JP2000019160A - Paint film damaged position detecting method for buried steel pipe - Google Patents

Paint film damaged position detecting method for buried steel pipe

Info

Publication number
JP2000019160A
JP2000019160A JP10184114A JP18411498A JP2000019160A JP 2000019160 A JP2000019160 A JP 2000019160A JP 10184114 A JP10184114 A JP 10184114A JP 18411498 A JP18411498 A JP 18411498A JP 2000019160 A JP2000019160 A JP 2000019160A
Authority
JP
Japan
Prior art keywords
data
signal
steel pipe
correlation
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10184114A
Other languages
Japanese (ja)
Other versions
JP3365312B2 (en
Inventor
Koichi Tezuka
浩一 手塚
Koji Fujimoto
幸二 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP18411498A priority Critical patent/JP3365312B2/en
Publication of JP2000019160A publication Critical patent/JP2000019160A/en
Application granted granted Critical
Publication of JP3365312B2 publication Critical patent/JP3365312B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the influence of a disturbance noise and grounding resistance between a detection electrode and the ground surface so as to enhance precision, in a paint film damaged position detecting method for a steel pipe using correlation processing relating to voltage impression for pseudo-random signals and detected signals. SOLUTION: A peak value of a correlation result is detected (15) by storing a detected digital data array (11) comprising detected signals converted in order by an AC converter 10 by an amount corresponding to one cycle of pseudo- random signals, and by conducting parallelly with a high speed correlation processings (13, 14) for finding product-sum calculation in all the corresponding positions, while shifting (16) the corresponding of two data array elements between a reference digital data array (12) having a pattern the same at preliminarily prepared pseudo-random signals and the detected digital data array (11) by one cycle of the false random signals.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地中に埋設された
塗覆装鋼管の塗膜損傷位置を地表より非接触で検出する
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a damage position of a coating film of a coated steel pipe buried underground in a non-contact manner from the ground surface.

【0002】[0002]

【従来の技術】従来、塗覆装鋼管の塗膜損傷を地表面よ
り非接触で検知する方法として、塗覆装鋼管と地面との
間に電圧を印加し、鋼管中に電流を流し、塗膜の損傷か
ら流れ出た電流により地表面に生成される電位分布を計
測することにより欠陥位置を計測する電位法と呼ばれる
方法がある。
2. Description of the Related Art Conventionally, as a method of detecting paint film damage of a coated steel pipe from the ground surface in a non-contact manner, a voltage is applied between the coated steel pipe and the ground, an electric current flows through the steel pipe, and a coating is applied. There is a method called a potential method for measuring a defect position by measuring a potential distribution generated on the ground surface by a current flowing out of a film damage.

【0003】一般に電位法では、鋼管に流す電流として
低周波の正弦波を用い、地表面に設置した2点の電極間
の電位差を検出する。地表面での電極位置を埋設鋼管に
沿って移動することにより電位差の変化を計測し、損傷
位置の特定を行う。しかし実際の計測においては、損傷
から流れ出る電流は微小であり検出される電位差信号も
微弱なものとなる。さらに、地表面と電極との接地抵抗
の変動による信号の変動や、地中の迷走電流や、商用電
源による誘導電流等がノイズ源となりSN比が悪化する
ため、塗覆装の損傷特に微少な損傷を精度よく、確実に
検出することは困難であった。
In general, in the potential method, a low frequency sine wave is used as a current flowing through a steel pipe, and a potential difference between two electrodes installed on the ground surface is detected. By moving the position of the electrode on the ground surface along the buried steel pipe, the change in the potential difference is measured, and the damage position is specified. However, in actual measurement, the current flowing out of the damage is very small, and the detected potential difference signal is also weak. Furthermore, signal fluctuations due to fluctuations in the ground resistance between the ground surface and the electrodes, stray currents in the ground, induced currents from a commercial power supply, and the like become noise sources and deteriorate the SN ratio. It has been difficult to accurately and reliably detect damage.

【0004】このため発明者らは、先に出願した特願平
9−57102号の明細書において、塗膜損傷検知にお
いて鋼管に供給、印加する信号として擬似ランダム信号
を使用し、地表面の電極で検出した電位差信号に対して
供給、印加した擬似ランダム信号と同一パターンの参照
信号との相関処理を行い、相関処理の結果のピーク値を
検出電位差信号とすることでSN比向上を図る方式を提
案している。
[0004] For this reason, the inventors of the present invention, in the specification of Japanese Patent Application No. 9-57102 filed earlier, used a pseudo-random signal as a signal to be supplied to and applied to a steel pipe in the detection of coating film damage, and used an electrode on the ground surface. The potential difference signal detected in step 2 is subjected to correlation processing between the supplied and applied pseudo-random signal and a reference signal having the same pattern, and the peak value of the result of the correlation processing is used as the detected potential difference signal to improve the SN ratio. is suggesting.

【0005】前記特許出願に係る、鋼管に供給、印加す
る信号として擬似ランダム信号を使用し、地表面の電極
で検出した電位差信号に対して供給、印加した擬似ラン
ダム信号と同一パターンの参照信号との相関処理を行
い、相関処理の結果のピーク値を検出電位差信号とする
方式では、地表面に設置した電極により検出した信号を
パーソナルコンピュータ等の信号処理装置によりアナロ
グ・デジタル変換(AD変換)して取込み、信号処理装
置により検出信号データと参照信号データとの相関処理
を行う方法が述べられている。
A pseudo random signal is used as a signal to be supplied to and applied to a steel pipe according to the patent application, and a reference signal having the same pattern as the pseudo random signal supplied and applied to a potential difference signal detected by an electrode on the ground surface. In the method in which the peak value of the result of the correlation processing is used as a detected potential difference signal, a signal detected by an electrode installed on the ground surface is subjected to analog-to-digital conversion (AD conversion) by a signal processing device such as a personal computer. And a method of performing correlation processing between detection signal data and reference signal data by a signal processing device.

【0006】ここで相関処理は検出信号をf(t)、参
照信号をg(t)とすると、相関処理結果Φ(τ)は、
次式(1)であらわされる。
Here, assuming that the detection signal is f (t) and the reference signal is g (t), the correlation processing result Φ (τ) is
It is expressed by the following equation (1).

【0007】[0007]

【数1】 (Equation 1)

【0008】ここで、Tは擬似ランダム信号の周期であ
る。そして式(1)で、f(t)及びg(t)が同一の
擬似ランダム信号同士の場合、相関処理結果は擬似ラン
ダム信号の自己相関関数となり、周期的なピークを示
し、その周期は擬似ランダム信号の周期Tに等しい。
Here, T is the period of the pseudo random signal. In equation (1), when f (t) and g (t) are the same between pseudo-random signals, the correlation processing result becomes an auto-correlation function of the pseudo-random signal, showing a periodic peak, and its period is pseudo. It is equal to the period T of the random signal.

【0009】[0009]

【発明が解決しようとする課題】このような前記特許出
願に係る擬似ランダム信号を用い、信号処理として相関
処理を用いる方式は、従来の電位差法に比較してきわめ
て精度良く塗膜損傷位置を検出できる。しかし、この方
式では、相関処理結果Φ(τ)のピーク値を検知電位差
信号とするため相関処理演算において、(1)式のg
(t−τ)におけるτを擬似ランダム信号の一周期分に
わたって変化させ計算する必要があるため、信号処理装
置による検知信号の取込み、演算処理を順次行った場合
には、擬似ランダム信号の周期以上の処理時間が必要と
なり、計測の応答性が悪化するという問題がある。ま
た、前記方式では相関処理結果Φ(τ)のピーク値を検
知電位差信号とし、その変化をプロットし、検知電位差
信号の位相の変化点であるゼロクロス点を塗膜損傷位置
としているが、迷走電流等の外部からのノイズの影響に
よる変動によりゼロクロス点のずれが発生した場合、位
相の変化点の正確な検出が困難となり塗膜損傷検出位置
の誤差を生じるという問題がある。
The system using the pseudo-random signal according to the above-mentioned patent application and using the correlation processing as the signal processing detects the position of the coating film damage with higher accuracy than the conventional potential difference method. it can. However, in this method, since the peak value of the correlation processing result Φ (τ) is used as the detected potential difference signal, in the correlation processing calculation, g of Expression (1) is used.
Since it is necessary to change τ in (t−τ) over one period of the pseudo-random signal and calculate it, when the detection processing of the detection signal by the signal processing device and the arithmetic processing are sequentially performed, the period is longer than the period of the pseudo-random signal. Is required, and the measurement responsiveness deteriorates. In the above method, the peak value of the correlation processing result Φ (τ) is used as the detected potential difference signal, and its change is plotted. The zero cross point, which is the phase change point of the detected potential difference signal, is used as the coating film damage position. If the shift of the zero-cross point occurs due to a change due to the influence of noise from the outside such as the above, there is a problem that it is difficult to accurately detect a phase change point and an error occurs in a paint film damage detection position.

【0010】また、前記方式では外乱ノイズに加え、地
表電位測定時の電極と地表面との接触抵抗の変動による
検出電位の変動により相関処理後のピーク値の変動、ノ
イズの増加が発生し、SN比が劣化し、電位差信号の変
化を正確に計測することが困難となり塗膜損傷点、特に
微小損傷点の検出性能が低下するという問題がある。本
発明は、上記問題点を解決するためになされたものであ
り、高応答性で精度よく安定した埋設鋼板の塗膜損傷位
置検出を行う方法を提供するものである。
In the above method, in addition to disturbance noise, a fluctuation in a detected potential due to a fluctuation in a contact resistance between an electrode and the ground surface at the time of measuring a ground potential causes a fluctuation in a peak value after correlation processing and an increase in noise. There is a problem that the SN ratio is deteriorated, it is difficult to accurately measure a change in the potential difference signal, and the performance of detecting a coating film damage point, particularly a minute damage point, is reduced. The present invention has been made in order to solve the above problems, and provides a method for detecting a coating damage position on a buried steel plate with high responsiveness and stability.

【0011】[0011]

【課題を解決するための手段】本発明の請求項1に係る
埋設鋼管の塗膜損傷位置検出方法は、地中に埋設された
塗覆装鋼管と大地との間に擬似ランダム信号を交流電圧
として印加して前記塗覆装鋼管内に電流を流し、その管
軸方向に沿った地表面の一定間隔の2点間の電位差を検
出し、この検出信号と前記鋼管に印加した擬似ランダム
信号と同一のパターンの参照信号との相関処理を行い、
この相関処理結果のピーク値を前記2点間の電位差信号
とし、前記2点の位置を管軸方向に沿って移動しながら
連続的に信号の検出とその相関処理を行うことにより地
表面の電位差分布を計測し、その電位差分布の変化状況
からこの埋設鋼管の塗膜損傷位置を検出する方法におい
て、前記2点間での検出信号を一定時間間隔で順次アナ
ログ・デジタル変換し、前記鋼管に印加した擬似ランダ
ム信号の1周期分のデータ数で、時間の経過とともに新
規データに更新される検出信号のデジタルデータ配列を
記憶し、予め前記鋼管に印加した擬似ランダム信号と同
一の信号パターンを有する1周期分の参照用デジタルデ
ータ配列を用意しておき、前記アナログ・デジタル変換
と並行して、検出信号のデジタルデータ配列と前記用意
した参照用デジタルデータ配列との間で、時間の経過と
ともに更新される検出データと参照データの対応する配
列要素同士をそれぞれ乗算した積の総和を求める積和算
出処理を、検出データと参照データの配列要素の対応を
擬似ランダム信号の1周期分ずらしながら総ての対応に
ついて行い、処理結果のピーク値を検出することで検出
データと参照データの相関処理を行うものである。
According to a first aspect of the present invention, there is provided a method for detecting a paint film damaged position of a buried steel pipe, comprising the steps of: To apply a current through the coated steel pipe, detect a potential difference between two points at a predetermined interval on the ground surface along the pipe axis direction, and detect the detection signal and the pseudo-random signal applied to the steel pipe. Perform correlation processing with the reference signal of the same pattern,
The peak value of this correlation processing result is used as the potential difference signal between the two points, and the position of the two points is continuously moved along the pipe axis direction while the signal is continuously detected and the correlation processing is performed to obtain the potential difference on the ground surface. In the method of measuring the distribution and detecting the coating damage position of the embedded steel pipe from the change of the potential difference distribution, the detection signal between the two points is sequentially converted from analog to digital at a fixed time interval and applied to the steel pipe. A digital data array of a detection signal that is updated to new data with the lapse of time with the number of data for one cycle of the pseudo random signal, and has the same signal pattern as the pseudo random signal previously applied to the steel pipe. A reference digital data array for a cycle is prepared, and the digital data array of the detection signal and the prepared reference digital The sum-of-products calculation process that calculates the sum of the products obtained by multiplying the corresponding array elements of the detected data and the reference data that are updated over time between the data array and the corresponding array elements of the detected data and the reference data Is performed for all correspondences while shifting by one period of the pseudo-random signal, and the correlation between the detected data and the reference data is performed by detecting the peak value of the processing result.

【0012】本発明の請求項2に係る埋設鋼管の塗膜損
傷位置検出方法は、前記請求項1に係る方法における検
出信号のデジタルデータ配列と参照用デジタルデータ配
列を用いて相関処理を行う方法において、連続的に相関
処理を行う際に、相関結果のピーク値が予め設定した一
定値以上である場合には、以降の相関処理において、検
出データと参照データとの間の対応をずらせながら積和
算出処理を行う範囲を相関結果のピーク値が得られた検
出データと参照データの対応点を含む任意の範囲内の対
応点に限定し、この限定された対応の範囲内においての
み検出データと参照データ間の積和算出処理を行い、処
理結果のピークを検出する相関処理を検出したピーク値
に対して繰り返し、相関処理のピーク値が前記設定した
一定値未満となった場合には、以降の相関処理におい
て、検出データと参照データとの間の対応をずらせなが
ら積和算出処理を行う範囲を限定せずに、検出データと
参照データの対応を擬似ランダム信号の1周期分にわた
ってずらしながら総ての対応について行うものである。
According to a second aspect of the present invention, there is provided a method for detecting a coating film damage position on a buried steel pipe, wherein the correlation processing is performed using the digital data array of the detection signals and the reference digital data array in the method according to the first aspect. In the case where the correlation processing is performed continuously and the peak value of the correlation result is equal to or larger than a predetermined value, the correlation between the detected data and the reference data is shifted in the subsequent correlation processing. The range in which the sum calculation process is performed is limited to a corresponding point within an arbitrary range including a corresponding point of the detection data and the reference data from which the peak value of the correlation result is obtained, and the detection data and the detection data only within this limited corresponding range. The product-sum calculation processing between the reference data is performed, and the correlation processing for detecting the peak of the processing result is repeated for the detected peak value, and the peak value of the correlation processing becomes less than the set constant value. In this case, in the subsequent correlation processing, the correspondence between the detected data and the reference data is made one cycle of the pseudo random signal without limiting the range in which the product-sum calculation processing is performed while shifting the correspondence between the detected data and the reference data. All actions are performed while shifting over minutes.

【0013】本発明の請求項3に係る埋設鋼管の塗膜損
傷位置検出方法は、前記請求項1又は2に係る方法にお
いて、前記2点間での検出信号を一定時間間隔で順次ア
ナログ・デジタル変換し、前記鋼管に印加した擬似ラン
ダム信号の1周期分のデータ数で、時間の経過とともに
新規データに更新される検出信号のデジタルデータ配列
を記憶し、前記記憶した検出信号のデジタルデータ配列
から任意に設定された範囲の移動平均データを算出し、
前記記憶した検出信号の各データから、それぞれ対応す
る移動平均のデータを差し引くことにより得られたデー
タ配列を新たな検出データとして参照データとの間で相
関処理を行うものである。
According to a third aspect of the present invention, there is provided a method of detecting a paint film damage position on a buried steel pipe according to the first or second aspect, wherein the detection signals between the two points are sequentially converted into analog and digital signals at predetermined time intervals. The digital data array of the detection signal which is converted and updated to new data with the lapse of time by the number of data of one cycle of the pseudo random signal applied to the steel pipe is stored, and the digital data array of the stored detection signal is stored. Calculate the moving average data of the arbitrarily set range,
A correlation process is performed between reference data and a data array obtained by subtracting the corresponding moving average data from each of the stored detection signal data as new detection data.

【0014】本発明の請求項4に係る埋設鋼管の塗膜損
傷位置検出方法は、前記請求項1,2又は3に係る方法
において、検出信号のデジタルデータ配列と参照データ
との相関処理結果のピーク値を順次記憶し、この記憶し
たピーク値の一定時間内のデータの平均値を求め、この
平均値を前記2点間の検出電位差信号とするものであ
る。
According to a fourth aspect of the present invention, there is provided a method for detecting a paint film damage position on a buried steel pipe according to the first, second or third aspect, wherein the correlation processing result between the digital data array of the detection signal and the reference data is obtained. The peak values are sequentially stored, an average value of the stored peak values within a certain period of time is obtained, and this average value is used as the detected potential difference signal between the two points.

【0015】[0015]

【発明の実施の形態】本発明の実施の形態を説明する前
に、本発明による埋設鋼管の塗膜損傷位置検出方法の基
礎的な作用・効果を以下に説明する。本発明の請求項1
に係る埋設鋼管の塗膜損傷位置検出方法では、地中に埋
設された塗覆装鋼管と接地極との間に、擬似ランダム信
号を交流信号として印加し鋼管内に電流を流すと、塗覆
装鋼管の塗膜に損傷があると損傷部から地中に電流が流
出する。地表面に設置した電極等により地表面の一定間
隔の2点間の電位差を計測すると、損傷近傍においては
損傷から流出する電流により生成された電位分布に起因
する電位差信号が検出される。この検出される電位差信
号は鋼管に印加した擬似ランダム信号と同一のパターン
を有する信号であり、検出信号と鋼管に印加した擬似ラ
ンダム信号と同一パターンを有する参照信号との相関処
理を行うと、相関処理の結果として使用した擬似ランダ
ム信号の自己相関関数であるパルス状の信号が得られ
る。相関処理の結果得られたパルス状の信号のピーク値
は地表面に設置された電極によって検出された電位差に
対応し、相関関数のピーク値から地表面電位差を知るこ
とが出来る。ここで、地表面の2点の位置を移動し、連
続的に信号の検出とその相関処理を行うと相関処理結果
のピーク値を電位差信号とし、電極の移動に伴う電位差
信号の変化、すなわち地表面の電位差分布を計測され、
埋設塗覆装鋼管の損傷の位置上部の地表面では損傷部か
ら流出する電流により生成される電位分布により急峻な
電位差信号の変化が計測され、この電位差信号の変化か
ら埋設塗覆装鋼管の損傷位置を特定することが可能とな
る。本発明では地表面に設置した2点間での検出電位差
信号を一定時間間隔で順次アナログ−デジタル変換する
ことにより、前記鋼管に印加した擬似ランダム信号の1
周期分の時間範囲に相当する、時間の経過とともに更新
される検出信号のデジタルデータ配列を記憶し、アナロ
グーデジタル変換による時間の経過とともに更新される
検出信号のデジタルデータ配列と、あらかじめ用意され
た鋼管に印加した擬似ランダム信号と同一の信号パター
ンを有する参照信号のデジタルデータ配列との間で、検
出データ配列と参照データ配列の対応する配列要素同士
を配列要素数分すべて乗算し、総ての乗算結果の積算を
行う処理を行うことにより検出信号と参照信号との相関
関数の1点に関する演算が行われ、検出データ配列と参
照データ配列の要素の対応を擬似ランダム信号の1周期
分ずらしながら行う事で、演算結果のデータ配列として
表される相関関数が得られ、検出信号と参照信号との相
関処理が行われる。さらに、検出データ配列と参照デー
タ配列の演算処理による相関関数の算出を繰り返し行
い、得られた相関関数データの極値を電位差計測値とし
て出力することを繰り返し連続的に行うので、検出デー
タの時間の経過による更新に伴う検出電位差信号の変化
が出力として得られる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing an embodiment of the present invention, the basic operation and effect of the method for detecting a paint film damage position on a buried steel pipe according to the present invention will be described below. Claim 1 of the present invention
In the method for detecting a paint film damage position of a buried steel pipe according to the method, a pseudo-random signal is applied as an AC signal between a painted steel pipe buried underground and a ground electrode, and an electric current is caused to flow through the steel pipe. If the coating on the steel pipe is damaged, current will flow out of the damaged part into the ground. When a potential difference between two points at a predetermined interval on the ground surface is measured by an electrode or the like installed on the ground surface, a potential difference signal due to a potential distribution generated by a current flowing out of the damage is detected near the damage. The detected potential difference signal is a signal having the same pattern as the pseudo-random signal applied to the steel pipe, and the correlation between the detected signal and the reference signal having the same pattern as the pseudo-random signal applied to the steel pipe results in a correlation. As a result of the processing, a pulse-like signal which is an autocorrelation function of the pseudo-random signal used is obtained. The peak value of the pulse signal obtained as a result of the correlation processing corresponds to the potential difference detected by the electrode installed on the ground surface, and the ground surface potential difference can be known from the peak value of the correlation function. Here, when the positions of two points on the ground surface are moved and the signal detection and correlation processing are continuously performed, the peak value of the correlation processing result is used as a potential difference signal. The potential difference distribution on the surface is measured,
On the ground surface above the location of the damage to the buried coated steel pipe, a sharp change in the potential difference signal is measured due to the potential distribution generated by the current flowing out of the damaged part, and the change in the potential difference signal causes damage to the buried coated steel pipe. The position can be specified. In the present invention, one of the pseudo-random signals applied to the steel pipe is converted by sequentially performing analog-to-digital conversion of a detected potential difference signal between two points installed on the ground surface at predetermined time intervals.
The digital data array of the detection signal, which is updated with the passage of time, corresponding to the time range of the cycle, is stored, and the digital data array of the detection signal, which is updated with the passage of time by the analog-digital conversion, is prepared in advance. Between the pseudo random signal applied to the steel pipe and the digital data array of the reference signal having the same signal pattern, the corresponding array elements of the detection data array and the reference data array are all multiplied by the number of array elements, and all By performing the process of multiplying the multiplication result, an operation relating to one point of the correlation function between the detection signal and the reference signal is performed, and the correspondence between the elements of the detection data array and the reference data array is shifted by one period of the pseudo random signal. By doing so, a correlation function expressed as a data array of the operation result is obtained, and the correlation processing between the detection signal and the reference signal is performed. Further, the calculation of the correlation function by the arithmetic processing of the detection data array and the reference data array is repeatedly performed, and the extreme value of the obtained correlation function data is repeatedly output continuously as the potential difference measurement value. As a result, a change in the detected potential difference signal accompanying the update with the passage of time is obtained as an output.

【0016】本発明の請求項2に係る埋設鋼管の塗膜損
傷位置検出方法では、前記、検出信号と参照信号との相
関関数を検出信号のデジタルデータ配列と参照信号のデ
ジタルデータ配列の対応要素同士の乗算とその積算の繰
り返し演算により行う方法において、時間の経過と伴に
更新される検出データ配列と参照データ配列との演算を
繰り返し行い、相関演算結果を連続的に行う際に、演算
処理の結果得られた相関関数のデータ配列の極値、すな
わち検出電位差信号の大きさ(絶対値)が、あらかじめ
設定した一定値以上である場合には以降の演算処理にお
いて、相関処理結果が極値(絶対値が最大)となる検出
データ配列と参照データ配列の配列要素の対応組み合わ
せを含む一定の範囲の対応点の組み合わせについての相
関処理である、検出データ配列と参照データ配列の対応
する要素同士の配列要素数分の乗算とその積算を行うの
で、検出データ配列と参照データ配列の対応を擬似ラン
ダム信号の1周期分総て行う処理に対して演算処理量を
減少され、高速に極値を含む範囲の相関関数のデータ配
列が得られ、高い応答性で検出電位差信号の変動を計
測、出力することができる。また、検出データ配列と参
照データ配列の配列要素の組み合わせを一定の範囲に限
定して処理を繰り返した結果得られる相関関数(の一
部)のデータ配列の極値(絶対値の最大値)が、前記設
定した一定値未満となった場合すなわち、検出電位差信
号が一定値以下となった場合には、以降の演算処理にお
いては、検出データ配列と参照データ配列の対応要素間
の乗算とその積分処理を、検出データ配列と参照データ
配列の対応点を擬似ランダム信号の1周期分にわたって
ずらしながら総て行うので、検出データの位相ずれ等に
よる相関関数のデータ配列中の極値の位置ずれや、信号
の減少、変動による極値の誤判定を最小限に抑制され
る。
According to a second aspect of the present invention, there is provided a method for detecting a coating film damage position on a buried steel pipe, wherein the correlation function between the detection signal and the reference signal is represented by a digital data array of the detection signal and a corresponding element of the digital data array of the reference signal. In a method of performing multiplication of each other and repetitive calculation of the integration, when the calculation of the detection data array and the reference data array updated with the passage of time is repeatedly performed, and the correlation calculation result is continuously performed, the calculation processing is performed. If the extreme value of the data array of the correlation function obtained as a result, that is, the magnitude (absolute value) of the detected potential difference signal is equal to or greater than a predetermined value, the correlation processing result becomes extremely small in the subsequent arithmetic processing. The correlation processing is a correlation process for a combination of corresponding points in a certain range including a corresponding combination of an array element of a detection data array and an array element of a reference data array having a maximum absolute value. Since the multiplication and the integration of the corresponding elements of the data array and the reference data array are performed for the number of array elements, the calculation is performed for the processing of performing the correspondence between the detection data array and the reference data array for one period of the pseudo random signal. The processing amount is reduced, the data array of the correlation function in the range including the extreme value is obtained at high speed, and the fluctuation of the detected potential difference signal can be measured and output with high responsiveness. In addition, the extreme value (maximum absolute value) of the data array of the correlation function (part of) obtained as a result of repeating the processing by limiting the combination of the array elements of the detection data array and the reference data array to a certain range is obtained. On the other hand, when the detected potential difference signal becomes equal to or less than the predetermined value, the multiplication between the corresponding elements of the detection data array and the reference data array and the integration thereof are performed in the subsequent arithmetic processing. Since all the processing is performed while shifting the corresponding points of the detection data array and the reference data array over one period of the pseudo random signal, the position shift of the extreme value in the data array of the correlation function due to the phase shift of the detection data, An erroneous determination of an extreme value due to a decrease or fluctuation of a signal is suppressed to a minimum.

【0017】本発明の請求項3に係る埋設鋼管の塗膜損
傷位置検出方法では、前記、検出信号と参照信号との相
関関数を検出信号のデジタルデータ配列と参照信号のデ
ジタルデータ配列の対応要素同士の乗算とその積算の繰
り返し演算により行う方法において、時間の経過と伴に
更新される1周期分に相当する検出信号のデジタルデー
タ配列に対して、検出信号のデジタルデータ配列から予
め設定された配列要素数範囲の移動平均データを検出デ
ータ配列数だけ算出することにより、検出信号中の低周
波の変動成分に相当する移動平均処理結果のデータ配列
を得て、検出データ配列要素から対応する移動平均処理
結果のデータを差し引くことにより得られたデータ配列
を検出信号のデータ配列として参照データ配列との間で
相関演算処理を行うので、検出信号中の低周波の変動成
分が除去され、低周波の信号変動に起因する相関関数の
変動を除去、抑制した相関関数のデータ配列が得られ、
安定した検出電位差信号が得られる。
According to a third aspect of the present invention, in the method for detecting a coating film damage position on a buried steel pipe, the correlation function between the detection signal and the reference signal is determined by using a digital data array of the detection signal and a corresponding element of the digital data array of the reference signal. In a method of performing a multiplication of two and a repetitive calculation of the integration, a digital data array of the detection signal corresponding to one cycle updated with the passage of time is set in advance from the digital data array of the detection signal. By calculating moving average data in the range of the number of array elements by the number of detected data arrays, a data array of a moving average processing result corresponding to a low-frequency fluctuation component in the detection signal is obtained, and the corresponding moving data is calculated from the detected data array elements. The data array obtained by subtracting the data of the average processing result is used as the data array of the detection signal, and the correlation calculation process is performed with the reference data array. Since, the fluctuation component of the low frequency in the detection signal is removed, remove the variation of the correlation function caused by the signal variation of the low frequency, the data sequence of the correlation function suppresses is obtained,
A stable detection potential difference signal is obtained.

【0018】本発明の請求項4に係る埋設鋼板の塗膜損
傷位置検出方法では、前記、検出信号と参照信号との相
関関数を検出信号のデジタルデータ配列と参照信号のデ
ジタルデータ配列の対応要素同士の乗算とその積算の繰
り返し演算により行う方法において、繰り返し演算の結
果得られる検出信号と参照信号の相関関数のデータ配列
から、各相関データ配列中の極値のデータすなわち検出
電位信号の大きさを順次記憶し、記憶した極値(電位差
強度)のあらかじめ定めた一定時間中(一定要素数)の
データの平均値を演算し、検出電位差信号として出力す
るので、検出信号のオフセット変動等による相関関数デ
ータ配列の変動の影響を抑制、安定した電位差信号が出
力される。
According to a fourth aspect of the present invention, in the method for detecting a coating film damage position on a buried steel sheet, the correlation function between the detection signal and the reference signal is determined by using a digital data array of the detection signal and a corresponding element of the digital data array of the reference signal. In a method of performing a multiplication operation and a multiplication operation of each other, the data of the extreme value in each correlation data array, that is, the magnitude of the detection potential signal is calculated from the data array of the correlation function between the detection signal and the reference signal obtained as a result of the repeated operation. Are sequentially stored, and the average value of the stored extreme values (potential difference intensity) during a predetermined period of time (the number of elements) is calculated and output as a detected potential difference signal. The effect of the variation in the function data array is suppressed, and a stable potential difference signal is output.

【0019】以下本発明の各実施の形態における相関処
理方法を説明する。 実施形態1 図2は本発明の各実施形態に係る埋設鋼管の塗膜損傷位
置検出試験装置の構成を示す図であり、図の1は擬似ラ
ンダム信号発生器、2は塗覆装鋼管、3はターミナル、
4は接地極、5は電極、6は相関演算処理装置、7は損
傷、を示す。図1は本発明の実施形態1に係る相関処理
方法を示す説明図であり、図2の相関演算処理装置6の
構成を示している。図1において、10はAD変換装
置、11、12シフトレジスタ、13は乗算器、14は
積算器、15は信号判別装置、16はシフト制御装置を
示す。図3は図1、2の各信号を説明するための波形図
であり、図3を参照して、図1、2の動作を説明する。
Hereinafter, a correlation processing method according to each embodiment of the present invention will be described. Embodiment 1 FIG. 2 is a diagram showing a configuration of a test apparatus for detecting a paint film damage position of a buried steel pipe according to each embodiment of the present invention, where 1 is a pseudo-random signal generator, 2 is a coated steel pipe, 3 Is the terminal,
4 indicates a ground electrode, 5 indicates an electrode, 6 indicates a correlation operation processing device, and 7 indicates damage. FIG. 1 is an explanatory diagram showing a correlation processing method according to the first embodiment of the present invention, and shows a configuration of the correlation operation processing device 6 in FIG. In FIG. 1, reference numeral 10 denotes an AD converter, 11 and 12 shift registers, 13 a multiplier, 14 an integrator, 15 a signal discriminating device, and 16 a shift control device. FIG. 3 is a waveform diagram for explaining each signal of FIGS. 1 and 2. The operation of FIGS. 1 and 2 will be described with reference to FIG.

【0020】図2の試験装置では、埋設塗覆装鋼管2か
らのターミナル3と接地極4との間に、擬似ランダム信
号発生器1により発生させた擬似ランダム信号を印加
し、埋設塗覆装鋼管中に電流を流入させる。本実施形態
では擬似ランダム信号発生器として、フィードバックル
ープを有するシフトレジスタにより構成されるM系列信
号発生器を使用し、440Hzのシフトクロック周波数、
符号長127のM系列信号を発生し、鋼管に印可した。
この時、M系列信号の周期は1/440×127(秒)
となる。なお、ここで使用するM系列信号の1符号の周
波数、1周期の符号長は任意の値とすることが可能であ
り、周波数、符号長を変更することにより擬似ランダム
信号処理によるSN改善効果を高くすることも可能であ
るまた、実際の信号の鋼管への印加にあたっては鋼管中
への流入電流を調整するため電力アンプを使用すること
も可能である。地表面に一定間隔で設置した2つの電極
5により、塗覆装鋼管の損傷7から地中に流出する電流
により生成される電位分布による地表面の電位差を検出
する。本実施形態では2つの電極を埋設塗覆装鋼管の管
軸方向に配置し、各電極間の間隔を1mとした。検出さ
れた地表面電位差信号は相関演算処理装置6に入力され
る。
In the test apparatus shown in FIG. 2, a pseudo-random signal generated by a pseudo-random signal generator 1 is applied between a terminal 3 from a buried coated steel pipe 2 and a ground electrode 4, and the buried coated steel pipe is applied. Electric current flows into the steel pipe. In this embodiment, an M-sequence signal generator composed of a shift register having a feedback loop is used as a pseudo-random signal generator, and a shift clock frequency of 440 Hz,
An M-sequence signal having a code length of 127 was generated and applied to a steel pipe.
At this time, the cycle of the M-sequence signal is 1/440 × 127 (seconds)
Becomes The frequency of one code and the code length of one cycle of the M-sequence signal used here can be set to arbitrary values. By changing the frequency and the code length, the SN improvement effect by the pseudo-random signal processing can be improved. It is also possible to use a high power amplifier for adjusting the inflow current into the steel pipe when applying the actual signal to the steel pipe. The two electrodes 5 installed at regular intervals on the ground surface detect a potential difference on the ground surface due to a potential distribution generated by a current flowing into the ground from damage 7 on the coated steel pipe. In this embodiment, two electrodes are arranged in the tube axis direction of the buried coated steel pipe, and the interval between the electrodes is 1 m. The detected ground surface potential difference signal is input to the correlation operation processing device 6.

【0021】図1の相関演算処理装置6内では、AD変
換装置10により電極により検出された電位差信号(図
3の(a)を参照)を一定周期でアナログ−デジタル変
換し(図3の(b)を参照)、デジタルデータをシフト
レジスタ11に入力する。シフトレジスタ11はAD変
換装置10の変換周期に同期して動作し、AD変換され
た最新のデジタルデータを入力し、各構成要素を順次シ
フトし、最も古いデータを捨てていくことにより、シフ
トレジスタ11中に常に擬似ランダム信号の1周期に等
しい個数のデータを蓄積する。本実施形態では、1符号
の周波数440HzのM系列信号に対し、AD変換の変
換クロック周波数を4400Hzとし、M系列信号を構
成する1パルスに対し10点のAD変換を行い、デジタ
ルデータを出力した。また、シフトレジスタは1270
段に構成し、AD変換周波数に同期して駆動し、擬似ラ
ンダム信号の1周期分のデータを記憶、蓄積した。シフ
トレジスタ12はシフトレジスタ11と同じ段数で構成
され、さらに、シフトレジスタはループ状に構成されて
いる。シフトレジスタ中にはあらかじめ、鋼管に印加し
た擬似ランダム信号1周期分のデジタル化されたデータ
(図3の(c)を参照)が入力されている。シフトレジ
スタ11とシフトレジスタ12の各構成の内容は、乗算
器群13によりそれぞれ個別に乗算され、シフトレジス
タの構成要素数分の乗算結果が得られる。各乗算結果は
積算器14に入力され、ここですべての乗算結果の積算
を行いその積算結果を信号判別装置15に入力する。
In the correlation operation processing device 6 shown in FIG. 1, the potential difference signal (see FIG. 3A) detected by the AD conversion device 10 is converted from analog to digital at a constant cycle (see FIG. b)), the digital data is input to the shift register 11. The shift register 11 operates in synchronization with the conversion cycle of the A / D converter 10, inputs the latest digital data obtained by the A / D conversion, sequentially shifts each component, and discards the oldest data. In step 11, data equal in number to one period of the pseudo-random signal is always stored. In the present embodiment, the conversion clock frequency of the AD conversion is set to 4400 Hz for an M-sequence signal having a frequency of 440 Hz for one code, and AD conversion of 10 points is performed for one pulse constituting the M-sequence signal to output digital data. . The shift register is 1270
The data is driven in synchronization with the AD conversion frequency, and data for one cycle of the pseudo-random signal is stored and accumulated. The shift register 12 has the same number of stages as the shift register 11, and the shift register is formed in a loop. Digitized data for one cycle of the pseudo-random signal applied to the steel pipe (see (c) of FIG. 3) is input to the shift register in advance. The contents of each configuration of the shift register 11 and the shift register 12 are individually multiplied by the multiplier group 13 to obtain multiplication results for the number of components of the shift register. Each multiplication result is input to the integrator 14, where all the multiplication results are integrated, and the integration result is input to the signal discriminating device 15.

【0022】ここで、乗算器群13による乗算と積算器
14による1回目の積算処理が終わった時点で、シフト
制御装置16によりシフトレジスタ12の内容が1デー
タ分だけシフトされ、シフトレジスタ11とシフトレジ
スタ12の対応が1つずらさる。シフトレジスタ12の
1回目のシフトが終了した時点で、2回目の乗算及び積
算処理が行われ、演算処理結果が信号判別装置15に入
力される。このようにして、シフトレジスタ12内の参
照用デジタルデータを1データ分ずつシフトさせ、検出
デジタルデータと参照用デジタルデータの対応を擬似ラ
ンダム信号の1周期分ずらせながら、すべての対応につ
いての積和算出処理を行う(図3の(e),(f)を参
照)。信号判別装置15では、積算器からの積算結果の
入力がシフトレジスタの構成要素の個数分行われる間の
積算結果の絶対値の最大値を判別し、対応する積算結果
を検出信号として出力する。
When the multiplication by the multiplier group 13 and the first integration processing by the integrator 14 are completed, the contents of the shift register 12 are shifted by one data by the shift control device 16, and The correspondence of the shift register 12 is shifted by one. When the first shift of the shift register 12 is completed, the second multiplication and integration processing is performed, and the result of the arithmetic processing is input to the signal determination device 15. In this way, the reference digital data in the shift register 12 is shifted by one data at a time, and the correlation between the detected digital data and the reference digital data is shifted by one period of the pseudo random signal, and the product sum for all the correspondences is shifted. A calculation process is performed (see (e) and (f) of FIG. 3). The signal discriminating device 15 discriminates the maximum value of the absolute value of the integration result while the input of the integration result from the integrator is performed by the number of components of the shift register, and outputs the corresponding integration result as a detection signal.

【0023】ここで、シフトレジスタ12の動作周波数
は任意に設定可能であり、各構成要素(シフトレジス
タ、乗算器、積算器等)の動作限界での高速な信号処理
を行うことが可能となる。また、本実施形態では、相関
演算を相関演算処理装置6により行う方法を示したが、
同様の動作をコンピュータによる信号取り込み、ソフト
ウェアによる演算処理により実現することも可能であ
り、この場合には使用する擬似ランダム信号の周波数、
符号長の変更に柔軟に対応可能な相関処理実現すること
が可能である。
Here, the operating frequency of the shift register 12 can be set arbitrarily, and high-speed signal processing can be performed at the operation limit of each component (shift register, multiplier, integrator, etc.). . Further, in the present embodiment, the method in which the correlation operation is performed by the correlation operation processing device 6 has been described.
It is also possible to realize the same operation by computer signal capture and software processing, in which case the frequency of the pseudo-random signal used,
Correlation processing capable of flexibly coping with a change in code length can be realized.

【0024】実施形態2 図4は本発明の実施形態2に係る相関処理方法を示す説
明図であり、図5は図4の相関処理順序を示す流れ図で
ある。なお図5のSに続く数値はステップ番号を示す。
図4には、図1の構成に信号レベル判別装置17が追加
されているが、実施形態2の基本的な構成、動作は図
1、2に示した実施形態1と同様である。図2の電極5
により検出された電位差信号と参照信号との相関処理を
行い(図5のS1を参照)、相関処理結果のデジタルデ
ータ配列を得て、相関データ配列中の絶対値の最大値を
判別し(図5のS2を参照)、電位差検出信号として信
号判別装置15より出力する。
Embodiment 2 FIG. 4 is an explanatory diagram showing a correlation processing method according to Embodiment 2 of the present invention, and FIG. 5 is a flowchart showing the correlation processing order of FIG. Numerical values following S in FIG. 5 indicate step numbers.
In FIG. 4, a signal level discrimination device 17 is added to the configuration of FIG. 1, but the basic configuration and operation of the second embodiment are the same as those of the first embodiment shown in FIGS. Electrode 5 of FIG.
(See S1 in FIG. 5) to obtain a digital data array of the correlation processing result and determine the maximum absolute value in the correlation data array (see FIG. 5). 5, S2), and is output from the signal determination device 15 as a potential difference detection signal.

【0025】信号判別装置15の出力する電位差検出信
号は、信号レベル判定装置17に入力される。信号レベ
ル判別装置17は、入力された電位差信号レベルが予め
設定された一定値以上であるか否かを判別する(図5の
S3を参照)。そして入力された電位差信号レベルが前
記一定値(閾値)以上でない場合には、図5のS1に戻
り、実施形態1の場合と同様の相関処理を行う。そして
入力された電位差信号レベルが前記一定値(閾値)以上
の場合には、下記のようにシフト制御装置16及び信号
判別装置15の動作を制御する(図5のS4を参照)。
即ち実施形態1の場合には、一定周期でシフトレジスタ
12の内容を順次シフトさせながら、シフト毎に積和算
出処理を行うが、本実施形態2では、電位差信号レベル
が一定値以上の場合、その相関処理結果を得た演算処理
において、まず電位差信号の極値が得られたシフトレジ
スタ12のシフト量分から一定数差し引いたシフト量ま
でシフトレジスタ12をシフトさせ、その後、乗算、及
び積算処理を開始する。そして、電位差信号の極値が得
られたシフト量に一定数加えたシフト量まで順次シフト
させる。
The potential difference detection signal output from the signal discriminating device 15 is input to a signal level discriminating device 17. The signal level determination device 17 determines whether or not the input potential difference signal level is equal to or higher than a predetermined fixed value (see S3 in FIG. 5). If the input potential difference signal level is not equal to or greater than the fixed value (threshold), the process returns to S1 in FIG. 5 and performs the same correlation processing as in the first embodiment. When the input potential difference signal level is equal to or higher than the predetermined value (threshold), the operation of the shift control device 16 and the signal discrimination device 15 is controlled as described below (see S4 in FIG. 5).
That is, in the case of the first embodiment, the product-sum calculation processing is performed for each shift while sequentially shifting the contents of the shift register 12 at a fixed period. In the second embodiment, when the potential difference signal level is equal to or more than a certain value, In the arithmetic processing that has obtained the correlation processing result, first, the shift register 12 is shifted to a shift amount obtained by subtracting a certain number from the shift amount of the shift register 12 from which the extreme value of the potential difference signal was obtained, and then the multiplication and integration processes are performed. Start. Then, the extreme value of the potential difference signal is sequentially shifted to a shift amount obtained by adding a fixed number to the obtained shift amount.

【0026】この時、信号判別装置15では、(極値が
得られたシフト量±一定数)の範囲でシフトレジスタ1
2を順次シフトさせ、得られる乗算及び積算処理の結果
中の極値(絶対値の最大値)を示す積算結果を出力し、
その出力結果に応じて信号レベル判定装置17では、シ
フト制御装置16及び信号判別装置15を制御する。ま
た、シフト制御装置16では、乗算、積算処理の繰り返
しが終了した時点で、(データ一周期分のシフト量−
(極値が得られたシフト量+一定数))のシフトを行い
シフトレジスタ12内のデータ配列を初期状態に戻す動
作を行っている。いまシフトレジスタの段数が1270
の場合に、シフトレジスタ12のシフトを1270回行
って得られる1270個の(1周期の)相関処理結果の
データ中極値が得られたのがシフトレジスタ12を25
0シフトさせた点とすると、次の乗算、積算演算はシフ
トレジスタ12を200シフトさせた点より開始し、3
00シフトさせるまで行い、シフト量300での演算が
終了した時点で、シフトレジスタ12を970シフトさ
せ、データ配列を演算開始時の状態に戻す。上記乗算、
積算の繰り返し処理を行っている間にシフトレジスタ1
1の内容がAD変換のクロック周波数に従って更新(シ
フト)された場合、相関結果の極値が得られる点はずれ
るが、前述のように一定範囲内での処理を行うようにす
れば範囲内で極値を得ることが可能となる。また、本実
施形態もコンピュータによる信号取り込み、ソフトウェ
アによる演算、信号処理により実現することが可能であ
る。
At this time, the signal discriminating device 15 sets the shift register 1 within the range of (the shift amount at which the extreme value is obtained ± a fixed number).
2 is sequentially shifted, and an integration result indicating an extreme value (maximum absolute value) in the result of the obtained multiplication and integration processing is output;
The signal level determination device 17 controls the shift control device 16 and the signal determination device 15 according to the output result. Further, the shift control device 16 sets (the shift amount for one data cycle−
(The shift amount at which the extremum was obtained + a fixed number)) and the data array in the shift register 12 is returned to the initial state. Now the number of shift register stages is 1270
In the case of (1), the extreme value of the data of 1270 (one cycle) correlation processing results obtained by shifting the shift register 12 1270 times is obtained by shifting the shift register 12 by 25.
Assuming that the point is shifted by 0, the next multiplication and integration operation starts from the point where the shift register 12 is shifted by 200, and 3
The shift is performed until the shift is 00, and when the operation with the shift amount 300 is completed, the shift register 12 is shifted 970 to return the data array to the state at the start of the operation. The above multiplication,
Shift register 1 while repeating the integration
If the content of No. 1 is updated (shifted) in accordance with the clock frequency of the AD conversion, an extreme value of the correlation result is obtained, but if processing within a certain range is performed as described above, the extreme value within the range is obtained. Value can be obtained. Further, the present embodiment can also be realized by signal capture by a computer, calculation by software, and signal processing.

【0027】実施形態3 図6は本発明の実施形態3に係る相関処理方法を示す説
明図であり、図6には図4の構成に、データ記憶用レジ
スタ18及び演算器19が追加されている。本実施形態
3では、AD変換装置10により電極により検出された
電位差信号を一定周期でアナログ−デジタル変換、シフ
トレジスタ11に入力されたデータからあらかじめ決め
られた個数(この例では4個)のデータを演算器19に
入力する。演算器19では入力されたデータの平均を行
い、入力データの内のあらかじめ決められたデータから
平均値を減算したデータを出力しデータ記憶用レジスタ
18の対応するレジスタに入力する。図6の例では、図
の最上段に示される演算器19は、シフトレジスタ11
からf(0) 〜f(3) の4個のデータを入力し、この平均
値fm0を求め、データf(0)からfm0を減算したデータ
f′(0) をデータ記憶用レジスタ18の初段に入力す
る。また次の段に示される演算器19は、シフトレジス
タ11からf(1) 〜f(4) の4個のデータを入力し、こ
の平均値fm1を求め、データf(1) からfm1を減算した
データf′(1) をデータ記憶用レジスタ18の2段目
(f′(0) の隣)に入力する。
Third Embodiment FIG. 6 is an explanatory diagram showing a correlation processing method according to a third embodiment of the present invention. FIG. 6 shows a configuration in which a data storage register 18 and a computing unit 19 are added to the configuration of FIG. I have. In the third embodiment, the potential difference signal detected by the electrodes by the AD converter 10 is subjected to analog-digital conversion at a constant cycle, and a predetermined number (four in this example) of data input from the data input to the shift register 11 is obtained. Is input to the computing unit 19. The arithmetic unit 19 averages the input data, outputs data obtained by subtracting the average value from predetermined data in the input data, and inputs the data to the corresponding register of the data storage register 18. In the example of FIG. 6, the arithmetic unit 19 shown at the top of the figure is the shift register 11
, F (0) to f (3) are input, the average value fm0 is obtained, and data f '(0) obtained by subtracting fm0 from data f (0) is stored in the first stage of the data storage register 18. To enter. The arithmetic unit 19 shown in the next stage inputs four data f (1) to f (4) from the shift register 11, finds an average value fm1, and subtracts fm1 from the data f (1). The data f '(1) thus obtained is input to the second stage (next to f' (0)) of the data storage register 18.

【0028】これら演算器群19による処理は、シフト
レジスタ11のレジスタ数分行われ、この結果、データ
記憶用レジスタ18にはシフトレジスタ11中の電位差
信号から電位差信号の移動平均を差し引いた信号、すな
わち電位差信号の低周波の変動分を差し引いたデータが
記録される。データ記憶用レジスタ18の内容は、シフ
トレジスタ11の内容が、AD変換に伴い更新されるの
に伴い更新される。本実施形態では、データ記憶用レジ
スタ18の内容を電位差信号として、相関演算を行う。
また、本実施形態も、コンピュータによる信号取り込
み、ソフトウェアによる演算、信号処理により実現する
ことが可能である。
The processing by the arithmetic unit group 19 is performed for the number of registers of the shift register 11. As a result, the data storage register 18 has a signal obtained by subtracting the moving average of the potential difference signal from the potential difference signal in the shift register 11, that is, Data obtained by subtracting the low frequency fluctuation of the potential difference signal is recorded. The contents of the data storage register 18 are updated as the contents of the shift register 11 are updated with AD conversion. In the present embodiment, a correlation operation is performed using the contents of the data storage register 18 as a potential difference signal.
Also, the present embodiment can be realized by computer signal capture, software calculation, and signal processing.

【0029】実施形態4 図7は本発明の実施形態4に係る相関処理方法を示す説
明図であり、図7には図6の構成に平均演算器20が追
加されている。本実施形態における各構成要素の動作
は、図1、4、6に示した実施形態と同様であり、信号
判別装置15から検出電位差信号と参照信号との相関処
理波形(データ)の極値となる(絶対値が最大となる)
点のデータ、すなわち電位差検出信号を出力する。平均
演算器20は信号判別装置からの出力データを入力し、
入力された信号(データ)のあらかじめ定められた時間
間隔内(個数)の平均値を算出し、出力する。また、本
実施形態もコンピュータによる信号取り込み、ソフトウ
ェアによる演算、信号処理により実現することが可能で
ある。
Fourth Embodiment FIG. 7 is an explanatory diagram showing a correlation processing method according to a fourth embodiment of the present invention. In FIG. 7, an average calculator 20 is added to the configuration of FIG. The operation of each component in this embodiment is the same as that of the embodiment shown in FIGS. 1, 4, and 6. The signal discriminator 15 outputs the extreme value of the correlation processing waveform (data) between the detected potential difference signal and the reference signal. Becomes (the absolute value becomes maximum)
Point data, that is, a potential difference detection signal is output. The average calculator 20 receives the output data from the signal discriminating device,
An average value (number) of input signals (data) within a predetermined time interval is calculated and output. Further, the present embodiment can also be realized by signal capture by a computer, calculation by software, and signal processing.

【0030】[0030]

【発明の効果】以上のように本発明によれば、地中に埋
設された塗覆装鋼管と大地との間に擬似ランダム信号を
交流電圧として印加して前記塗覆装鋼管内に電流を流
し、その管軸方向に沿った地表面の一定間隔の2点間の
電位差を検出し、この検出信号をA・D変換して得られ
る検出デジタルデータ配列を順次記憶し、これと並列し
て、検出デジタルデータ配列と予め用意された参照用デ
ジタル配列との間で配列要素の対応を擬似ランダム信号
の1周期分ずらせながら総ての対応位置における両デー
タ間の積和算出を行う相関処理を高速で行うようにした
ので、地表面に設置した2点の位置を埋設鋼管管軸方向
に走査し、2点間の電位差の変化を計測する信号検出及
び信号処理の応答性を高くし、従来よりもより高速な走
査、計測を実施することが可能となる。
As described above, according to the present invention, a pseudo-random signal is applied as an AC voltage between a coated steel pipe buried underground and the ground to generate a current in the coated steel pipe. Flow, and detects a potential difference between two points at a predetermined interval on the ground surface along the pipe axis direction, sequentially stores a detection digital data array obtained by A / D conversion of this detection signal, and in parallel with this, A correlation process for calculating the product sum between both data at all corresponding positions while shifting the correspondence of array elements between the detected digital data array and the reference digital array prepared in advance by one period of the pseudo random signal. High-speed scanning is performed at the two points installed on the ground surface in the axial direction of the buried steel pipe, and the responsiveness of signal detection and signal processing for measuring the change in potential difference between the two points is improved. Scan and measure faster than Theft is possible.

【0031】また本発明によれば、埋設鋼管の塗膜損傷
位置検出方法における検出信号のデジタルデータ配列と
参照用デジタルデータ配列を用いて相関処理を行う方法
において、連続的に相関処理を行う際に、相関結果のピ
ーク値が予め設定した一定値以上である場合には、以降
の相関処理において、検出データと参照データとの間の
対応をずらせながら積和算出処理を行う範囲を相関結果
のピーク値が得られた検出データと参照データの対応点
を含む任意の範囲内の対応点に限定し、この限定された
対応の範囲内においてのみ検出データと参照データ間の
積和算出処理を行うようにしたので、前記対応の範囲を
限定せずに擬似ランダム信号の1周期分ずらせる場合に
比較して、相関処理時間が短縮され、さらに応答性の良
い計測結果が得られる。
According to the present invention, in the method for performing the correlation processing using the digital data array of the detection signals and the digital data array for reference in the method of detecting the coating film damage position of the buried steel pipe, the correlation processing is performed continuously. If the peak value of the correlation result is equal to or larger than a predetermined value, the range in which the product-sum calculation process is performed while shifting the correspondence between the detected data and the reference data in the subsequent correlation process is defined as the correlation result. The peak value is limited to the corresponding point within an arbitrary range including the corresponding point between the detected data and the reference data, and the product-sum calculation process between the detected data and the reference data is performed only within the limited corresponding range. As a result, the correlation processing time is shortened, and a measurement result with better responsiveness is obtained as compared with the case where the corresponding range is shifted by one period of the pseudo random signal without limiting the range. That.

【0032】また本発明によれば、前記埋設鋼管の塗膜
損傷位置検出方法において、A・D変換後順次記憶した
検出信号のデジタルデータ配列から各データ毎に任意に
設定された範囲の移動平均データを算出し、前記記憶し
た検出信号の各データから、それぞれ対応する移動平均
のデータを差し引くことにより得られたデータ配列を新
たな検出信号として参照データとの間で相関処理を行う
ようにしたので、検出信号中の低周波の変動成分が除去
され、低周波の信号変動に起因する相関関数の変動を除
去、抑制した相関関数のデータ配列が得られ、安定した
検出電位差信号が得られる。
According to the present invention, in the method for detecting a paint film damage position on a buried steel pipe, a moving average in a range arbitrarily set for each data from a digital data array of detection signals sequentially stored after A / D conversion. Data is calculated, and the data array obtained by subtracting the corresponding moving average data from each data of the stored detection signal is subjected to correlation processing with reference data as a new detection signal. Therefore, the low-frequency fluctuation component in the detection signal is removed, the fluctuation of the correlation function caused by the low-frequency signal fluctuation is removed, and a data array of the correlation function is obtained, in which a stable detected potential difference signal is obtained.

【0033】また本発明によれば、前記埋設鋼管の塗膜
損傷位置検出方法において、検出信号のデジタルデータ
配列と参照データとの相関処理結果のピーク値を順次記
憶し、この記憶したピーク値の一定時間内のデータの平
均値を求め、この平均値を前記2点間の検出電位差信号
とするようにしたので、検出信号のオフセット変動等に
よる相関関数データ配列の変動の影響を抑制、安定した
電位差信号が出力される。
According to the present invention, in the method for detecting a paint film damage position of a buried steel pipe, peak values of a correlation process result between a digital data array of detection signals and reference data are sequentially stored, and the stored peak values are compared with each other. Since the average value of the data within a certain time is obtained and the average value is used as the detected potential difference signal between the two points, the influence of the fluctuation of the correlation function data array due to the fluctuation of the offset of the detection signal and the like is suppressed and stabilized. A potential difference signal is output.

【0034】また本発明によれば、前記検出デジタルデ
ータの移動平均化処理やピーク検出値の一定時間内の平
均化処理を組み合せて採用することにより、地表面に設
置した2点電極間の電位差信号の検出における外乱ノイ
ズ、電極と地表面との接触抵抗の変動による検出信号の
影響を除去し、安定した相関処理結果を得ることがで
き、さらに安定した塗膜損傷の検知、計測の実現が可能
となる。
According to the present invention, the potential difference between the two-point electrodes installed on the ground surface is obtained by employing a combination of the moving average processing of the detected digital data and the averaging processing of the peak detection value within a predetermined time. Eliminates the effects of detection noise due to disturbance noise in signal detection and fluctuations in contact resistance between the electrode and the ground surface, and obtains stable correlation processing results, and realizes stable coating film damage detection and measurement. It becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施形態1に係る相関処理方法を示す説明図
である。
FIG. 1 is an explanatory diagram illustrating a correlation processing method according to a first embodiment.

【図2】本発明の各実施形態に係る埋設鋼管の塗膜損傷
位置検出試験装置の構成を示す図である。
FIG. 2 is a diagram showing a configuration of a coating film damage position detection test device for a buried steel pipe according to each embodiment of the present invention.

【図3】図1、2の各信号を説明するための波形図であ
る。
FIG. 3 is a waveform chart for explaining each signal of FIGS. 1 and 2;

【図4】本発明の実施形態2に係る相関処理方法を示す
説明図である。
FIG. 4 is an explanatory diagram illustrating a correlation processing method according to a second embodiment of the present invention.

【図5】図4の相関処理順序を示す流れ図である。FIG. 5 is a flowchart showing the correlation processing order of FIG. 4;

【図6】本発明の実施形態3に係る相関処理方法を示す
説明図である。
FIG. 6 is an explanatory diagram illustrating a correlation processing method according to a third embodiment of the present invention.

【図7】本発明の実施形態4に係る相関処理方法を示す
説明図である。
FIG. 7 is an explanatory diagram illustrating a correlation processing method according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 擬似ランダム信号発生器 2 塗覆装鋼管 3 ターミナル 4 接地極 5 電極 6 相関演算処理装置 7 損傷 10 AD変換装置 11,12 シフトレジスタ 13 乗算器 14 積算器 15 信号判別装置 16 シフト制御装置 17 信号レベル判別装置 18 データ記憶用レジスタ 19 演算器 20 平均演算器 DESCRIPTION OF SYMBOLS 1 Pseudo-random signal generator 2 Painted steel pipe 3 Terminal 4 Grounding electrode 5 Electrode 6 Correlation processor 7 Damage 10 A / D converter 11, 12 Shift register 13 Multiplier 14 Integrator 15 Signal discriminator 16 Shift controller 17 Signal Level discriminator 18 Data storage register 19 Computing unit 20 Average computing unit

フロントページの続き Fターム(参考) 2F063 AA02 BA30 BB02 BC02 BC09 BD07 CA08 DA01 DB04 EB25 FA09 KA10 LA18 LA19 LA22 LA24 LA30 2G053 AA11 AB21 BA12 BA19 BA26 BC02 BC14 CA02 CA18 CB14 CB17 CB22 CB23 CB24 DB20 DB25 Continued on the front page F term (reference) 2F063 AA02 BA30 BB02 BC02 BC09 BD07 CA08 DA01 DB04 EB25 FA09 KA10 LA18 LA19 LA22 LA24 LA30 2G053 AA11 AB21 BA12 BA19 BA26 BC02 BC14 CA02 CA18 CB14 CB17 CB22 CB23 CB24 DB20 DB25

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 地中に埋設された塗覆装鋼管と大地との
間に擬似ランダム信号を交流電圧として印加して前記塗
覆装鋼管内に電流を流し、その管軸方向に沿った地表面
の一定間隔の2点間の電位差を検出し、この検出信号と
前記鋼管に印加した擬似ランダム信号と同一のパターン
の参照信号との相関処理を行い、この相関処理結果のピ
ーク値を前記2点間の電位差信号とし、前記2点の位置
を管軸方向に沿って移動しながら連続的に信号の検出と
その相関処理を行うことにより地表面の電位差分布を計
測し、その電位差分布の変化状況からこの埋設鋼管の塗
膜損傷位置を検出する方法において、 前記2点間での検出信号を一定時間間隔で順次アナログ
・デジタル変換し、前記鋼管に印加した擬似ランダム信
号の1周期分のデータ数で、時間の経過とともに新規デ
ータに更新される検出信号のデジタルデータ配列を記憶
し、 予め前記鋼管に印加した擬似ランダム信号と同一の信号
パターンを有する1周期分の参照用デジタルデータ配列
を用意しておき、前記アナログ・デジタル変換と並行し
て、検出信号のデジタルデータ配列と前記用意した参照
用デジタルデータ配列との間で、時間の経過とともに更
新される検出データと参照データの対応する配列要素同
士をそれぞれ乗算した積の総和を求める積和算出処理
を、検出データと参照データの配列要素の対応を擬似ラ
ンダム信号の1周期分ずらしながら総ての対応について
行い、処理結果のピーク値を検出することで検出データ
と参照データの相関処理を行うことを特徴とする埋設鋼
管の塗膜損傷位置検出方法。
1. A pseudo-random signal is applied as an AC voltage between a coated steel pipe buried in the ground and the ground to cause a current to flow in the coated steel pipe, and a ground along the pipe axis direction is provided. A potential difference between two points at a constant interval on the surface is detected, and a correlation process is performed between the detection signal and a reference signal having the same pattern as the pseudo random signal applied to the steel pipe. A potential difference signal between points is measured, and a potential difference distribution on the ground surface is measured by continuously detecting a signal and performing a correlation process while moving the positions of the two points along the pipe axis direction. In the method for detecting a coating film damaged position of a buried steel pipe from a situation, the detection signal between the two points is sequentially converted from analog to digital at a fixed time interval, and data for one cycle of a pseudo-random signal applied to the steel pipe. Number of hours A digital data array of a detection signal that is updated to new data with time is stored, and a reference digital data array for one cycle having the same signal pattern as a pseudo-random signal applied to the steel pipe is prepared in advance. In parallel with the analog-to-digital conversion, between the digital data array of the detection signal and the prepared reference digital data array, the corresponding array elements of the detection data and the reference data updated with the passage of time are multiplied by the corresponding array elements. The sum-of-products calculation processing for calculating the sum of the products obtained is performed for all the correspondences while shifting the correspondence between the detection data and the array element of the reference data by one period of the pseudo random signal, and the peak value of the processing result is detected. A method for detecting a coating film damage position on a buried steel pipe, which performs a correlation process between data and reference data.
【請求項2】 請求項1記載の埋設鋼管の塗膜損傷位置
検出方法における検出信号のデジタルデータ配列と参照
用デジタルデータ配列を用いて相関処理を行う方法にお
いて、連続的に相関処理を行う際に、 相関結果のピーク値が予め設定した一定値以上である場
合には、以降の相関処理において、検出データと参照デ
ータとの間の対応をずらせながら積和算出処理を行う範
囲を相関結果のピーク値が得られた検出データと参照デ
ータの対応点を含む任意の範囲内の対応点に限定し、こ
の限定された対応の範囲内においてのみ検出データと参
照データ間の積和算出処理を行い、処理結果のピークを
検出する相関処理を検出したピーク値に対して繰り返
し、 相関処理のピーク値が前記設定した一定値未満となった
場合には、以降の相関処理において、検出データと参照
データとの間の対応をずらせながら積和算出処理を行う
範囲を限定せずに、検出データと参照データの対応を擬
似ランダム信号の1周期分にわたってずらしながら総て
の対応について行うことを特徴とする埋設鋼管の塗膜損
傷位置検出方法。
2. A method of performing a correlation process using a digital data array of detection signals and a digital data array for reference in the method for detecting a coating film damage position of a buried steel pipe according to claim 1, wherein the correlation process is performed continuously. If the peak value of the correlation result is equal to or greater than a predetermined value, the range in which the product-sum calculation process is performed while shifting the correspondence between the detection data and the reference data in the subsequent correlation process is defined as the correlation result. The peak value is limited to the corresponding point within an arbitrary range including the corresponding point between the detected data and the reference data, and the product sum calculation process between the detected data and the reference data is performed only within the limited corresponding range. The correlation processing for detecting the peak of the processing result is repeated for the detected peak value, and when the peak value of the correlation processing becomes smaller than the set value, the subsequent correlation processing is performed. Without limiting the range in which the product-sum calculation process is performed while shifting the correspondence between the detection data and the reference data, all the correspondences are shifted while the correspondence between the detection data and the reference data is shifted by one period of the pseudo random signal. A method for detecting a damaged position of a coating film on a buried steel pipe.
【請求項3】 請求項1又は2記載の埋設鋼管の塗膜損
傷位置検出方法において、 前記2点間での検出信号を一定時間間隔で順次アナログ
・デジタル変換し、前記鋼管に印加した擬似ランダム信
号の1周期分のデータ数で、時間の経過とともに新規デ
ータに更新される検出信号のデジタルデータ配列を記憶
し、 前記記憶した検出信号のデジタルデータ配列から各デー
タ毎に任意に設定された範囲の移動平均データを算出
し、 前記記憶した検出信号の各データから、それぞれ対応す
る移動平均のデータを差し引くことにより得られたデー
タ配列を新たな検出データとして参照データとの間で相
関処理を行うことを特徴とする埋設鋼管の塗膜損傷位置
検出方法。
3. The method according to claim 1, wherein the detection signal between the two points is sequentially converted from analog to digital at a fixed time interval and applied to the steel pipe. A digital data array of detection signals that is updated to new data with the passage of time with the number of data for one cycle of the signal, and a range arbitrarily set for each data from the stored digital data array of the detection signals. The moving average data is calculated, and the data array obtained by subtracting the corresponding moving average data from each of the stored detection signal data is used as new detection data to perform correlation processing with reference data. A method for detecting a paint film damage position on a buried steel pipe.
【請求項4】 請求項1、2又は3記載の埋設鋼管の塗
膜損傷位置検出方法において、 検出信号のデジタルデータ配列と参照データとの相関処
理結果のピーク値を順次記憶し、この記憶したピーク値
の一定時間内のデータの平均値を求め、この平均値を前
記2点間の検出電位差信号とすることを特徴とする埋設
鋼管の塗膜損傷位置検出方法。
4. The method according to claim 1, wherein the peak value of the correlation processing result between the digital data array of the detection signal and the reference data is sequentially stored. A method of detecting a coating film damage position on a buried steel pipe, wherein an average value of data within a predetermined time of a peak value is obtained, and the average value is used as a detected potential difference signal between the two points.
JP18411498A 1998-06-30 1998-06-30 Method for detecting paint film damage position on buried steel pipe Expired - Lifetime JP3365312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18411498A JP3365312B2 (en) 1998-06-30 1998-06-30 Method for detecting paint film damage position on buried steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18411498A JP3365312B2 (en) 1998-06-30 1998-06-30 Method for detecting paint film damage position on buried steel pipe

Publications (2)

Publication Number Publication Date
JP2000019160A true JP2000019160A (en) 2000-01-21
JP3365312B2 JP3365312B2 (en) 2003-01-08

Family

ID=16147637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18411498A Expired - Lifetime JP3365312B2 (en) 1998-06-30 1998-06-30 Method for detecting paint film damage position on buried steel pipe

Country Status (1)

Country Link
JP (1) JP3365312B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018109824A1 (en) * 2016-12-13 2018-06-21 東京製綱株式会社 Wire rope damage detection method, and signal processing device and damage detection device used for wire rope damage detection
JP2018189397A (en) * 2017-04-28 2018-11-29 日新電機株式会社 Vibration measuring apparatus
JP2020034509A (en) * 2018-08-31 2020-03-05 株式会社島津製作所 Inspection device for magnetic material
GB2608935A (en) * 2018-04-09 2023-01-18 Jentek Sensors Inc Complex part inspection with eddy current sensors

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018109824A1 (en) * 2016-12-13 2018-06-21 東京製綱株式会社 Wire rope damage detection method, and signal processing device and damage detection device used for wire rope damage detection
CN110062884A (en) * 2016-12-13 2019-07-26 东京制纲株式会社 The signal processing apparatus and damage detection apparatus of the damage detecting method of wirerope and the damage check for wirerope
US11125722B2 (en) 2016-12-13 2021-09-21 Tokyo Rope Manufacturing Co., Ltd. Method and apparatus for evaluating damage to magnetic linear body
US11549911B2 (en) 2016-12-13 2023-01-10 Tokyo Rope Manufacturing Co., Ltd. Damage detection method of wire rope, and signal processor and damage detection device used for damage detection of wire rope
JP2018189397A (en) * 2017-04-28 2018-11-29 日新電機株式会社 Vibration measuring apparatus
GB2608935A (en) * 2018-04-09 2023-01-18 Jentek Sensors Inc Complex part inspection with eddy current sensors
GB2608935B (en) * 2018-04-09 2023-04-12 Jentek Sensors Inc Complex part inspection with eddy current sensors
JP2020034509A (en) * 2018-08-31 2020-03-05 株式会社島津製作所 Inspection device for magnetic material
JP7119788B2 (en) 2018-08-31 2022-08-17 株式会社島津製作所 Inspection equipment for magnetic materials

Also Published As

Publication number Publication date
JP3365312B2 (en) 2003-01-08

Similar Documents

Publication Publication Date Title
EP0780665A3 (en) Processor apparatus and method for a process measurement signal
US4700022A (en) Method and apparatus for determining the coordinates of a contact point on a resistive type semianalog sensitive surface
JP2969534B2 (en) Sensor configuration and method for detecting measured values using the sensor configuration
US7529153B2 (en) Positional information detecting method and device
JP2007232571A (en) Effective value arithmetic circuit and measuring device of voltage or the like
JP2009508383A (en) Phase detection system
JP2000019160A (en) Paint film damaged position detecting method for buried steel pipe
US6973839B2 (en) Electromagnetic flow meter having processing means resolving output data into a non-flow waveform component
JP2000310530A (en) Surface-properties measuring device
JP3180707B2 (en) Method and apparatus for detecting paint film damage position of buried steel pipe
JP3611019B2 (en) Method for detecting coating damage on buried coated steel pipes
JP3377171B2 (en) Method and apparatus for detecting paint film damage position of buried steel pipe
JP2005037401A (en) Paint film defective position detector for buried paint-applied steel pipe
JP3365311B2 (en) Method and apparatus for detecting paint film damage on buried coated steel pipe
JP2001004575A (en) Detecting method for damage of paint film on buried painted and covered steel tube
JP2010271200A (en) Method for measuring resistance of coating film by fall-of-potential method
JP3377169B2 (en) Method and apparatus for detecting paint film damage position of buried steel pipe
JP2010271201A (en) Method for measuring guide current
JP3451348B2 (en) Method for detecting paint film damage on buried coated steel pipe
JP2007071681A (en) Signal processor and physical quantity detecting device
JPH10206370A (en) Corrosion rate measuring device for metal
RU2075754C1 (en) Method and device for measuring active and reactive power in sinusoidal current circuits
JP2000019158A (en) Method and device for detecting paint film damage position of buried steel pipe
JPH1164399A (en) Voltage drop detector and detecting method
RU2046354C1 (en) Device for measuring electric power

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071101

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071101

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071101

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101101

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101101

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111101

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121101

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121101

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131101

Year of fee payment: 11

EXPY Cancellation because of completion of term