JP2000021774A - Manufacturing polycrystalline silicon film - Google Patents

Manufacturing polycrystalline silicon film

Info

Publication number
JP2000021774A
JP2000021774A JP10188643A JP18864398A JP2000021774A JP 2000021774 A JP2000021774 A JP 2000021774A JP 10188643 A JP10188643 A JP 10188643A JP 18864398 A JP18864398 A JP 18864398A JP 2000021774 A JP2000021774 A JP 2000021774A
Authority
JP
Japan
Prior art keywords
thin film
silicon thin
polycrystalline silicon
film
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10188643A
Other languages
Japanese (ja)
Inventor
Hirozo Takegawa
博三 武川
Yoshinao Taketomi
義尚 武富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10188643A priority Critical patent/JP2000021774A/en
Publication of JP2000021774A publication Critical patent/JP2000021774A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a polycrystalline silicon film, whereby a polycrystalline silicon film having a uniform and large grain size in a plane can be obtd. SOLUTION: For forming a polycrystalline silicon film from an amorphous Si film formed on a substrate 5 with use of an excimer laser, the temp. of the Si film being heated is measured by a radiation thermometer, and a polycrystalline silicon film is formed while keeping the heating temp. of the Si film approximately const., based on the measured result. More specifically, when the temp. of a heated part of the Si film which is heated exceeds a fixed temp. over Si m.p., the carrying speed of the substrate 5 is controlled to reduce the heating rate of the heated part of the Si film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光を用いて物質の改
質を行う方法に関するものであり、特に、液晶ディスプ
レイ表示の駆動を行う回路を構成するシリコン薄膜にレ
ーザ光を照射して非晶質シリコン薄膜を多結晶シリコン
薄膜に改質する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for modifying a substance using light, and more particularly to a method for irradiating a silicon thin film constituting a circuit for driving a liquid crystal display display with a laser beam to form an amorphous substance. The present invention relates to a method for modifying a porous silicon thin film into a polycrystalline silicon thin film.

【0002】[0002]

【従来の技術】近年、液晶ディスプレイにおいては、市
場の拡大に伴い、大型化、高精細化、高輝度化へと開発
が進められている。その中でも、特に画素スイッチ素
子、駆動回路を基板に組み込んだ、いわゆる一体型のア
クティブマトリックス液晶表示装置は、将来の液晶表示
装置の主流と目され、研究開発が進められている。この
基板に形成される画素スイッチ素子や駆動回路は、多結
晶シリコン薄膜を用いた薄膜トランジスタで構成されて
いる。
2. Description of the Related Art In recent years, liquid crystal displays have been developed to have a larger size, higher definition, and higher brightness as the market expands. Among them, in particular, a so-called integrated type active matrix liquid crystal display device in which a pixel switch element and a driving circuit are incorporated in a substrate is considered to be a mainstream of a liquid crystal display device in the future, and research and development are being advanced. The pixel switch element and the drive circuit formed on this substrate are constituted by thin film transistors using a polycrystalline silicon thin film.

【0003】そして上記の多結晶シリコン薄膜を作製す
るにあたっては、まず基板上に例えばシリコンを非晶質
状態で成膜し、その後、エキシマレーザなどのレーザ光
を照射し、加熱により非晶質シリコン薄膜を溶融させ、
多結晶シリコン薄膜を得ている。
In producing the above-mentioned polycrystalline silicon thin film, first, for example, silicon is formed in an amorphous state on a substrate, and then a laser beam such as an excimer laser is irradiated, and the amorphous silicon is heated. Melting the thin film,
A polycrystalline silicon thin film has been obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
多結晶シリコン薄膜の作製方法では、均一で大きな粒径
の多結晶シリコン薄膜を得ることが困難である場合があ
る。もし、均一な粒径の多結晶シリコン薄膜が得られな
いと、例えば液晶表示領域を構成する画素スイッチを構
成する薄膜トランジスタ(TFT)の特性が面内で不均
一になり、その結果、表示にムラが生じたりする。ま
た、粒径が小さいことは、キャリアの移動度が低くなる
ことを意味するため、高性能な薄膜トランジスタを得る
ことができなくなってしまう。
However, it is sometimes difficult to obtain a uniform polycrystalline silicon thin film having a large grain size by the conventional method for producing a polycrystalline silicon thin film. If a polycrystalline silicon thin film having a uniform particle size cannot be obtained, for example, the characteristics of a thin film transistor (TFT) constituting a pixel switch constituting a liquid crystal display area become non-uniform in a plane, resulting in uneven display. May occur. In addition, a small particle size means that the mobility of carriers is low, so that a high-performance thin film transistor cannot be obtained.

【0005】そこで本発明は上記の問題点に鑑み、面内
において、均一で粒径の大きな多結晶シリコン薄膜を得
ることが可能な、多結晶シリコン薄膜の製造方法を提供
することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a method of manufacturing a polycrystalline silicon thin film capable of obtaining a polycrystalline silicon thin film having a uniform grain size in a plane. .

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の多結晶シリコン薄膜の製造方法は、非晶
質シリコン薄膜を加熱して多結晶シリコン薄膜を形成す
る多結晶シリコン薄膜の製造方法であって、加熱されて
いるシリコン薄膜の温度を計測し、その計測結果に基づ
いてシリコン薄膜の加熱温度をほぼ一定に保ちながら多
結晶シリコン薄膜を形成することを特徴とする構成とな
っている。
In order to achieve the above object, a method of manufacturing a polycrystalline silicon thin film according to the present invention comprises the steps of: heating an amorphous silicon thin film to form a polycrystalline silicon thin film; Measuring the temperature of the silicon thin film being heated, and forming the polycrystalline silicon thin film while maintaining the heating temperature of the silicon thin film substantially constant based on the measurement result. Has become.

【0007】具体的には、加熱されているシリコン薄膜
の加熱部の温度がシリコンの融点以上の一定温度を越え
ると、前記シリコン薄膜の加熱部の加熱量を低減するよ
うに制御する。そして、より具体的には、シリコン薄膜
が形成されている基板の搬送速度を制御してシリコン薄
膜の加熱部の加熱量を制御する。
More specifically, when the temperature of the heating portion of the silicon thin film being heated exceeds a certain temperature equal to or higher than the melting point of silicon, the heating amount of the heating portion of the silicon thin film is controlled to be reduced. More specifically, the heating speed of the heating unit for the silicon thin film is controlled by controlling the transfer speed of the substrate on which the silicon thin film is formed.

【0008】この構成によれば、成膜された非晶質シリ
コン薄膜の膜厚分布に関係なく、最適の熱量を与えるこ
とができる。
According to this configuration, an optimum amount of heat can be given regardless of the film thickness distribution of the formed amorphous silicon thin film.

【0009】[0009]

【発明の実施の形態】本発明者等は、上記した問題が、
非晶質シリコン薄膜の膜厚とレーザ光のエネルギー量の
マッチングを取ることが困難であることに起因して発生
していることに着目した。非晶質シリコン薄膜の膜厚は
数百nmという薄膜のため、膜厚制御が難しく、面内に
おいて、膜厚分布が生じる。このような膜厚分布が存在
する非晶質シリコン薄膜に対して、一定のエネルギー量
を有するレーザ光を照射するということは、非晶質シリ
コンの膜厚に対する最適なレーザエネルギ量を照射する
ことにはならない。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have solved the above-mentioned problems.
Attention was paid to the fact that it is difficult to match the thickness of the amorphous silicon thin film with the amount of energy of the laser light. Since the thickness of the amorphous silicon thin film is as thin as several hundred nm, it is difficult to control the thickness, and a film thickness distribution occurs in the plane. Irradiating the amorphous silicon thin film having such a film thickness distribution with a laser beam having a constant energy amount means irradiating an optimal laser energy amount with respect to the amorphous silicon film thickness. It does not become.

【0010】そこで本発明では、レーザの加熱時に薄膜
の溶融部の温度を直接計測し、粒径の大きな多結晶膜と
なるよう薄膜の温度制御を行う構成となっている。
Therefore, in the present invention, the temperature of the melted portion of the thin film is directly measured at the time of laser heating, and the temperature of the thin film is controlled so as to form a polycrystalline film having a large grain size.

【0011】以下本発明の実施の形態における多結晶シ
リコン薄膜の製造方法について図面を参照しながら説明
する。なお、以下に示す方法は、非晶質シリコン薄膜が
形成された基板を搬送しながら、ライン状に整形された
エキシマレーザー光を照射して多結晶化を行う方法であ
る。
Hereinafter, a method of manufacturing a polycrystalline silicon thin film according to an embodiment of the present invention will be described with reference to the drawings. The method described below is a method in which a substrate on which an amorphous silicon thin film is formed is irradiated with linearly shaped excimer laser light to carry out polycrystallization.

【0012】図1に、本発明の実施の形態における多結
晶シリコン薄膜の製造方法において、エキシマレーザー
光を非晶質シリコン薄膜に照射して、加熱により多結晶
シリコン薄膜に変質している様子を示す斜視図を示す。
図1において、1はエキシマレーザー、2はミラー、3
はビームホモジナイザー(所定の光強度パターンに整形
する機能を有する)、4は放射温度計、5は基板、6は
基板送り速度制御器、7は放射温度計温度演算出力部を
示している。
FIG. 1 shows a state in which an amorphous silicon thin film is irradiated with excimer laser light in a method of manufacturing a polycrystalline silicon thin film according to an embodiment of the present invention, and is transformed into a polycrystalline silicon thin film by heating. FIG.
In FIG. 1, 1 is an excimer laser, 2 is a mirror, 3
Denotes a beam homogenizer (has a function of shaping into a predetermined light intensity pattern), 4 denotes a radiation thermometer, 5 denotes a substrate, 6 denotes a substrate feed speed controller, and 7 denotes a radiation thermometer temperature calculation output unit.

【0013】そして本発明の多結晶シリコン薄膜の製造
方法は、下記のようにして行う。まず、ガラス(6in
角、厚さ1.1mm、コーニング#1737)からなる
基板5に下地膜であるSiO2膜を常圧CVD法により
300nm成膜し、さらに減圧CVD法によって膜厚5
0nmとなるように非晶質シリコン膜を成膜する。次
に、エキシマレーザ光の照射により、非晶質シリコン薄
膜の溶融・再結晶を行うわけであるが、ここでは、エキ
シマレーザー1の出力は300mJ/cm2、100H
zで発振させ、1回あたり20nsのレーザ照射時間と
した。
The method for producing a polycrystalline silicon thin film according to the present invention is performed as follows. First, glass (6in
An SiO 2 film as a base film is formed to a thickness of 300 nm by a normal pressure CVD method on a substrate 5 having a corner, a thickness of 1.1 mm, and Corning # 1737).
An amorphous silicon film is formed to have a thickness of 0 nm. Next, the amorphous silicon thin film is melted and recrystallized by excimer laser beam irradiation. Here, the output of the excimer laser 1 is 300 mJ / cm 2 , 100 H
Oscillation was performed at z and the laser irradiation time was set to 20 ns each time.

【0014】本発明では、加熱されているシリコン薄膜
の温度を直接計測し、その計測結果に基づいてシリコン
薄膜の加熱温度をほぼ一定に保ちながら多結晶シリコン
薄膜を形成するわけであるが、放射温度計4には、例え
ばセンサ材料としてHgCdTeを用いたものを用いる
と、応答時間は0.05secとなる。なお、基板5は
図1の矢印方向に5mm/secで搬送されている(ビ
ームホモジナイザー3の通過前が非晶質シリコン膜、通
過後が多結晶シリコン膜)が、これは非晶質シリコン薄
膜が常に50nmであれば、最適な溶融温度となるよう
に決められたものとする。
In the present invention, the temperature of a heated silicon thin film is directly measured, and a polycrystalline silicon thin film is formed based on the measured result while keeping the heating temperature of the silicon thin film substantially constant. For example, when a sensor using HgCdTe as a sensor material is used as the thermometer 4, the response time becomes 0.05 sec. The substrate 5 is transported at 5 mm / sec in the direction of the arrow in FIG. 1 (an amorphous silicon film before passing through the beam homogenizer 3 and a polycrystalline silicon film after passing through the beam homogenizer 3). Is always 50 nm, the melting temperature is determined to be the optimum.

【0015】上記のように非晶質シリコン薄膜の膜厚が
一定であれば、問題は生じないが、実際には、膜厚分布
が生じ、例えば、非晶質シリコン薄膜の厚さが50nm
より±10%以上ずれたりする。
If the thickness of the amorphous silicon thin film is constant as described above, no problem occurs, but actually, a film thickness distribution occurs, for example, when the thickness of the amorphous silicon thin film is 50 nm.
± 10% or more.

【0016】非晶質シリコン薄膜の厚みが厚い場合に
は、十分な加熱がされないことになってしまい、多結晶
化できない領域も生じてしまう。このような場合には、
非晶質シリコン薄膜が形成されている基板5の搬送速度
を最初の設定(膜厚が50nmの場合)よりも遅くして
やることにより、十分な加熱を行う。
When the thickness of the amorphous silicon thin film is large, sufficient heating is not performed, and some regions cannot be polycrystallized. In such a case,
Sufficient heating is performed by making the transport speed of the substrate 5 on which the amorphous silicon thin film is formed slower than the initial setting (when the film thickness is 50 nm).

【0017】一方、非晶質シリコン薄膜の厚みが薄い場
合には、溶融温度が高くなりすぎるてしまう。この場合
には、十分な加熱は行えるものの、その温度が高いため
に、冷却速度が速くなってしまい、十分な結晶化時間を
得ることができず、その結果、小さな粒径の多結晶シリ
コン薄膜となってしまう。この点について、図2を参照
しながら説明する。図2は温度計算により非晶質シリコ
ン膜が溶融直後(低溶融温度のとき)に冷却された場合
と、溶融後さらに十分に加熱された(高溶融温度のと
き)後に冷却された場合のシリコンの温度変化を示した
ものである。低溶融温度のときは、高溶融温度のときに
比べ結晶化温度(Tc)、ガラス転移温度(Tg)付近
の冷却速度(時間当たりの温度変化量)が小さく、結晶
化に必要な時間が確保される。そこで、このような場合
には、基板5の搬送速度を最初の設定よりも早くする。
なお、基板5の送り速度はビームホモジナイザー3の通
過時に常にシリコンの溶融温度となるようにシリコン表
面の温度を検知しながら、フィードバックがかけられ基
板送り速度制御器6で制御されている。
On the other hand, when the thickness of the amorphous silicon thin film is small, the melting temperature becomes too high. In this case, although sufficient heating can be performed, the cooling rate is increased due to the high temperature, and a sufficient crystallization time cannot be obtained. As a result, a polycrystalline silicon thin film having a small grain size is obtained. Will be. This will be described with reference to FIG. FIG. 2 shows the case where the amorphous silicon film is cooled immediately after melting (at a low melting temperature) and the case where the amorphous silicon film is cooled sufficiently after being heated (at a high melting temperature) after melting according to temperature calculation. FIG. When the melting temperature is low, the crystallization temperature (Tc) and the cooling rate (temperature change per hour) near the glass transition temperature (Tg) are smaller than when the melting temperature is high, and the time required for crystallization is secured. Is done. Therefore, in such a case, the transport speed of the substrate 5 is set faster than the initial setting.
The feed speed of the substrate 5 is controlled by the substrate feed speed controller 6 by applying feedback while detecting the temperature of the silicon surface so that the temperature of the silicon is always the melting temperature of the silicon when passing through the beam homogenizer 3.

【0018】上記の例では、レーザの発振周波数100
Hz(0.01sec間隔で発振)に比べ、放射温度計
の応答時間が0.05secと遅いが、シリコンの溶融
(融点1400℃)が常に確認される状態での基板の送
り速度のもとでは、溶融温度の最高値は約1600℃で
溶融温度が低く、Tc付近の冷却速度も小さく、粒径が
約1μmの結晶ができた。
In the above example, the laser oscillation frequency 100
Hz (oscillation at 0.01 sec intervals), the response time of the radiation thermometer is as slow as 0.05 sec. However, under the condition that the melting of silicon (melting point of 1400 ° C.) is always confirmed, the substrate feed speed is high. The maximum melting temperature was about 1600 ° C., the melting temperature was low, the cooling rate near Tc was low, and crystals having a particle size of about 1 μm were formed.

【0019】[0019]

【発明の効果】以上のように本発明によれば、非晶質シ
リコン薄膜の膜厚分布に対して、基板の温度を測定し、
この測定結果に基づいて、測定温度が予め設定された所
定の温度より高くなった場合には、基板の搬送速度を速
くする一方で、測定温度が予め設定された所定の温度よ
り低くなった場合には、基板の搬送速度を遅くするとい
う制御を行うことにより、シリコン薄膜の温度をほぼ一
定に保って多結晶化処理を行うことができるため、最適
なレキシマレーザーアニールを行うことができるため、
面内で均一で、大きな結晶粒を有する多結晶薄膜トラン
ジスタを得ることができる。
As described above, according to the present invention, the temperature of the substrate is measured with respect to the film thickness distribution of the amorphous silicon thin film,
Based on the measurement result, when the measured temperature is higher than a predetermined temperature, the transfer speed of the substrate is increased, and when the measured temperature is lower than the predetermined temperature. In addition, by controlling the substrate transport speed to be slow, the polycrystallizing process can be performed while keeping the temperature of the silicon thin film almost constant, so that the optimal leximer laser annealing can be performed. ,
A polycrystalline thin film transistor having in-plane uniform and large crystal grains can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の多結晶シリコン薄膜の製
造方法におけるエキシマレーザー光を非晶質シリコン薄
膜に照射して、加熱により多結晶シリコン薄膜に変質し
ている様子を示す斜視図
FIG. 1 is a perspective view showing a state in which an amorphous silicon thin film is irradiated with excimer laser light in a method for manufacturing a polycrystalline silicon thin film according to an embodiment of the present invention, and is transformed into a polycrystalline silicon thin film by heating.

【図2】シリコンの溶融、冷却時の温度変化を示す図FIG. 2 is a diagram showing a temperature change during melting and cooling of silicon.

【符号の説明】[Explanation of symbols]

1 エキシマレーザー 2 ミラー 3 ビームホモジナイザー 4 放射温度計基板 5 基板 6 基板送り速度制御器 7 放射温度計温度演算出力部 Reference Signs List 1 excimer laser 2 mirror 3 beam homogenizer 4 radiation thermometer substrate 5 substrate 6 substrate feed speed controller 7 radiation thermometer temperature calculation output unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】非晶質シリコン薄膜を加熱して多結晶シリ
コン薄膜を形成する多結晶シリコン薄膜の製造方法であ
って、加熱されているシリコン薄膜の温度を計測し、そ
の計測結果に基づいてシリコン薄膜の加熱温度をほぼ一
定に保ちながら多結晶シリコン薄膜を形成することを特
徴とする多結晶シリコン薄膜の製造方法。
1. A method for manufacturing a polycrystalline silicon thin film, comprising heating an amorphous silicon thin film to form a polycrystalline silicon thin film, comprising: measuring a temperature of the heated silicon thin film; A method of manufacturing a polycrystalline silicon thin film, comprising forming a polycrystalline silicon thin film while keeping a heating temperature of the silicon thin film substantially constant.
【請求項2】加熱されているシリコン薄膜の加熱部の温
度がシリコンの融点以上の一定温度を越えると、前記シ
リコン薄膜の加熱部の加熱量を低減するように制御する
ことを特徴とする請求項1に記載の多結晶シリコン薄膜
の製造方法。
2. When the temperature of the heated portion of the silicon thin film being heated exceeds a certain temperature equal to or higher than the melting point of silicon, the heating amount of the heated portion of the silicon thin film is controlled to be reduced. Item 2. The method for producing a polycrystalline silicon thin film according to Item 1.
【請求項3】シリコン薄膜が形成されている基板の搬送
速度を制御して前記シリコン薄膜の加熱部の加熱量を制
御することを特徴とする請求項2に記載の多結晶シリコ
ン薄膜の製造方法。
3. The method of manufacturing a polycrystalline silicon thin film according to claim 2, wherein a heating rate of a heating section of the silicon thin film is controlled by controlling a transfer speed of a substrate on which the silicon thin film is formed. .
JP10188643A 1998-07-03 1998-07-03 Manufacturing polycrystalline silicon film Pending JP2000021774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10188643A JP2000021774A (en) 1998-07-03 1998-07-03 Manufacturing polycrystalline silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10188643A JP2000021774A (en) 1998-07-03 1998-07-03 Manufacturing polycrystalline silicon film

Publications (1)

Publication Number Publication Date
JP2000021774A true JP2000021774A (en) 2000-01-21

Family

ID=16227313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10188643A Pending JP2000021774A (en) 1998-07-03 1998-07-03 Manufacturing polycrystalline silicon film

Country Status (1)

Country Link
JP (1) JP2000021774A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135232A (en) * 2004-11-09 2006-05-25 Sharp Corp Method and apparatus for manufacturing semiconductor device
KR100698691B1 (en) 2005-12-21 2007-03-23 삼성에스디아이 주식회사 Crystallization of amorphous-Silicon film using an Excimer-Laser and Method for fabricating of poly Transparent Thin Film Transistor
US7881350B2 (en) 2002-09-17 2011-02-01 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, and manufacturing method of semiconductor device
WO2015174347A1 (en) * 2014-05-12 2015-11-19 株式会社日本製鋼所 Laser annealing device, serial conveyance path for laser annealing, laser beam radiation means, and laser annealing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7881350B2 (en) 2002-09-17 2011-02-01 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, and manufacturing method of semiconductor device
JP2006135232A (en) * 2004-11-09 2006-05-25 Sharp Corp Method and apparatus for manufacturing semiconductor device
KR100698691B1 (en) 2005-12-21 2007-03-23 삼성에스디아이 주식회사 Crystallization of amorphous-Silicon film using an Excimer-Laser and Method for fabricating of poly Transparent Thin Film Transistor
WO2015174347A1 (en) * 2014-05-12 2015-11-19 株式会社日本製鋼所 Laser annealing device, serial conveyance path for laser annealing, laser beam radiation means, and laser annealing method
CN105830201A (en) * 2014-05-12 2016-08-03 株式会社日本制钢所 Laser annealing device, serial conveyance path for laser annealing, laser beam radiation means, and laser annealing method
JPWO2015174347A1 (en) * 2014-05-12 2017-06-01 株式会社日本製鋼所 Laser annealing apparatus, continuous conveyance path for laser annealing treatment, laser light irradiation means, and laser annealing treatment method

Similar Documents

Publication Publication Date Title
JP4103447B2 (en) Manufacturing method of large area single crystal silicon substrate
US7556993B2 (en) Thin film semiconductor device, polycrystalline semiconductor thin film production process and production apparatus
CN1614756B (en) Semiconductor device and its manufacture
KR20060048219A (en) Method of fabricating a semiconductor thin film and semiconductor thin film fabrication apparatus
KR100753432B1 (en) Apparatus and crystallization method for polycrystalline silicon
JPH06345415A (en) Process and apparatus for producing polycrystalline silicon
JP2002261015A (en) Semiconductor thin film, method of manufacturing it, manufacturing device, semiconductor element and method of manufacturing it
JPH118205A (en) Manufacture of semiconductor device and laser beam irradiation device
JP2000021774A (en) Manufacturing polycrystalline silicon film
JP2522470B2 (en) Method of manufacturing thin film integrated circuit
JP2000021776A (en) Method of forming semiconductor thin film, pulse laser irradiator and semiconductor device
JPH06252048A (en) Manufacture of polycrystalline semiconductor thin film
JP3221251B2 (en) Amorphous silicon crystallization method and thin film transistor manufacturing method
JPH10172919A (en) Laser annealing method and apparatus
JP2000243968A (en) Thin film transistor, manufacture thereof, liquid crystal display device using the same and manufacture thereof
JP2004063478A (en) Thin film transistor and its manufacturing method
JPH09162121A (en) Fabrication of semiconductor device
WO2006075569A1 (en) Semiconductor thin film manufacturing method and semiconductor thin film manufacturing apparatus
TW200411773A (en) Method of laser crystallization
TWI360839B (en) Manufacturing method of semiconductor film and ima
JPH10125923A (en) Semiconductor element and its manufacture
JP2003077834A (en) Formation method of crystallization semiconductor film and manufacturing apparatus thereof, manufacturing method of thin film transistor, and display using them
JP2000243969A (en) Thin film transistor, manufacture thereof, liquid crystal display device using the same and manufacture thereof
JPH10106953A (en) Manufacture of polycrystal line semiconductor film
JP2002093706A (en) Crystallization method of amorphous silicon thin film