JP2000021424A - Current collector body for fuel cell - Google Patents

Current collector body for fuel cell

Info

Publication number
JP2000021424A
JP2000021424A JP10188949A JP18894998A JP2000021424A JP 2000021424 A JP2000021424 A JP 2000021424A JP 10188949 A JP10188949 A JP 10188949A JP 18894998 A JP18894998 A JP 18894998A JP 2000021424 A JP2000021424 A JP 2000021424A
Authority
JP
Japan
Prior art keywords
current collector
cross
electrode
gas
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10188949A
Other languages
Japanese (ja)
Inventor
Shigeyuki Suga
茂幸 須賀
Hideaki Ko
秀明 洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP10188949A priority Critical patent/JP2000021424A/en
Publication of JP2000021424A publication Critical patent/JP2000021424A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To improve current collecting performance by enlarging the contact area with electrodes an the cross-sectional area of a gas passage, by forming the gas passage on the contact surface with the electrodes of a pair of current collectors having the gas passage also serving as a gas chamber of reactive gas on the opposite surface to a pair of electrodes for sandwiching a solid electrolyte film, and providing the recessed part having a cross-sectional shape having the inside widening more than the opening part. SOLUTION: A gas passage 31 of the recessed part, having a cross section having the inside widening more than the opening part contacting with electrodes, is arranged in a lattice shape on both surfaces of a current collector 11, such as stainless steel having a construction material which is hardly degraded by transmission and reaction heat of reactive gas. Thus, the contact area with the electrodes becomes large to increase a flow rate of the reactive gas. The curved starting part having the inside starting to widen more than a width of an opening is deisrably arranged in the opening part of the gas passage 31, so that the tip of the opening part does not turn into an easily foldable acute angle shape. It is recommended that the tip of the opening part be properly rounded to prevent the defect. The current collector is manufactured by performing etching processing, after masking a position of the thick part 51.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質膜の両
面に電極をもち、それぞれの電極の一方の電極に燃料ガ
スを他方の電極に酸化剤ガスを供給して電気を取り出す
燃料電池に用いられる集電体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell which has electrodes on both sides of a solid electrolyte membrane, and supplies fuel gas to one of the electrodes and oxidant gas to the other electrode to extract electricity. Current collector.

【0002】[0002]

【従来の技術】工場や自動車からの排出ガスによる大気
汚染や、発電所から排出される温排水などからもわかる
ように、エネルギーの消費から排出までの過程において
さまざまな環境への負荷が発生している。近年の地球環
境への関心の高まりにともない、地球環境への負荷の少
ないエネルギーがもとめられ、その一つとして燃料電池
があげられている。
2. Description of the Related Art As can be seen from air pollution caused by exhaust gas from factories and automobiles, and hot wastewater discharged from power plants, various environmental loads occur during the process from energy consumption to emission. ing. 2. Description of the Related Art With an increase in interest in the global environment in recent years, energy with less impact on the global environment has been demanded, and a fuel cell has been cited as one of them.

【0003】一般に燃料電池とは、水素を主燃料とし、
この水素が酸素と化学反応したときのエネルギーを電力
として取り出すものである。この燃料電池は、従来型の
エンジンやタービンと異なり、カルノーサイクルの効率
の制約を受けないため高い発電効率を持ち、また、NO
x、SOxなどの排出が極めて少ないクリーンな電源と
なっている。
[0003] In general, a fuel cell uses hydrogen as its main fuel,
The energy obtained when the hydrogen chemically reacts with the oxygen is extracted as electric power. Unlike conventional engines and turbines, this fuel cell is not restricted by the efficiency of the Carnot cycle, has high power generation efficiency, and has a high NO.
It is a clean power source that emits very little x, SOx and the like.

【0004】また、燃料電池は化学エネルギーを電気エ
ネルギーに変換する点においては化学電池であるが、一
般の化学電池と異なり反応物質が外部から連続的に供給
され、反応生成物が外部へ連続的に排出されるので、極
めて長時間の連続運用が可能であり、充電の必要もな
い。燃料電池にはいくつかの種類があり、その一つとし
て高分子電解質型燃料電池がある。この高分子電解質型
燃料電池は、運転温度が低く(100℃以下)、また出
力密度が高い(およそ60%)という特性を有してい
る。高分子電解質型燃料電池は、プロトン交換高分子電
解質膜と、この電解質膜を挟持するようにもうけられた
触媒を含む電極と、この電極を挟持するとともに電極で
発生した電気を集電する集電体とから構成されるもので
ある。なお、この集電体は、電極と対向する面に電極反
応の原料となる反応性ガスを導入し、電極への反応性ガ
スを拡散させるガス拡散機能を有するガス流路がもうけ
られている。
A fuel cell is a chemical cell in that chemical energy is converted into electric energy. However, unlike a general chemical cell, a reactant is continuously supplied from the outside, and a reaction product is continuously supplied to the outside. , It can be operated for a very long time and does not need to be charged. There are several types of fuel cells, one of which is a polymer electrolyte fuel cell. This polymer electrolyte fuel cell has the characteristics that the operating temperature is low (100 ° C. or less) and the power density is high (about 60%). A polymer electrolyte fuel cell has a proton exchange polymer electrolyte membrane, an electrode including a catalyst formed to sandwich the electrolyte membrane, and a current collector that sandwiches the electrode and collects electricity generated by the electrode. It is composed of the body. The current collector has a gas flow path having a gas diffusion function of introducing a reactive gas serving as a raw material for an electrode reaction to a surface facing the electrode and diffusing the reactive gas to the electrode.

【0005】この高分子電解質型燃料電池は、電解質膜
の片面に水素もしくは水素ガスを含む燃料ガスを、もう
片方の面に酸素もしくは空気のような酸素を含む酸化物
ガスを供給して両ガスの水素と酸素を穏やかに反応させ
るものである。両ガスの反応経路は、燃料ガス中の水素
が電極(水素極)でプロトン(H+)と電子(e-)とに
なり、このプロトンが電解質膜中を移動し、この移動し
たプロトンが酸化物ガス中の酸素と電極(酸素極)から
の電子と反応して水(H2O)を生成する反応である。
In this polymer electrolyte fuel cell, a fuel gas containing hydrogen or hydrogen gas is supplied to one side of an electrolyte membrane, and an oxide gas containing oxygen such as air is supplied to the other side of the electrolyte membrane. Hydrogen and oxygen react gently. In the reaction path of both gases, hydrogen in the fuel gas becomes protons (H + ) and electrons (e ) at the electrode (hydrogen electrode), and the protons move through the electrolyte membrane, and the transferred protons are oxidized. This is a reaction in which oxygen in the source gas reacts with electrons from the electrode (oxygen electrode) to generate water (H 2 O).

【0006】 水素極 : H2 → 2H+ + 2e- 酸素極 : 1/2O2 + 2H+ + 2e- → H2O 全体 : H2 + 1/2O2 → H2O 高分子電解質型燃料電池の場合には、一枚の電解質膜よ
りなる単セルでの出力電力は1.0V未満であり、通常
はこの単セルを所定数直列に積層した燃料電池としてい
る。このように単セルを直列に積層する場合には、隣接
するセル同士で集電体を共用して用いることができる。
集電体を共用する場合には、反応性ガスが集電体を透過
しないように形成されている。この場合には、集電体の
両面にガス流路がもうけられ、両面のガス流路を流通す
る燃料ガスと酸化物ガスとが接触、混合しないように十
分に隔離されている。
Hydrogen electrode: H 2 → 2H + + 2e Oxygen electrode: 1 / 2O 2 + 2H + + 2e → H 2 O Entire: H 2 + 1 / 2O 2 → H 2 O Polymer electrolyte fuel cell In the case of (1), the output power of a single cell composed of one electrolyte membrane is less than 1.0 V. Usually, a predetermined number of the single cells are stacked in series to form a fuel cell. When the single cells are stacked in series as described above, the current collector can be shared between adjacent cells.
When the current collector is shared, the reactive gas is formed so as not to pass through the current collector. In this case, gas flow paths are provided on both sides of the current collector, and the fuel gas and the oxide gas flowing through the gas flow paths on both sides are sufficiently isolated so as not to contact and mix.

【0007】また、集電体表面にもうけられたガス流路
は、断面形状が凹状や、内部に向かって幅が狭くなる台
形形状をした溝であり、この溝が接触面に様々な形態た
とえば格子状といった形態で広がっている。
The gas flow passage formed on the surface of the current collector is a groove having a concave cross section or a trapezoidal shape whose width becomes narrower toward the inside. It spreads in the form of a lattice.

【0008】[0008]

【発明が解決しようとする課題】燃料電池は燃料ガス中
の水素が酸化物ガス中の酸素と反応する反応エネルギー
から電力を得る電池であるため、この電池の出力電力は
水素と酸素の反応量に依存している。また、集電体と電
極面の接触面積が増加することで集電効率が向上し、発
電能力も向上するようにもなる。
Since a fuel cell is a battery that obtains power from reaction energy in which hydrogen in a fuel gas reacts with oxygen in an oxide gas, the output power of this battery is a reaction amount of hydrogen and oxygen. Depends on. In addition, the current collection efficiency is improved by increasing the contact area between the current collector and the electrode surface, and the power generation capability is also improved.

【0009】集電体表面にもうけられたガス流路は断面
形状が凹状をしているため、反応性ガスの導入量を多く
するためにガス流路の凹部を広くとると、集電体と電極
面との接触面積が減少するため、集電効率が減少するよ
うになる。また、逆に、集電体と電極面との接触面積を
大きくすると、ガス流路の凹部の断面積が少なくなるこ
とから反応性ガスの導入量が少なくなり、電極反応に寄
与する反応量が減少するため、発電効率が低下してく
る。
Since the cross section of the gas flow channel formed on the surface of the current collector is concave, if the concave portion of the gas flow channel is widened to increase the amount of reactive gas introduced, the current collector and Since the contact area with the electrode surface is reduced, the current collection efficiency is reduced. Conversely, when the contact area between the current collector and the electrode surface is increased, the cross-sectional area of the concave portion of the gas flow path is reduced, so that the amount of reactive gas introduced is reduced, and the reaction amount contributing to the electrode reaction is reduced. Because of the decrease, the power generation efficiency decreases.

【0010】本発明は上記実状に鑑みてなされたもので
あり、電極との接触面積およびガス流路の断面積が大き
い燃料電池用集電体を提供することを課題とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a current collector for a fuel cell having a large contact area with an electrode and a large cross-sectional area of a gas flow path.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
本発明者らは、燃料電池の集電体について、詳しくは集
電体にもうけられたガス流路の断面形状について検討を
重ねた結果、ガス流路の凹部を内部が広くなった形状と
することで課題を解決できることを見出した。すなわ
ち、本発明の集電体は、固体電解質膜と、固体電解質膜
を両側から挟持する一対の電極と、電極と対向して位置
し電極と電極反応を生じる反応性ガスが導入されるガス
室をかねたガス流路が電極との対向面にもうけられた一
対の集電体と、を有する燃料電池に用いられる集電体で
あって、集電体は電極との接触面にガス流路を形成する
凹部を有し、この凹部の断面形状が凹部の開口部より凹
部の内部が広くなった形状であることを特徴とする。
Means for Solving the Problems In order to solve the above problems, the present inventors have repeatedly studied the current collector of a fuel cell, more specifically, the cross-sectional shape of a gas flow channel provided in the current collector. It has been found that the problem can be solved by forming the concave portion of the gas flow path into a shape having a wide inside. That is, the current collector of the present invention comprises a solid electrolyte membrane, a pair of electrodes sandwiching the solid electrolyte membrane from both sides, and a gas chamber in which a reactive gas which is located opposite to the electrode and causes an electrode reaction with the electrode is introduced. And a pair of current collectors provided on the surface facing the electrodes, the current collectors being used in a fuel cell. Is formed, and the cross-sectional shape of the concave portion is such that the inside of the concave portion is wider than the opening of the concave portion.

【0012】[0012]

【発明の実施の形態】本発明の集電体は、電極との接触
面に形成されたガス流路となる凹部を有し、この凹部の
断面が電極との接触面に開口する開口部よりその内部が
広くなった形状をしている。集電体としては、導入され
る反応性ガスが透過しない、高い集電性能を有する、反
応性ガスの反応熱により劣化しないことなどの特性を有
していれば、どのような材質でもかまわない。
BEST MODE FOR CARRYING OUT THE INVENTION The current collector of the present invention has a concave portion serving as a gas flow path formed on a contact surface with an electrode, and the cross section of the concave portion is smaller than the opening opening on the contact surface with the electrode. Its inside has a widened shape. As the current collector, any material may be used as long as it has characteristics such that the introduced reactive gas does not permeate, has high current collecting performance, and does not deteriorate due to the reaction heat of the reactive gas. .

【0013】ガス流路の断面形状は、電極との接触面に
開口する開口部よりその内部が広くなった形状をしてい
る。内部が広くなっていることでガス流路の断面積を大
きくでき、反応性ガスの流量を増加させることができ、
結果として、反応量を増加させて発電能力を向上させ
る。また、電極との接触面積を大きくすることとなり集
電体の集電性能を向上させる。
The cross-sectional shape of the gas flow path is such that the inside thereof is wider than the opening opening on the contact surface with the electrode. Because the inside is wide, the cross-sectional area of the gas passage can be increased, and the flow rate of the reactive gas can be increased.
As a result, the reaction amount is increased to improve the power generation capacity. In addition, the contact area with the electrode is increased, and the current collecting performance of the current collector is improved.

【0014】ガス流路の断面形状は、電極との接触面に
開口する開口部よりその内部が広くなった形状をしてい
れば、どのような形状をしていてもかまわない。ガス流
路の断面形状としては、たとえば、ガス流路の開口部の
幅が長径より短い楕円形状、ガス流路の開口部が上底と
なる台形形状などをあげることができる。ガス流路は、
凹部の内部が凹部の開口部の広さより広さが広がり始め
る湾曲開始部より始まることが好ましい。ここで、開口
部とは集電体表面の開口から湾曲開始点までを示し、開
口部の広さとは凹部が開口した集電体の表面での広さを
示している。湾曲開始部が集電体表面に位置するような
場合、すなわち凹部が開口するとともにその内部が広が
り始める場合には、開口部が鋭角となり、その開口部の
鋭角状の先端が折れて脱落しやすくなる。先端の脱落が
生じると、集電体と電極との接触面積が減少することか
ら、集電体の集電性能が低下するようになる。また、脱
落によって生じた脱落片がガス流路中にのこると、この
脱落片がガスの流通の障害となり電極面へのガスの導入
量が低下するため、燃料電池としての出力低下を導くこ
ととなる。このため、湾曲開始部をガス流路の開口部よ
り集電体内部とすることで、ガス流路の凹部の開口部を
区画する断面に幅を持たせ、その先端が脱落することを
防止する。
The cross-sectional shape of the gas flow path may be any shape as long as the gas flow path has a shape in which the inside is wider than an opening opening on the contact surface with the electrode. Examples of the cross-sectional shape of the gas flow path include an elliptical shape in which the width of the opening of the gas flow path is shorter than the long diameter, and a trapezoidal shape in which the opening of the gas flow path is the upper bottom. The gas flow path
It is preferable that the inside of the concave portion starts from a bending start portion where the width starts to widen from the width of the opening portion of the concave portion. Here, the opening indicates the area from the opening of the current collector surface to the starting point of the curve, and the width of the opening indicates the area of the current collector in which the concave portion is opened. When the bending start portion is located on the surface of the current collector, that is, when the concave portion opens and the inside of the current collector begins to spread, the opening becomes an acute angle, and the acute-angled tip of the opening is easily broken and falls off. Become. When the tip falls off, the contact area between the current collector and the electrode decreases, so that the current collecting performance of the current collector decreases. In addition, if the falling pieces generated by the falling fall in the gas flow path, the falling pieces may obstruct the gas flow and reduce the amount of gas introduced into the electrode surface, leading to a decrease in the output of the fuel cell. Become. For this reason, by setting the bending start portion inside the current collector from the opening of the gas flow path, a cross section that defines the opening of the concave portion of the gas flow path has a width, and the tip thereof is prevented from falling off. .

【0015】ガス流路は、凹部の開口部の断面が丸めら
れていることが好ましい。この開口部の断面が丸められ
たことで、集電体と電極との接触部がなめらかになり開
口部の欠損をおさえることができる。また、開口部の湾
曲開始部側についても、同様に内部に脱落することがお
さえられている。ガス流路は、反応性ガスが電極面に拡
散されるように表層部の表面に広がっている。ガス流路
の表層部の表面に広がる形態は、反応性ガスが拡散され
る形態であれば、どのような形態をとってもかまわな
い。すなわち、ガス流路の広がりの形態は、複数のガス
流路が平行に配置される形態、表面に格子状に広がる形
態、ジグザグ状、螺旋状など様々な形態をとることがで
きる。
The gas flow passage preferably has a rounded cross section at the opening of the recess. Since the cross section of the opening is rounded, the contact portion between the current collector and the electrode becomes smooth, and the loss of the opening can be suppressed. In addition, the opening of the opening is also prevented from falling into the inside in the same manner. The gas flow path extends on the surface of the surface portion so that the reactive gas is diffused on the electrode surface. The form spreading on the surface of the surface layer of the gas flow path may be any form as long as the reactive gas is diffused. That is, the gas flow path can be spread in various forms such as a form in which a plurality of gas flow paths are arranged in parallel, a form in which the gas flow path is spread in a lattice, a zigzag form, and a spiral form.

【0016】本発明の燃料電池用集電体は、固体電解質
膜と、固体電解質膜を両側から挟持する一対の電極と、
これら電極と対向して位置し電極と電極反応を生じる反
応性ガスが導入されるガス室をかねたガス流路が電極と
の対向面にもうけられた一対の集電体と、を有する燃料
電池に用いられる。本発明の集電体は、その両面にガス
流路となる凹部が形成されていることが好ましい。集電
体の両面に凹部を設けることで、一枚の固体電解質膜よ
りなる単セルを複数直列につなげたときに隣り合ったセ
ル同士で集電体を共用できるようになる。
The current collector for a fuel cell according to the present invention comprises: a solid electrolyte membrane; a pair of electrodes sandwiching the solid electrolyte membrane from both sides;
A fuel cell having a pair of current collectors provided on a surface facing the electrodes, the gas channels serving as gas chambers for introducing a reactive gas which is positioned to face the electrodes and to cause an electrode reaction with the electrodes. Used for In the current collector of the present invention, it is preferable that concave portions serving as gas flow paths are formed on both surfaces thereof. By providing the concave portions on both surfaces of the current collector, when a plurality of single cells made of one solid electrolyte membrane are connected in series, the adjacent cells can share the current collector.

【0017】[0017]

【実施例】以下、実施例を用いて本発明を説明する。 (実施例1)本発明の実施例として、図1の斜視図およ
び図1のII線での断面を示した図2に示されるガス流
路31が表面に開口した集電体11を作製した。この集
電体11は、厚さ1.3mmのステンレス板の両面にガ
ス流路31が格子状にもうけられているものである。こ
こで、集電体11の厚さはガス流路31を区画する厚肉
部51の厚さをさしている。ガス流路31は、200×
200mmの集電体11の電極との対向面に、図3の断
面図に示されるような略楕円形状の断面形状でもうけら
れている。ガス流路31は、幅が1mm、深さ0.5m
mの長方形の両側面に直径が0.5mmの半円を取り付
けた形状をした溝である。このときのガス流路31の集
電体1表面での開口部41の幅は1mmであり、ガス流
路31の最も広がった最広部42の幅は1.5mmであ
った。
The present invention will be described below with reference to examples. (Example 1) As an example of the present invention, a current collector 11 in which a gas flow path 31 shown in FIG. 2 showing a perspective view of FIG. 1 and a cross section taken along line II of FIG. . The current collector 11 has a gas passage 31 formed in a lattice pattern on both sides of a stainless steel plate having a thickness of 1.3 mm. Here, the thickness of the current collector 11 refers to the thickness of the thick portion 51 that partitions the gas flow path 31. The gas flow path 31 is 200 ×
A substantially elliptical cross-sectional shape as shown in the cross-sectional view of FIG. 3 is provided on the surface of the 200-mm current collector 11 facing the electrode. The gas channel 31 has a width of 1 mm and a depth of 0.5 m
The groove has a shape in which a half circle having a diameter of 0.5 mm is attached to both side surfaces of a rectangular shape of m. At this time, the width of the opening 41 on the surface of the current collector 1 of the gas flow channel 31 was 1 mm, and the width of the widest widest portion 42 of the gas flow channel 31 was 1.5 mm.

【0018】本実施例の集電体11は、集電体11の厚
肉部51となる部分にマスキングを施したステンレス板
にエッチング処理を施すことで製造されたものである。
すなわち、厚さ1.3mmのステンレス板の表面の電極
との対向面に1mm四方のマスキングを1mm間隔で施
した後に、このステンレス板を塩化第二鉄および硝酸を
含んだ水溶液中に浸して、ガス流路となる内部の広くな
った凹部を格子状に形成した。その後、このステンレス
板を水溶液中から引き出し、洗浄およびマスキングの剥
離を行い実施例の集電体を製造した。
The current collector 11 of this embodiment is manufactured by etching a stainless steel plate in which a portion to be the thick portion 51 of the current collector 11 is masked.
That is, after a 1 mm square masking is applied at 1 mm intervals on a surface of a 1.3 mm thick stainless steel plate facing the electrode, the stainless steel plate is immersed in an aqueous solution containing ferric chloride and nitric acid. The widened concave portion serving as a gas flow path was formed in a lattice shape. Thereafter, the stainless steel plate was pulled out of the aqueous solution, washed, and the masking was peeled off, to produce a current collector of the example.

【0019】(実施例2)本実施例は、実施例1と同様
にガス流路32が格子状にもうけられた集電体12であ
り、この集電体12は、厚さ1.3mmのステンレス板
の両面にガス流路32がもうけられているものである。
ここで、集電体12の厚さはガス流路32の凹部を区画
する厚肉部52の厚さをさしている。ガス流路32は、
200×200mmの集電体12の電極との対向面部
に、図4の断面図に示されるような略楕円形状の断面形
状でもうけられている。ガス流路32は、幅が0.36
mm、深さ0.5mmの長方形の両側面に直径が0.5
mmの半円を取り付けた形状をしている。このときのガ
ス流路32の集電体12の表面での開口部43の幅は、
0.36mmであり、ガス流路32の最も広がった最広
部44の幅は0.86mmであった。
(Embodiment 2) This embodiment is a current collector 12 in which gas channels 32 are provided in a grid pattern as in Embodiment 1, and this current collector 12 has a thickness of 1.3 mm. Gas passages 32 are provided on both sides of the stainless steel plate.
Here, the thickness of the current collector 12 refers to the thickness of the thick portion 52 that defines the concave portion of the gas flow path 32. The gas flow path 32
A substantially elliptical cross-sectional shape as shown in the cross-sectional view of FIG. 4 is provided on a surface of the current collector 12 of 200 × 200 mm facing the electrode. The gas passage 32 has a width of 0.36.
mm, depth 0.5mm on both sides of a rectangle 0.5mm deep
It has a shape with a semicircle of mm attached. At this time, the width of the opening 43 on the surface of the current collector 12 of the gas flow path 32 is
It was 0.36 mm, and the width of the widest widest part 44 of the gas flow path 32 was 0.86 mm.

【0020】なお、本実施例の集電体12は実施例1の
集電体と同様の方法で作成された。 (比較例)比較例は、表面の開口部45より内部が狭く
なるように側面にテーパがもうけられた厚肉部53によ
り区画されたガス流路33が格子状にもうけられた従来
の集電体13である。この集電体13は、厚さ1.3m
mのステンレス板の両面にガス流路33がもうけられて
いるものである。ここで、集電体13の厚さはガス流路
33の凹部を区画する厚肉部53の厚さをさしている。
ガス流路33は、図5の断面図に示されるように、断面
形状が開口部が広くなった台形形状をしており、開口部
の幅が1mm、底部の幅が0.5mm、深さ0.5mm
の溝状をしている。また、ガス流路3の側面のテーパ
は、ガス流路3の0.5mmの深さに対して0.25m
m傾斜している。
The current collector 12 of this embodiment was prepared in the same manner as the current collector of the first embodiment. (Comparative Example) A comparative example is a conventional current collector in which a gas flow path 33 partitioned by a thick portion 53 having a tapered side surface so that the inside is narrower than an opening 45 on the surface is provided in a grid pattern. Body 13. This current collector 13 has a thickness of 1.3 m.
The gas passages 33 are provided on both sides of the stainless steel plate having a length of m. Here, the thickness of the current collector 13 refers to the thickness of the thick portion 53 that divides the concave portion of the gas flow path 33.
As shown in the cross-sectional view of FIG. 5, the gas flow path 33 has a trapezoidal cross section with a wide opening, a width of the opening is 1 mm, a width of the bottom is 0.5 mm, and a depth. 0.5mm
It has a groove shape. Further, the taper of the side surface of the gas flow path 3 is 0.25 m for a depth of 0.5 mm of the gas flow path 3.
m.

【0021】なお、比較例の集電体33は、油圧プレス
により製造されたものである。すなわち、厚さ1.3m
mのステンレス板を、集電体表面に形成される凹部を形
成するための凸部が格子状にもうけられたプレス型を用
いて、油圧プレスでプレス成形することで製造された。 (評価)本発明の実施例および比較例の集電体により、
ガス流路の断面積および電極との接触面積の大小をもち
いた集電体の評価を行った。
The current collector 33 of the comparative example is manufactured by a hydraulic press. That is, the thickness is 1.3 m
The m stainless steel plate was manufactured by press-forming with a hydraulic press using a press die having convex portions for forming concave portions formed on the current collector surface in a lattice shape. (Evaluation) According to the current collectors of Examples and Comparative Examples of the present invention,
The current collector was evaluated using the cross-sectional area of the gas channel and the size of the contact area with the electrode.

【0022】実施例1と比較例の集電体は、ガス流路の
開口部の幅がともに1mmであり、その深さもともに
0.5mmであった。また、電極との接触面積の合計は
ともに100cm2であった。ガス流路の断面積は、実
施例1は0.696mm2、比較例は0.375mm2
あった。このように、集電体と電極との接触面積が同じ
ならば、実施例1の集電体は比較例と比べてガス流路の
断面積がおよそ1.9倍となっている。ガス流路の断面
積が大きくなることは、燃料電池に用いられたときにガ
ス流路により導入される反応性ガスの導入量を増加させ
ることとなり、反応量ひいては出力電力を増加させるこ
ととなる。
In the current collectors of Example 1 and Comparative Example, the width of the opening of the gas flow path was 1 mm, and the depth was 0.5 mm. The total area of contact with the electrodes was 100 cm 2 . Cross-sectional area of the gas flow path, the first embodiment 0.696Mm 2, the comparative example was 0.375 mm 2. As described above, when the contact area between the current collector and the electrode is the same, the current collector of Example 1 has a gas flow channel having a cross-sectional area of about 1.9 times that of the comparative example. Increasing the cross-sectional area of the gas flow path increases the amount of reactive gas introduced by the gas flow path when used in a fuel cell, and increases the reaction amount and, consequently, the output power. .

【0023】実施例2と比較例の集電体は、ガス流路の
断面積がともに0.375mm2となっている。このと
き、実施例2と比較例の集電体は、電極との対向面が2
00×200mmのとき、実施例2の集電体の電極との
接触面積は216cm2であり、比較例の接触面積は1
00cm2であった。このように、ガス流路の断面積が
同じならば、実施例2の集電体は電極との接触面積を約
2.2倍と大きくとることができる。集電体と電極との
接触面積が大きくなることは、燃料電池に用いられたと
きに電極面での電極反応により発生した電力の集電性能
を向上させることとなり、燃料電池の電力出力を増加さ
せることとなる。
The current collectors of Example 2 and Comparative Example each have a gas flow passage having a cross-sectional area of 0.375 mm 2 . At this time, the current collectors of Example 2 and Comparative Example had a surface facing the electrode of 2.
When the size was 00 × 200 mm, the contact area of the current collector of Example 2 with the electrode was 216 cm 2 , and the contact area of the comparative example was 1
00 cm 2 . As described above, if the cross-sectional areas of the gas flow paths are the same, the current collector of the second embodiment can have a contact area with the electrode as large as about 2.2 times. Increasing the contact area between the current collector and the electrode improves the current collection performance of the power generated by the electrode reaction at the electrode surface when used in a fuel cell, and increases the power output of the fuel cell Will be done.

【0024】また、他の実施例として、ガス流路を形成
する凹部が開口部の広さより広さが広がり始める湾曲開
始部を有する集電体、およびガス流路を形成する凹部の
断面形状が異なる集電体を作製した。 (実施例3)本実施例は、ガス流路34を形成する凹部
が図6の断面図に示される断面形状に形成されるととも
に、この断面を有するガス流路34が電極と接触する接
触面に格子状に開口した集電体14である。このガス流
路34は、集電体の表面に開口した凹部の開口端84か
ら湾曲開始部74までが集電体表面と直角な直線上に形
成された開口部64を有し、湾曲開始部74から凹部が
略楕円形状に広がった断面形状をしている。
Further, as another embodiment, a current collector having a curved start portion in which a concave portion forming a gas flow channel starts to widen from an opening portion, and a cross-sectional shape of the concave portion forming a gas flow channel are as follows. Different current collectors were made. (Embodiment 3) In this embodiment, a concave portion forming a gas flow path 34 is formed in the cross-sectional shape shown in the cross-sectional view of FIG. 6, and the gas flow path 34 having this cross section is in contact with an electrode. The current collector 14 is opened in a lattice shape. The gas flow path 34 has an opening 64 that is formed on a straight line perpendicular to the current collector surface from the opening end 84 of the concave portion opened on the surface of the current collector to the bending start portion 74. From 74, the recess has a cross-sectional shape that expands to a substantially elliptical shape.

【0025】(実施例4)本実施例は、ガス流路35を
形成する凹部が図7の断面図に示される断面形状に形成
されるとともに、この断面を有するガス流路35が電極
と接触する接触面に格子状に開口した集電体15であ
る。このガス流路35は、実施例3の集電体の開口部6
4が丸められたものである。すなわち、本実施例の凹部
は、凹部の開口端85から湾曲開始部75までが丸めら
れた開口部65を有し、湾曲開始部75から略楕円形状
に凹部が広くなった断面形状をしている。
(Embodiment 4) In this embodiment, the recess forming the gas flow path 35 is formed in the cross-sectional shape shown in the cross-sectional view of FIG. 7, and the gas flow path 35 having this cross-section is in contact with the electrode. Current collector 15 which is opened in a grid on the contact surface to be formed. This gas flow path 35 is provided with the opening 6 of the current collector of the third embodiment.
4 is rounded. That is, the concave portion of the present embodiment has an opening portion 65 in which the concave portion from the open end 85 of the concave portion to the bending start portion 75 is rounded, and has a cross-sectional shape in which the concave portion is broadened from the bending start portion 75 to an almost elliptical shape. I have.

【0026】(実施例5)本実施例は、ガス流路36を
形成する凹部が図8の断面図に示される断面形状に形成
されるとともに、この断面を有するガス流路36が電極
と接触する接触面に格子状に開口した集電体16であ
る。本実施例の集電体に形成された凹部は、集電体表面
にもうけられた開口部66を一つの頂点とした略五角形
状の断面形状を有している。すなわち、本実施例の凹部
は、湾曲開始部76から湾曲停止部86まで傾斜して内
部の幅が広がり、この湾曲停止部86、86の幅が最広
部46となるとともにこの最広部46を一辺とした長方
形状に広がった断面形状をしている。また、本実施例に
おいても、凹部の開口部66および凹部の内部の角が丸
められている。
(Embodiment 5) In this embodiment, the recess forming the gas flow path 36 is formed in the cross-sectional shape shown in the cross-sectional view of FIG. 8, and the gas flow path 36 having this cross-section is in contact with the electrode. Current collector 16 which is opened in a grid on the contact surface to be formed. The concave portion formed in the current collector of this embodiment has a substantially pentagonal cross-sectional shape with one opening 66 formed in the current collector surface as one vertex. In other words, the concave portion of this embodiment is inclined from the bending start portion 76 to the bending stop portion 86 to increase its internal width, and the width of the bending stop portions 86 becomes the widest portion 46 and the widest portion 46. Has a cross-sectional shape that is spread in a rectangular shape with one side as a side. Also in this embodiment, the opening 66 of the concave portion and the corner inside the concave portion are rounded.

【0027】[0027]

【発明の効果】本発明の集電体は、電極との接触面にも
うけられるガス流路の断面形状を表面の開口部より内部
の広さが広い形状としているため、ガス流路の断面積を
保ちながら電極との接触面積が増加している。このた
め、この集電体を燃料電池に用いた場合に、ガス流路に
より導入される反応性ガスの導入量を多く、また電極反
応により得られる電力の集電性能を向上させることがで
きる。このため、本発明の集電体を用いた燃料電池の出
力を増加させる効果を有する。
According to the current collector of the present invention, since the cross-sectional shape of the gas flow path formed on the contact surface with the electrode is formed to be wider than the opening in the surface, the cross-sectional area of the gas flow path is increased. And the contact area with the electrode increases. Therefore, when this current collector is used in a fuel cell, the amount of reactive gas introduced through the gas flow path can be increased, and the current collection performance of electric power obtained by the electrode reaction can be improved. Therefore, the present invention has the effect of increasing the output of a fuel cell using the current collector of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1の集電体を示す斜視図である。FIG. 1 is a perspective view illustrating a current collector according to a first embodiment.

【図2】 図1に示される実施例1の集電体のII線で
の断面を示す断面図である。
FIG. 2 is a cross-sectional view showing a cross section taken along line II of the current collector of the first embodiment shown in FIG.

【図3】 実施例1の集電体のガス流路の断面形状を示
した断面図である。
FIG. 3 is a cross-sectional view illustrating a cross-sectional shape of a gas flow path of the current collector according to the first embodiment.

【図4】 実施例2の集電体のガス流路の断面形状を示
した断面図である。
FIG. 4 is a cross-sectional view illustrating a cross-sectional shape of a gas channel of a current collector according to a second embodiment.

【図5】 比較例の集電体のガス流路の断面形状を示し
た断面図である。
FIG. 5 is a cross-sectional view illustrating a cross-sectional shape of a gas flow path of a current collector of a comparative example.

【図6】 実施例3の集電体のガス流路の断面形状を示
した断面図である。
FIG. 6 is a cross-sectional view illustrating a cross-sectional shape of a gas flow path of a current collector according to a third embodiment.

【図7】 実施例4の集電体のガス流路の断面形状を示
した断面図である。
FIG. 7 is a cross-sectional view illustrating a cross-sectional shape of a gas flow path of a current collector according to a fourth embodiment.

【図8】 実施例5の集電体のガス流路の断面形状を示
した断面図である。
FIG. 8 is a cross-sectional view illustrating a cross-sectional shape of a gas flow path of a current collector according to a fifth embodiment.

【符号の説明】[Explanation of symbols]

11、12、13、14、15、16…集電体 31、32、33、34、35、36…ガス流路 41、43、45…開口部 42、44、46
…最広部 51、52、53、54、55、56…厚肉部 64、65、66…開口部 74、75、76
…湾曲開始部 84…開口端 86…湾曲停止部
11, 12, 13, 14, 15, 16 ... current collector 31, 32, 33, 34, 35, 36 ... gas flow path 41, 43, 45 ... opening 42, 44, 46
... widest part 51, 52, 53, 54, 55, 56 ... thick part 64, 65, 66 ... opening part 74, 75, 76
... Bending start portion 84 ... Open end 86 ... Bending stop portion

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質膜と、該固体電解質膜を両側
から挟持する一対の電極と、該電極と対向して位置し該
電極と電極反応を生じる反応性ガスが導入されるガス室
をかねたガス流路が該電極との対向面にもうけられた一
対の集電体と、を有する燃料電池に用いられる集電体で
あって、 前記集電体は前記電極との接触面に前記ガス流路を形成
する凹部を有し、該凹部の断面形状は該凹部の開口部よ
り該凹部の内部が広くなった形状であることを特徴とす
る燃料電池用集電体。
1. A solid electrolyte membrane, a pair of electrodes sandwiching the solid electrolyte membrane from both sides, and a gas chamber which is located opposite to the electrode and into which a reactive gas causing an electrode reaction with the electrode is introduced. And a pair of current collectors provided on a surface facing the electrode, wherein the current collector is provided on the contact surface with the electrode. A current collector for a fuel cell, comprising a concave portion forming a flow path, wherein the cross-sectional shape of the concave portion is such that the inside of the concave portion is wider than the opening of the concave portion.
【請求項2】 前記凹部の内部は、前記凹部の開口部の
広さより広さが広がり始める湾曲開始部から始まる請求
項1記載の燃料電池用集電体。
2. The current collector for a fuel cell according to claim 1, wherein the inside of the concave portion starts from a curved start portion where the width of the concave portion starts increasing from the width of the opening of the concave portion.
【請求項3】 前記凹部の開口部の断面が丸められてい
る請求項2記載の燃料電池用集電体。
3. The current collector for a fuel cell according to claim 2, wherein the cross section of the opening of the recess is rounded.
【請求項4】 前記集電体は、その両面に前記凹部が形
成されていることを特徴とする請求項1記載の燃料電池
用集電体。
4. The current collector for a fuel cell according to claim 1, wherein the concave portion is formed on both surfaces of the current collector.
JP10188949A 1998-07-03 1998-07-03 Current collector body for fuel cell Pending JP2000021424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10188949A JP2000021424A (en) 1998-07-03 1998-07-03 Current collector body for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10188949A JP2000021424A (en) 1998-07-03 1998-07-03 Current collector body for fuel cell

Publications (1)

Publication Number Publication Date
JP2000021424A true JP2000021424A (en) 2000-01-21

Family

ID=16232744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10188949A Pending JP2000021424A (en) 1998-07-03 1998-07-03 Current collector body for fuel cell

Country Status (1)

Country Link
JP (1) JP2000021424A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1276162A1 (en) * 2001-06-27 2003-01-15 Delphi Technologies, Inc. Fluid distribution surface for solid fuel cells
KR100434779B1 (en) * 2002-01-10 2004-06-07 (주)퓨얼셀 파워 A Separator with micro channel and thereof fabrication method, and gas diffusion layer
JP2005216536A (en) * 2004-01-27 2005-08-11 Riken Corp Separator for fuel cell and its manufacturing method
JP2006079831A (en) * 2004-08-31 2006-03-23 Kyocera Corp Fuel battery cell and cell stack
JP2006253071A (en) * 2005-03-14 2006-09-21 Central Res Inst Of Electric Power Ind Structure of fuel electrode supporting type solid oxide fuel cell
JP2011181187A (en) * 2010-02-26 2011-09-15 Hitachi Ltd Separator for fuel cell, and fuel cell
JP2012174626A (en) * 2011-02-24 2012-09-10 Honda Motor Co Ltd Fuel cell
CN103151546A (en) * 2013-03-25 2013-06-12 杭州电子科技大学 Flow field plate of fuel cell and fuel cell
JP2014503109A (en) * 2011-01-21 2014-02-06 中国科学院▲寧▼波材料技▲術▼▲与▼工程研究所 Solid oxide fuel cell stack
US9147887B2 (en) 2010-01-21 2015-09-29 Samsung Sdi Co., Ltd. Fuel cell module

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1276162A1 (en) * 2001-06-27 2003-01-15 Delphi Technologies, Inc. Fluid distribution surface for solid fuel cells
US6773845B2 (en) 2001-06-27 2004-08-10 Delphi Technologies, Inc. Fluid distribution surface for solid oxide fuel cells
KR100434779B1 (en) * 2002-01-10 2004-06-07 (주)퓨얼셀 파워 A Separator with micro channel and thereof fabrication method, and gas diffusion layer
JP2005216536A (en) * 2004-01-27 2005-08-11 Riken Corp Separator for fuel cell and its manufacturing method
JP2006079831A (en) * 2004-08-31 2006-03-23 Kyocera Corp Fuel battery cell and cell stack
JP4707985B2 (en) * 2004-08-31 2011-06-22 京セラ株式会社 Fuel cell and cell stack
JP2006253071A (en) * 2005-03-14 2006-09-21 Central Res Inst Of Electric Power Ind Structure of fuel electrode supporting type solid oxide fuel cell
US9147887B2 (en) 2010-01-21 2015-09-29 Samsung Sdi Co., Ltd. Fuel cell module
JP2011181187A (en) * 2010-02-26 2011-09-15 Hitachi Ltd Separator for fuel cell, and fuel cell
JP2014503109A (en) * 2011-01-21 2014-02-06 中国科学院▲寧▼波材料技▲術▼▲与▼工程研究所 Solid oxide fuel cell stack
JP2012174626A (en) * 2011-02-24 2012-09-10 Honda Motor Co Ltd Fuel cell
CN103151546A (en) * 2013-03-25 2013-06-12 杭州电子科技大学 Flow field plate of fuel cell and fuel cell

Similar Documents

Publication Publication Date Title
EP1722436B1 (en) Polymer electrolyte fuel cell and bipolar separator for the same
US7507489B2 (en) Honeycomb type solid electrolytic fuel cell
CN107681175B (en) Optimization structure of split type cathode runner of proton exchange membrane fuel cell
CN107968211B (en) Flow field plate structure for proton exchange membrane fuel cell
JP2000021424A (en) Current collector body for fuel cell
CN100416902C (en) Proton exchange membrane fuel cell interdigited parallel combined flow field
US6623882B2 (en) Bipolar plate for a fuel cell
KR102113480B1 (en) Separator, manufacturing method thereof and Fuel cell stack comprising the same
JP2005174648A (en) Fuel cell
US8076045B2 (en) Solid oxide fuel cell
US7572537B2 (en) Fuel cell and separator for the same
CN115513486B (en) Monopolar plate, bipolar plate, electric pile and fuel cell
CN110010921A (en) A kind of variable cross-section fuel cell flow field board
CN116505011A (en) Method for improving performance of proton exchange membrane fuel cell and multichannel serpentine flow field bipolar plate
US20030072989A1 (en) Molten carbonate fuel cell
JP2006114386A (en) Fuel cell
JP2000021425A (en) Current collector for fuel cell
JP2004055220A (en) Separator of fuel cell
JPS61148766A (en) Fused carbonate type fuel cell
JPS5830074A (en) Fuel cell
JP2001023651A (en) Separator for fuel cell
EP1284511A2 (en) Bipolar plate for a fuel cell
JPH04370664A (en) Fuel cell
CN113013437A (en) Fuel cell cathode flow channel with gradually-reduced slope surface structure
CN218827253U (en) Stepped proton exchange membrane fuel cell flow channel structure with slope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014