正極体につ
いても同様の定義とする。また、二次電池も電気二重層
キャパシタも二次電源の1種であるが、本明細書では、
正極に活性炭を含み、負極にリチウムイオンを吸蔵、脱
離しうる炭素材料を含む特定の構成の二次電源を単に二
次電源という。
[0007] In the present specification, a negative electrode body is formed by joining and integrating a negative electrode mainly composed of a carbon material capable of inserting and extracting lithium ions and a current collector. The same definition applies to the positive electrode body. Further, both the secondary battery and the electric double layer capacitor are one type of secondary power supply, but in this specification,
A secondary power supply having a specific configuration in which a positive electrode contains activated carbon and a negative electrode contains a carbon material capable of inserting and extracting lithium ions is simply referred to as a secondary power supply.

【0008】活性炭を主体とする正極とリチウムイオン
を吸蔵、脱離しうる炭素材料を主体とする負極とをセパ
レータを介して対向させてなる二次電源において、正極
と負極の厚さを同程度とすると負極容量が正極容量より
大きくなる。そのためこの二次電源に電解液を充分含浸
させて充電すると、負極の電位が卑にならず、高電圧の
二次電源にはできない。ところが、負極の厚さを正極の
厚さより充分薄くして正極容量と負極容量を同等にする
と、電解液を充分含浸させて充電するときに負極の電位
が卑になり高電圧の二次電源が構成できる。
In a secondary power supply in which a positive electrode mainly composed of activated carbon and a negative electrode mainly composed of a carbon material capable of inserting and extracting lithium ions are opposed to each other with a separator interposed therebetween, the thickness of the positive electrode and that of the negative electrode are almost the same. Then, the negative electrode capacity becomes larger than the positive electrode capacity. Therefore, when the secondary power supply is sufficiently impregnated with an electrolyte and charged, the potential of the negative electrode does not become low, and the secondary power supply cannot be a high-voltage secondary power supply. However, if the thickness of the negative electrode is made sufficiently smaller than the thickness of the positive electrode to make the capacity of the positive electrode equal to that of the negative electrode, the potential of the negative electrode becomes low when charging by impregnating the electrolyte sufficiently, and a high-voltage secondary power supply is required. Can be configured.

【0009】リチウムイオン二次電池は、正極はリチウ
ム含有遷移金属酸化物を主体とする電極、負極はリチウ
ムイオンを吸蔵、脱離しうる炭素材料を主体とする電極
であり、充電によりリチウムイオンが正極のリチウム含
有遷移金属酸化物から脱離し、負極のリチウムイオンを
吸蔵、脱離しうる炭素材料へ吸蔵され、放電により負極
からリチウムイオンが脱離し、正極にリチウムイオンが
吸蔵される。したがって、本質的には電解液中のリチウ
ムイオンは電池の充放電に関与しない。
In a lithium ion secondary battery, the positive electrode is an electrode mainly composed of a transition metal oxide containing lithium, and the negative electrode is an electrode mainly composed of a carbon material capable of absorbing and desorbing lithium ions. Is released from the lithium-containing transition metal oxide, and is stored in a carbon material capable of storing and releasing lithium ions of the negative electrode. The lithium ions are released from the negative electrode by discharge, and the lithium ions are stored in the positive electrode. Therefore, lithium ions in the electrolyte do not essentially participate in charging and discharging of the battery.

【0010】一方、本発明の二次電源は、充電により電
解液中のアニオンが正極の活性炭に吸着し、電解液中の
リチウムイオンが負極のリチウムイオンを吸蔵、脱離し
うる炭素材料へ吸蔵される。そして放電により負極から
リチウムイオンが脱離し、正極では前記アニオンが脱着
される。すなわち、本発明の二次電源では充放電に電解
液の溶質が本質的に関与しており、リチウムイオン電池
とは充放電の機構が異なっている。また、リチウムイオ
ン二次電池のように正極活物質自体にリチウムイオンが
吸蔵、脱離することがないため、本発明の二次電源は充
放電サイクル信頼性に優れている。
On the other hand, in the secondary power supply of the present invention, the anion in the electrolytic solution is adsorbed on the activated carbon of the positive electrode by charging, and the lithium ions in the electrolytic solution are occluded in the carbon material capable of absorbing and desorbing the lithium ions of the negative electrode. You. Then, lithium ions are desorbed from the negative electrode by discharging, and the anions are desorbed in the positive electrode. That is, in the secondary power supply of the present invention, the solute of the electrolytic solution is essentially involved in the charging and discharging, and the charging and discharging mechanism is different from that of the lithium ion battery. Further, unlike the lithium ion secondary battery, since the lithium ion is not inserted or extracted from the positive electrode active material itself, the secondary power supply of the present invention has excellent charge / discharge cycle reliability.

【0011】本発明において、正極の厚さは80〜25
0μmであり、好ましくは100〜220μmである。
80μm未満では二次電源の容量を大きくできない。ま
た、250μmを超える場合は、充放電時に抵抗が上昇
するため急速充放電するには実用的でない。本発明で
は、正極の厚さに対してセパレータを介して対向する負
極の厚さは7〜60%であり、好ましくは10〜40%
である。正極と負極の厚さの比をこの範囲とすることに
より、正極の容量と負極の容量のバランスがとれ、高耐
電圧の二次電源を構成できる。
In the present invention, the thickness of the positive electrode is 80 to 25.
0 μm, and preferably 100 to 220 μm.
If it is less than 80 μm, the capacity of the secondary power supply cannot be increased. On the other hand, when the thickness exceeds 250 μm, the resistance increases during charging and discharging, so that it is not practical for rapid charging and discharging. In the present invention, the thickness of the negative electrode opposed to the thickness of the positive electrode via the separator is 7 to 60%, preferably 10 to 40%.
It is. By setting the ratio of the thickness of the positive electrode to the thickness of the negative electrode in this range, the capacity of the positive electrode and the capacity of the negative electrode can be balanced, and a secondary power supply with high withstand voltage can be configured.

【0012】負極の厚さは、具体的には10〜150μ
mが好ましい。10μm未満の厚さの負極は形成するの
が難しい。特に好ましくは、正極の厚さが100〜20
0μmかつ負極の厚さが10〜50μmである。なお、
本発明では正極及び負極は集電体の片面に形成しても両
面に形成してもよいが、ここでいう正極及び負極の厚さ
とは、集電体の両面に形成される場合でも集電体の片面
あたりに形成されている電極層の厚さを示すものとす
る。
The thickness of the negative electrode is specifically 10 to 150 μm.
m is preferred. A negative electrode having a thickness of less than 10 μm is difficult to form. Particularly preferably, the thickness of the positive electrode is 100 to 20.
0 μm and the thickness of the negative electrode is 10 to 50 μm. In addition,
In the present invention, the positive electrode and the negative electrode may be formed on one side or both sides of the current collector. It indicates the thickness of the electrode layer formed on one side of the body.

【0013】本発明において、正極に含まれる活性炭
は、比表面積が800〜3000m2/gであることが
好ましい。活性炭の原料、賦活条件は限定されないが、
例えば原料としてはやしがら、フェノール樹脂、石油コ
ークス等が挙げられ、賦活方法としては水蒸気賦活法、
溶融アルカリ賦活法等が挙げられる。本発明では特に、
水蒸気賦活したやしがら系活性炭又は水蒸気賦活したフ
ェノール樹脂系活性炭が好ましい。また、正極の抵抗を
低くするために、正極中に導電材として導電性のカーボ
ンブラック又は黒鉛を含ませておくのも好ましく、この
とき導電材は正極中に0.1〜20重量%であることが
好ましい。
In the present invention, the activated carbon contained in the positive electrode preferably has a specific surface area of 800 to 3000 m 2 / g. Activated carbon raw materials and activation conditions are not limited,
For example, as raw materials, coconut, phenolic resin, petroleum coke, and the like can be mentioned. As the activation method, a steam activation method,
A molten alkali activation method and the like can be mentioned. In the present invention,
Steam activated charcoal activated carbon or steam activated phenolic resin activated carbon is preferred. In addition, in order to lower the resistance of the positive electrode, it is preferable to include conductive carbon black or graphite as a conductive material in the positive electrode. In this case, the conductive material is 0.1 to 20% by weight in the positive electrode. Is preferred.

【0014】正極体の作製方法としては、例えば活性炭
粉末にバインダとしてポリテトラフルオロエチレンを混
合し、混練した後シート状に成形して正極とし、これを
集電体に導電性接着剤を用いて固定する方法がある。ま
た、バインダとしてポリフッ化ビニリデン、ポリアミド
イミド、ポリイミド等を溶解したワニスに活性炭粉末と
リチウム含有遷移金属酸化物粉末とを分散させ、この液
をドクターブレード法等によって集電体上に塗工し、乾
燥して得てもよい。正極中に含まれるバインダの量は、
正極体の強度と容量等の特性とのバランスから1〜20
重量%であることが好ましい。
As a method for producing a positive electrode body, for example, polytetrafluoroethylene as a binder is mixed with activated carbon powder, kneaded, and then molded into a sheet to form a positive electrode, which is used as a current collector with a conductive adhesive. There is a way to fix. Further, a dispersion of activated carbon powder and lithium-containing transition metal oxide powder in a varnish in which polyvinylidene fluoride, polyamideimide, polyimide, etc. are dissolved as a binder, and applying this liquid on a current collector by a doctor blade method or the like, It may be obtained by drying. The amount of binder contained in the positive electrode is
1-20 from the balance between the strength of the positive electrode body and characteristics such as capacity
% By weight.

【0015】本発明におけるリチウムイオンを吸蔵、脱
離しうる炭素材料は、X線回折の測定による[002]
面の面間隔が0.335〜0.410nmであることが
好ましい。面間隔が0.410nm超の炭素材料は充放
電サイクルにおいて劣化しやすい。具体的には石油コー
クス、メソフェーズピッチ系炭素材料又は気相成長炭素
繊維を800〜3000℃で熱処理した材料、天然黒
鉛、人造黒鉛、難黒鉛性炭素材料等が挙げられる。本発
明ではこれらの材料はいずれも好ましく使用できる。
The carbon material capable of inserting and extracting lithium ions according to the present invention is obtained by X-ray diffraction measurement [002].
It is preferable that the spacing between the surfaces is 0.335 to 0.410 nm. A carbon material having a plane spacing of more than 0.410 nm is liable to be deteriorated in a charge / discharge cycle. Specific examples include petroleum coke, a material obtained by heat-treating mesophase pitch-based carbon material or vapor-grown carbon fiber at 800 to 3000 ° C., natural graphite, artificial graphite, and non-graphitizable carbon material. In the present invention, any of these materials can be preferably used.

【0016】難黒鉛性炭素材料又は石油コークス等を低
温処理した炭素材料を使用する場合、例えば気相成長炭
素を黒鉛化した材料等の黒鉛性の炭素材料と混合して使
用すると抵抗を低減できるので好ましい。この場合、難
黒鉛性炭素材料等と黒鉛性の炭素材料とは重量比で9
5:5〜70:30であることが好ましい。黒鉛性の炭
素材料が5%未満では抵抗低減の効果が発揮できず、3
0%超では負極の容量が低下する。
When a non-graphitizable carbon material or a carbon material obtained by treating petroleum coke at a low temperature is used, the resistance can be reduced by using a vapor-grown carbon mixed with a graphitic carbon material such as a graphitized material. It is preferred. In this case, the weight ratio of the non-graphitizable carbon material or the like to the graphitic carbon material is 9%.
The ratio is preferably 5: 5 to 70:30. If the graphite carbon material is less than 5%, the effect of reducing the resistance cannot be exhibited, and
If it exceeds 0%, the capacity of the negative electrode decreases.

【0017】本発明における負極体は、正極体同様ポリ
テトラフルオロエチレンをバインダとして混練してシー
ト状に成形し、導電性接着剤を用いて集電体に接着させ
て得ることができる。また、ポリフッ化ビニリデン、ポ
リアミドイミド又はポリイミドをバインダとし、バイン
ダとなる樹脂又はその前駆体を有機溶媒に溶解させた溶
液に前記炭素材料を分散させ、集電体に塗工し、乾燥さ
せて得る方法もある。これらの方法はいずれも好まし
い。
The negative electrode body of the present invention can be obtained by kneading polytetrafluoroethylene as a binder, forming the same into a sheet, and adhering it to a current collector using a conductive adhesive, similarly to the positive electrode body. Further, polyvinylidene fluoride, polyamideimide or polyimide as a binder, the carbon material is dispersed in a solution in which a resin serving as a binder or a precursor thereof is dissolved in an organic solvent, applied to a current collector, and dried. There are ways. All of these methods are preferred.

【0018】集電体に負極層を塗工して得られる方法に
おいて、バインダとなる樹脂又はその前駆体を溶解させ
る溶媒は限定されないが、バインダを構成する樹脂又は
その前駆体を容易に溶解でき、入手も容易であることか
らN−メチル−2−ピロリドン(以下、NMPという)
が好ましい。ここで、ポリフッ化ビニリデンの前駆体、
ポリアミドイミドの前駆体又はポリイミドの前駆体と
は、加熱することにより重合してそれぞれポリフッ化ビ
ニリデン、ポリアミドイミド又はポリイミドとなるもの
をいう。
In the method obtained by applying the negative electrode layer to the current collector, the solvent for dissolving the resin serving as the binder or the precursor thereof is not limited, but the resin constituting the binder or the precursor thereof can be easily dissolved. N-methyl-2-pyrrolidone (hereinafter referred to as NMP) because it is easily available
Is preferred. Here, a precursor of polyvinylidene fluoride,
The term “polyamideimide precursor” or “polyimide precursor” refers to those which are polymerized by heating to become polyvinylidene fluoride, polyamideimide or polyimide, respectively.

【0019】上記のようにして得られるバインダは、加
熱することにより硬化し、耐薬品性、機械的性質、寸法
安定性に優れる。熱処理の温度は200℃以上であるこ
とが好ましい。200℃以上であれば、ポリアミドイミ
ドの前駆体又はポリイミドの前駆体であっても通常重合
して、それぞれポリアミドイミド又はポリイミドとな
る。また、熱処理する雰囲気は窒素、アルゴン等の不活
性雰囲気又は1torr以下の減圧下が好ましい。ポリ
アミドイミド又はポリイミドは、本発明で使用される有
機電解液に対する耐性があり、また負極から水分を除去
するために300℃程度の高温加熱又は減圧下の加熱を
しても充分耐性がある。
The binder obtained as described above is cured by heating and is excellent in chemical resistance, mechanical properties and dimensional stability. The temperature of the heat treatment is preferably 200 ° C. or higher. If the temperature is 200 ° C. or higher, even if it is a polyamideimide precursor or a polyimide precursor, it is usually polymerized to be a polyamideimide or a polyimide, respectively. The atmosphere for the heat treatment is preferably an inert atmosphere such as nitrogen or argon, or a reduced pressure of 1 torr or less. Polyamide imide or polyimide has resistance to the organic electrolyte used in the present invention, and is sufficiently resistant to high temperature heating of about 300 ° C. or heating under reduced pressure to remove water from the negative electrode.

【0020】本発明において、負極と集電体の間にポリ
アミドイミド又はポリイミドからなる接着層を介在させ
ると、負極と集電体の接着力はより強固になる。この場
合、あらかじめ集電体にポリアミドイミド、ポリイミド
又はこれらの前駆体を溶剤に溶解させたワニスを、ドク
ターブレード法等の塗工法で塗工し、乾燥して接着層を
形成し、この上に負極を形成する。また、接着層を形成
するワニスに銅、黒鉛等の導電材を分散させておくと、
負極と集電体との接触抵抗を低減できるので好ましい。
この導電材を含むワニスは、正極をシート状に成形した
場合における正極と集電体との間に介在される導電性接
着剤としても使用できる。
In the present invention, if an adhesive layer made of polyamideimide or polyimide is interposed between the negative electrode and the current collector, the adhesive force between the negative electrode and the current collector becomes stronger. In this case, a varnish obtained by previously dissolving polyamideimide, polyimide or their precursors in a solvent on a current collector is applied by a coating method such as a doctor blade method, and dried to form an adhesive layer. A negative electrode is formed. Also, if a conductive material such as copper and graphite is dispersed in a varnish forming an adhesive layer,
This is preferable because the contact resistance between the negative electrode and the current collector can be reduced.
The varnish containing this conductive material can also be used as a conductive adhesive interposed between the positive electrode and the current collector when the positive electrode is formed into a sheet.

【0021】本発明における有機電解液に含まれるリチ
ウム塩は、LiPF6 、LiBF4、LiClO4 、L
iN(SO2 CF32 、CF3 SO3 Li、LiC
(SO2 CF33 、LiAsF6 及びLiSbF6
らなる群から選ばれる1種以上が好ましい。溶媒はエチ
レンカーボネート、プロピレンカーボネート、ブチレン
カーボネート、ジメチルカーボネート、エチルメチルカ
ーボネート、ジエチルカーボネート、スルホラン及びジ
メトキシエタンからなる群から選ばれる1種以上を含む
ことが好ましい。これらのリチウム塩と溶媒とからなる
電解液は耐電圧が高く、電気伝導度も高い。電解液中の
リチウム塩の濃度は0.1〜2.5mol/L、さらに
は0.5〜2mol/Lが好ましい。
The lithium salt contained in the organic electrolyte according to the present invention is LiPF 6 , LiBF 4 , LiClO 4 , L
iN (SO 2 CF 3 ) 2 , CF 3 SO 3 Li, LiC
(SO 2 CF 3) 3, LiAsF 6 and one or more selected from the group consisting of LiSbF 6 are preferred. The solvent preferably contains at least one selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, sulfolane, and dimethoxyethane. Electrolyte solutions composed of these lithium salts and solvents have high withstand voltage and high electric conductivity. The concentration of the lithium salt in the electrolyte is preferably 0.1 to 2.5 mol / L, more preferably 0.5 to 2 mol / L.

【0022】上記溶媒のなかでも、特にプロピレンカー
ボネートを含む溶媒が好ましい。活性炭は上記の溶媒の
なかで特にプロピレンカーボネートに対して安定であ
り、電解液溶媒中にプロピレンカーボネートは70重量
%以上含まれることが好ましい。特に好ましい電解液は
正極の活性炭との組み合わせのよいLiBF4 を含むプ
ロピレンカーボネート溶液であり、充放電サイクル特性
及び電圧印加特性に優れる。
Among the above-mentioned solvents, a solvent containing propylene carbonate is particularly preferable. Activated carbon is particularly stable with respect to propylene carbonate among the above-mentioned solvents, and it is preferable that propylene carbonate be contained in an electrolyte solution solvent in an amount of 70% by weight or more. A particularly preferred electrolytic solution is a propylene carbonate solution containing LiBF 4 which is well combined with activated carbon of the positive electrode, and has excellent charge / discharge cycle characteristics and voltage application characteristics.

【0023】[0023]

【実施例】次に、実施例(例1〜3)及び比較例(例
4)により本発明をさらに具体的に説明するが、本発明
はこれらにより限定されない。なお、例1〜4における
セルの作製及び測定はすべて露点が−60℃以下のアル
ゴングローブボックス中で行った。
Next, the present invention will be described more specifically with reference to Examples (Examples 1 to 3) and Comparative Examples (Example 4), but the present invention is not limited thereto. The production and measurement of the cells in Examples 1 to 4 were all performed in an argon glove box having a dew point of −60 ° C. or less.

【0024】[例1]フェノール樹脂を原料として水蒸
気賦活法によって得られた比表面積2000m2 /gの
活性炭80重量%、導電性カーボンブラック10重量
%、及びバインダとしてのポリテトラフルオロエチレン
10重量%からなる混合物をエタノールを加えて混練
し、圧延した後、200℃で2時間真空乾燥して厚さ1
50μmの電極シートを得た。この電極シートから4c
m×6cmの電極を得て、ポリアミドイミドをバインダ
とする導電性接着剤を用いてアルミニウム箔に接合し、
減圧下で300℃で2時間熱処理し、正極体とした。
Example 1 80% by weight of activated carbon having a specific surface area of 2000 m 2 / g, obtained by a steam activation method using a phenolic resin as a raw material, 10% by weight of conductive carbon black, and 10% by weight of polytetrafluoroethylene as a binder Is kneaded by adding ethanol, rolled, and then vacuum-dried at 200 ° C. for 2 hours to form a mixture having a thickness of 1 μm.
An electrode sheet of 50 μm was obtained. 4c from this electrode sheet
Obtain an electrode of mx 6 cm, joined to aluminum foil using a conductive adhesive with polyamideimide as a binder,
Heat treatment was performed at 300 ° C. for 2 hours under reduced pressure to obtain a positive electrode body.

【0025】次に、石油コークス系炭素材料を1000
℃で熱処理することによりリチウムイオンを吸蔵、脱離
しうる炭素材料を得た。この炭素材料のX線回折による
[002]面の面間隔は0.341nmであった。ポリ
フッ化ビニリデンをNMPに溶解した溶液に、上記のリ
チウムイオンを吸蔵、脱離しうる炭素材料と気相成長炭
素を3000℃で黒鉛化した材料を分散させて、銅から
なる集電体に塗布し乾燥して負極体を得た。負極中のリ
チウムイオンを吸蔵、脱離しうる炭素材料と気相成長炭
素を黒鉛化した材料とポリフッ化ビニリデンとは重量比
で8:1:1であった。この負極体をさらにロールプレ
ス機でプレスした。得られた負極は、面積は6cm×4
cm、厚さは15μmであった。
Next, a petroleum coke-based carbon material was
A carbon material capable of occluding and desorbing lithium ions was obtained by heat treatment at ℃. The plane interval of the [002] plane of this carbon material by X-ray diffraction was 0.341 nm. In a solution in which polyvinylidene fluoride is dissolved in NMP, a carbon material capable of absorbing and desorbing lithium ions and a material obtained by graphitizing vapor-grown carbon at 3000 ° C. are dispersed and applied to a current collector made of copper. After drying, a negative electrode body was obtained. The weight ratio of the carbon material capable of occluding and releasing lithium ions in the negative electrode, the material obtained by graphitizing vapor-grown carbon, and polyvinylidene fluoride was 8: 1: 1. This negative electrode body was further pressed by a roll press. The obtained negative electrode had an area of 6 cm × 4.
cm, and the thickness was 15 μm.

【0026】上記のように得られた正極体と負極体をポ
リプロピレン製のセパレータを介して対向させ、1mo
l/LのLiBF4 を含むプロピレンカーボネート溶液
に充分な時間含浸させて二次電源を得た。この二次電源
の初期容量を測定後、充放電電流240mAで4.2V
から3Vまでの範囲で充放電サイクル試験を行い、10
00サイクル後の容量を測定し、容量変化率を算出し
た。結果を表1に示す。
The positive electrode body and the negative electrode body obtained as described above are opposed to each other with a polypropylene separator interposed therebetween.
A secondary power source was obtained by impregnating a propylene carbonate solution containing 1 / L LiBF 4 for a sufficient time. After measuring the initial capacity of this secondary power supply, 4.2 V at a charging / discharging current of 240 mA.
Charge-discharge cycle test in the range from
The capacity after 00 cycles was measured, and the capacity change rate was calculated. Table 1 shows the results.

【0027】[例2]正極の活性炭の原料としてフェノ
ール樹脂のかわりにやしがらを用いた以外は例1と同様
にして正極体を得た。この正極体を用いた以外は例1と
同様にして二次電源を作製し、例1と同様に測定を行っ
た。結果を表1に示す。
Example 2 A positive electrode was obtained in the same manner as in Example 1 except that coconut was used instead of the phenol resin as a raw material for the activated carbon of the positive electrode. A secondary power supply was prepared in the same manner as in Example 1 except that this positive electrode body was used, and the measurement was performed in the same manner as in Example 1. Table 1 shows the results.

【0028】[例3]負極のバインダとしてポリフッ化
ビニリデンとポリアミドイミドの混合物(重量比で1:
1)を使用し、負極の組成を例1と同じリチウムイオン
を吸蔵、脱離しうる炭素材料と気相成長炭素を黒鉛化し
た材料とバインダとが重量比で7:1:1となるように
した以外は例1と同様にして面積が6cm×4cmで厚
さが15μmの負極を有する負極体を得た。この負極体
を用いた以外は例1と同様にして二次電源を作製し、例
1と同様に測定を行った。結果を表1に示す。
Example 3 A mixture of polyvinylidene fluoride and polyamide imide (weight ratio of 1:
Using 1), the composition of the negative electrode was the same as in Example 1 such that the carbon material capable of absorbing and desorbing lithium ions, the material obtained by graphitizing the vapor-grown carbon, and the binder were in a weight ratio of 7: 1: 1. A negative electrode body having a negative electrode having an area of 6 cm × 4 cm and a thickness of 15 μm was obtained in the same manner as in Example 1 except for performing the above. A secondary power supply was manufactured in the same manner as in Example 1 except that this negative electrode body was used, and the measurement was performed in the same manner as in Example 1. Table 1 shows the results.

【0029】[例4]正極の厚さを300μmとし、負
極の厚さを200μmとした以外は例1と同様にして二
次電源を作製し、例1と同様に測定を行った。結果を表
1に示す。
Example 4 A secondary power supply was prepared in the same manner as in Example 1 except that the thickness of the positive electrode was set to 300 μm, and the thickness of the negative electrode was set to 200 μm, and measurement was performed in the same manner as in Example 1. Table 1 shows the results.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【発明の効果】本発明によれば、正極の容量と負極の容
量のバランスがとれるため、耐電圧が高く、容量が大き
く、かつ急速充放電サイクル信頼性の高い二次電源を提
供できる。
According to the present invention, since the capacity of the positive electrode and the capacity of the negative electrode can be balanced, it is possible to provide a secondary power supply having a high withstand voltage, a large capacity, and a high rapid charge / discharge cycle reliability.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C07D 317/36 C07D 317/36 Fターム(参考) 5H003 AA01 AA02 AA04 BA00 BB02 BD00 BD02 BD03 BD04 5H014 AA02 BB00 EE08 HH01 HH06 5H029 AJ02 AJ03 AJ05 AK08 AL06 AM03 AM07 CJ11 DJ09 EJ11 HJ01 HJ04 HJ13 Continuation of the front page (51) Int.Cl. 7 Identification code FI Theme coat II (reference) // C07D 317/36 C07D 317/36 F term (reference) 5H003 AA01 AA02 AA04 BA00 BB02 BD00 BD02 BD03 BD04 5H014 AA02 BB00 EE08 HH01 HH06 5H029 AJ02 AJ03 AJ05 AK08 AL06 AM03 AM07 CJ11 DJ09 EJ11 HJ01 HJ04 HJ13

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】活性炭を主体とする厚さ80〜250μm
の正極と、リチウムイオンを吸蔵、脱離しうる炭素材料
を主体とし厚さが正極の厚さの7〜60%である負極
と、リチウム塩を含む有機電解液と、を有することを特
徴とする二次電源。
1. A thickness mainly of activated carbon of 80 to 250 μm.
A positive electrode, a negative electrode mainly composed of a carbon material capable of inserting and extracting lithium ions and having a thickness of 7 to 60% of the thickness of the positive electrode, and an organic electrolyte solution containing a lithium salt. Secondary power supply.
【請求項2】有機電解液の溶媒が、プロピレンカーボネ
ートを70重量%以上含む請求項1記載の二次電源。
2. The secondary power supply according to claim 1, wherein the solvent of the organic electrolyte contains propylene carbonate in an amount of 70% by weight or more.
【請求項3】前記炭素材料は、[002]面の面間隔が
0.335〜0.410nmである請求項1又は2記載
の二次電源。
3. The secondary power source according to claim 1, wherein the carbon material has a [002] plane spacing of 0.335 to 0.410 nm.
【請求項4】正極の活性炭が、水蒸気賦活したやしがら
系活性炭又は水蒸気賦活したフェノール樹脂系活性炭で
ある請求項1、2又は3記載の二次電源。
4. The secondary power source according to claim 1, wherein the activated carbon of the positive electrode is steam activated activated carbon or phenolic resin activated carbon.
JP10199235A 1998-07-14 1998-07-14 Secondary power source Pending JP2000030745A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10199235A JP2000030745A (en) 1998-07-14 1998-07-14 Secondary power source
EP99113719A EP0973180A3 (en) 1998-07-14 1999-07-13 Secondary power source
US09/353,136 US6294292B1 (en) 1998-07-14 1999-07-14 Secondary power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10199235A JP2000030745A (en) 1998-07-14 1998-07-14 Secondary power source

Publications (1)

Publication Number Publication Date
JP2000030745A true JP2000030745A (en) 2000-01-28

Family

ID=16404415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10199235A Pending JP2000030745A (en) 1998-07-14 1998-07-14 Secondary power source

Country Status (1)

Country Link
JP (1) JP2000030745A (en)

Similar Documents

Publication Publication Date Title
US6294292B1 (en) Secondary power source
US6558846B1 (en) Secondary power source
JP4096438B2 (en) Secondary power supply
US20120212879A1 (en) High energy hybrid supercapacitors using lithium metal powders
JP2002270175A (en) Secondary power source
JP3658517B2 (en) Non-aqueous electrolyte secondary battery
JP2004022294A (en) Electrode for battery, its manufacturing method and battery
JP2003031220A (en) Secondary power source
JP2000306609A (en) Secondary power supply
JP2000036325A (en) Secondary power supply
JP2000228222A (en) Secondary power supply
US6924063B2 (en) Secondary power source
JP2000090971A (en) Secondary power source
JP4042187B2 (en) Secondary power supply
JP4284934B2 (en) Secondary power supply
JP3807854B2 (en) Electric double layer capacitor
JPH07147158A (en) Negative electrode for lithium secondary battery
JPH11102708A (en) Negative electrode body, and secondary electric source
JP2000223368A (en) Secondary power source
JPH11329492A (en) Secondary power source
JP4039071B2 (en) Secondary power supply
JP4352532B2 (en) Secondary power supply
JP2001236960A (en) Method of manufacturing secondary power supply
JP2001052749A (en) Manufacture of lithium secondary battery
JP2000003729A (en) Manufacture of secondary power supply