JP2000017335A - Production of grain oriented silicon steel sheet free from edge crack - Google Patents

Production of grain oriented silicon steel sheet free from edge crack

Info

Publication number
JP2000017335A
JP2000017335A JP10191379A JP19137998A JP2000017335A JP 2000017335 A JP2000017335 A JP 2000017335A JP 10191379 A JP10191379 A JP 10191379A JP 19137998 A JP19137998 A JP 19137998A JP 2000017335 A JP2000017335 A JP 2000017335A
Authority
JP
Japan
Prior art keywords
slab
annealing
hot
grain
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10191379A
Other languages
Japanese (ja)
Other versions
JP3849310B2 (en
Inventor
Tetsuo Toge
哲雄 峠
Tsutomu Kami
力 上
Tadashi Nakanishi
匡 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19137998A priority Critical patent/JP3849310B2/en
Publication of JP2000017335A publication Critical patent/JP2000017335A/en
Application granted granted Critical
Publication of JP3849310B2 publication Critical patent/JP3849310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably obtain a steel sheet free from edge crack and good in magnetic properties by controlling the contents of acid soluble Al, N, Se and S in steel contg. specified ratio of C, Si and Mn, the size of the grains in the slab columnar crystal parts after casting and the heating temp. SOLUTION: Steel contg., by weight, 0.005 to 0.08% C, 1.0 to 7.0% Si and 0.03 to 2.5% Mn is melted to cast to form into a silicon steel slab, which is successively subjected to heating, hot rolling and hot rolled sheet annealing and is thereafter subjected to cold rolling to control its sheet thickness into the final one, and, finish annealing is executed to produce a grain oriented silicon steel sheet. At this time, the contents of acid soluble Al, N, Se and S in the steel are controlled to the ranges of, by weight, 0.001 to 0.030% acid soluble Al, 0.003 to 0.010% N and <=0.035% Se+2.47S, the size of the grains in the columnar crystal parts in the slab after the casting is controlled to <=10 mm on the average by the size equivalent to a circle in the cross section vertical to the elongating direction of the columnar crystals, and the slab heating temp. is controlled to <=1300 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、方向性電磁鋼板
の製造方法に係るもので、耳割れがなく、かつ、磁気特
性を良好に保った方向性電磁鋼板を安定して製造する方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet, and more particularly to a method for stably producing a grain-oriented electrical steel sheet having no cracks and good magnetic properties. It is.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、主として変圧器その
他の電気機器の鉄心材料として使用され、磁束密度及び
鉄損値などの磁気特性に優れることが基本的に必要であ
る。そのため、厚さ100 〜300 mmのけい素鋼スラブを高
温に加熱後、熱間圧延し、次いでこの熱延板を1 回又は
中間焼鈍を挟む2 回以上の冷間圧延によって最終板厚と
し、次いで脱炭を兼ねた一次再結晶焼鈍を行い、焼鈍分
離剤を塗布してから二次再結晶及び純化を目的として最
終仕上焼鈍を行うという複雑な工程が採られている。か
かる方向性電磁鋼板の磁気特性を高めるためには、仕上
焼鈍工程での二次再結晶によって、磁化容易軸である
〈001〉軸が圧延方向に揃った{110}〈001〉
方位の結晶粒を成長させることが基本的に重要である。
2. Description of the Related Art Grain-oriented electrical steel sheets are mainly used as iron core materials for transformers and other electric equipment, and are basically required to have excellent magnetic properties such as magnetic flux density and iron loss value. For this reason, a silicon steel slab having a thickness of 100 to 300 mm is heated to a high temperature and then hot-rolled, and then the hot-rolled sheet is subjected to one or two or more cold-rollings with intermediate annealing to obtain a final thickness, Next, a complicated process of performing primary recrystallization annealing also serving as decarburization, applying an annealing separator, and then performing final finish annealing for the purpose of secondary recrystallization and purification is employed. In order to enhance the magnetic properties of such a grain-oriented electrical steel sheet, the <001> axis, which is the axis of easy magnetization, is aligned in the rolling direction by secondary recrystallization in the finish annealing step {110} <001>.
It is fundamentally important to grow crystal grains of the orientation.

【0003】このような二次再結晶を効果的に促進させ
るために、まずは一次再結晶粒の成長を抑制するインヒ
ビターと呼ばれる分散相を、均一かつ適正なサイズに分
散させることが重要である。かかるインヒビターとして
MnS 、MnSe、AlN 及びVNのような硫化物、セレン化合物
や窒化物などがあり、必要に応じてSb、Nb、Ge、Sn、Cr
などを適宜添加する方法が採られている。
[0003] In order to effectively promote such secondary recrystallization, it is important to first disperse a dispersed phase called an inhibitor which suppresses the growth of primary recrystallized grains into a uniform and appropriate size. As such an inhibitor
There are sulfides such as MnS, MnSe, AlN and VN, selenium compounds and nitrides, and Sb, Nb, Ge, Sn, Cr
And the like are appropriately added.

【0004】上述の硫化物、セレン化合物、窒化物を主
としたインヒビターを鋼中に均一かつ適正なサイズに分
散させる適正制御の方法として、従来の工程では熱延前
のスラブ加熱時にインヒビターを一旦、完全に固溶させ
たのち、熱間圧延工程以降に微細析出する方法が採られ
てきた。このインヒビターを十分固溶させるためには、
1400℃程度の温度に加熱する必要があり、そのため、方
向性電磁鋼板のスラブ加熱は一般に、普通鋼のスラブ加
熱に比べで約200 ℃も高い温度で行われている。
[0004] As a method of proper control for dispersing the above-mentioned inhibitors mainly composed of sulfides, selenium compounds and nitrides in steel in a uniform and appropriate size, in a conventional process, the inhibitors are temporarily removed during slab heating before hot rolling. A method has been employed in which the solid solution is completely dissolved and then finely precipitated after the hot rolling step. In order for this inhibitor to form a solid solution,
It is necessary to heat to a temperature of about 1400 ° C., and therefore, the slab heating of grain-oriented electrical steel sheets is generally performed at about 200 ° C. higher than the slab heating of ordinary steel.

【0005】上述したインヒビターの適正制御の他に、
二次再結晶を効果的に生じさせるためには、一次再結晶
後の結晶粒径、集合組織を適正に制御することが必要で
ある。すなわち、一次再結晶粒径が大きいほど、最終仕
上焼鈍時の粒成長の駆動力が小さくなる。よって一次再
結晶粒の粒成長の駆動力とインヒビターの抑制力とのバ
ランスを適正制御することにより、二次再結晶を効果的
に生じさせることができる。また、{110}〈00
1〉方位に集積した粒のみが二次再結晶するためには、
一次再結晶後の段階で、{110}〈001〉方位が成
長し易い集合組織をもったマトリックスの中に、二次再
結晶の核になる{110}〈001〉方位粒が散在して
いることが重要である。これらのインヒビター、一次再
結晶粒、集合組織などの制御により{110}〈00
1〉方位に極力集積させた二次再結晶を得ることが可能
になり、高磁束密度、低鉄損の製品が得られるようにな
ってきている。
[0005] In addition to the above-described appropriate control of the inhibitor,
In order to effectively cause secondary recrystallization, it is necessary to appropriately control the crystal grain size and texture after primary recrystallization. That is, the larger the primary recrystallized grain size, the smaller the driving force for grain growth during final finish annealing. Therefore, by appropriately controlling the balance between the driving force for the growth of primary recrystallized grains and the inhibitory force of the inhibitor, secondary recrystallization can be effectively generated. Also, {110} <00
1) In order for only the grains accumulated in the orientation to undergo secondary recrystallization,
At the stage after primary recrystallization, {110} <001> orientation grains serving as nuclei for secondary recrystallization are scattered in a matrix having a texture in which the {110} <001> orientation is likely to grow. This is very important. By controlling these inhibitors, primary recrystallized grains, texture, etc., {110} <00
1> It becomes possible to obtain secondary recrystallization which is integrated as much as possible in the orientation, and products with high magnetic flux density and low iron loss have been obtained.

【0006】ところで最近、方向性電磁鋼板において
は、磁気特性ばかりでなく、安価な供給が強く望まれる
ようになってきている。したがって、製造者サイドにと
っては、かかる磁気特性に優れる高級品を歩留り良く製
造することが重要な課題となっている。かかる歩留り向
上という観点から、方向性電磁鋼板の製造時における熱
間圧延の際には、熱延板端部の形状不良を如何に防止す
るかが重要な課題となっている。というのは、熱延板の
端部(エッジ部)においては、コイルの耳部が削り取ら
れたり、耳部にのこぎり歯状の割れが生じやすく、歩留
り低下の大きな要因となっているからである。このよう
な熱延板の耳部の割れは、日本鉄鋼協会の用語規定(IS
IJ TR006)では、”耳荒れ”とも称されているが、この
明細書では”耳割れ”と称することにする。
[0006] Recently, in grain-oriented electrical steel sheets, not only magnetic properties but also inexpensive supply has been strongly desired. Therefore, it is an important issue for the manufacturer to manufacture high-quality products having excellent magnetic properties with high yield. From the viewpoint of improving the yield, in hot rolling at the time of manufacturing a grain-oriented electrical steel sheet, it is an important issue how to prevent the shape defect of the end of the hot-rolled sheet. This is because at the end (edge) of the hot-rolled sheet, the ears of the coil are shaved off, or saw-like cracks are easily generated in the ears, which is a major factor in lowering the yield. . Such cracks in the edge of the hot-rolled sheet are defined by the Japanese Iron and Steel Institute
In IJ TR006), it is also referred to as "ear cracks", but in this specification it will be referred to as "ear cracks".

【0007】方向性電磁鋼板製造時の熱間圧延工程にお
ける耳割れを防止する技術については、既に数多くの開
示がある。例えば、特開昭55−62124号公報で
は、仕上熱間圧延中の温度低下を220 ℃以内にする方法
が、また、特開昭61−96032号公報では、仕上圧
延以降の圧下率を制御する方法が開示されたが、これら
の技術では粗圧延時や仕上圧延前段で発生する耳割れに
対しては防止効果が得られなかった。また、特開昭60
−145204号公報、特開昭61−71104号公
報、特開昭60−200916号公報、特開昭62−1
96328号公報、特開平5−138207号公報で
は、熱間圧延中のシートバーの側面の形状を整えること
で耳割れを防止する方法が開示されたが、これらの技術
も、粗圧延時や仕上圧延前段で発生する耳割れに対して
は防止効果がほとんどないという欠点があった。
[0007] There have already been many disclosures of techniques for preventing edge cracks in the hot rolling step in the production of grain-oriented electrical steel sheets. For example, Japanese Patent Application Laid-Open No. 55-62124 discloses a method in which the temperature drop during finish hot rolling is kept within 220 ° C., and Japanese Patent Application Laid-Open No. 61-96032 controls a reduction rate after finish rolling. Although methods have been disclosed, these techniques have not been able to obtain the effect of preventing ear cracks occurring at the time of rough rolling or before finish rolling. Also, Japanese Patent Application Laid-Open
JP-A-145204, JP-A-61-71104, JP-A-60-200916, and JP-A-62-1
JP-A-96328 and JP-A-5-138207 disclose methods of preventing edge cracks by adjusting the shape of the side surface of a sheet bar during hot rolling. However, these techniques are also used for rough rolling and finishing. There is a disadvantage that there is almost no effect of preventing ear cracks generated at the previous stage of rolling.

【0008】特開平9−70602号公報では、耳割れ
が主に熱間仕上前段で発生していることを突き止め、粗
圧延後のシートバーの形状に関して、シートバー側縁部
の厚みte (mm)とシートバー幅方向中央部の厚みtc
(mm)とが、 te −tc ≧1(mm) を満足する形状にする技術が開示された。具体的には、
粗圧延時に適切な幅圧下を行うという技術である。これ
により、耳割れの発生頻度、耳割れ深さ(鋼板のエッジ
部から幅方向に測った割れの長さ)をかなり軽減するこ
とが可能にはなったが、耳割れを完全に防止するには至
らなかった。
In Japanese Patent Application Laid-Open No. 9-70602, it is ascertained that ear cracks mainly occur at the stage before hot finishing, and regarding the shape of the sheet bar after the rough rolling, the thickness te (mm) of the side edge portion of the sheet bar is determined. ) And the thickness tc at the center of the sheet bar in the width direction.
(Mm) discloses a technique for forming a shape that satisfies te-tc ≥ 1 (mm). In particular,
This is a technique of performing appropriate width reduction during rough rolling. This makes it possible to considerably reduce the frequency of occurrence of ear cracks and the depth of the ear cracks (the length of the crack measured in the width direction from the edge of the steel plate). Did not reach.

【0009】[0009]

【発明が解決しようとする課題】この発明が解決しよう
とする課題は、熱間圧延時の耳割れを完全に防止し、か
つ、磁気特性を良好に保った方向性電磁鋼板の製造方法
の開発である。
The problem to be solved by the present invention is to develop a method of manufacturing a grain-oriented electrical steel sheet which completely prevents edge cracks during hot rolling and maintains good magnetic properties. It is.

【0010】[0010]

【課題を解決するための手段】発明者らは、鋭意研究の
末、熱間圧延時の耳割れを完全に防止し、かつ、磁気特
性を良好に保った方向性電磁鋼板を製造する方法を新規
に見いだした。すなわち、この発明は、C:0.005 〜0.
08wt%(以下、単に%で示す。)、Si:1.0 〜7.0 %、
Mn:0.03〜2.5 %を含有する鋼を溶製し鋳造してけい素
鋼スラブとし、このけい素鋼スラブを加熱後、熱間圧延
し、次いで熱延板焼鈍を施した後、一回又は中間焼鈍を
挟む二回以上の冷間圧延により最終板厚とし、更に、脱
炭焼鈍及び焼鈍分離剤を塗布して仕上焼鈍を施す方向性
電磁鋼板の製造方法において、鋼中の酸可溶性Al、N、
Se及びSの含有量を、酸可溶性Al:0.001 〜0.030 %、
N:0.003 〜0.010 %、Se+2.47S≦0.035%の範囲に
制御し、鋳造後のスラブの柱状晶部の粒の大きさを柱状
晶の伸長方向に垂直な断面の円相当径で平均10mm以下に
制御し、スラブ加熱温度を1300℃以下とすることを特徴
とする耳割れのない方向性電磁鋼板の製造方法である。
Means for Solving the Problems As a result of intensive studies, the present inventors have developed a method for manufacturing a grain-oriented electrical steel sheet which completely prevents edge cracks during hot rolling and maintains good magnetic properties. Newly found. That is, the present invention provides C: 0.005 to 0.
08 wt% (hereinafter simply referred to as%), Si: 1.0 to 7.0%,
Mn: A steel containing 0.03 to 2.5% is melted and cast to form a silicon steel slab. After heating the silicon steel slab, hot-rolling, and then subjecting the hot-rolled sheet to annealing, once or once. In the method for producing a grain-oriented electrical steel sheet that is subjected to finish annealing by applying a decarburizing annealing and an annealing separating agent, by applying a cold rolling of two or more times of cold rolling sandwiching intermediate annealing, the acid-soluble Al in the steel, N,
When the content of Se and S is acid-soluble Al: 0.001 to 0.030%,
N: controlled within the range of 0.003 to 0.010%, Se + 2.47S ≦ 0.035%, and the grain size of the columnar crystal part of the slab after casting is 10 mm or less on average in a circle equivalent diameter of a cross section perpendicular to the elongation direction of the columnar crystal. And a slab heating temperature of 1300 ° C. or lower.

【0011】この発明では、スラブ組織を上記のように
制御するに当たり、鋳造時にスラブ表面から10mm以内の
部分が凝固温度から1300℃の温度域に滞在する時間を5
分以内とすることや、電磁攪拌を施すことが有効であ
る。また、必要に応じて、熱間圧延終了後、二次再結晶
開始までの間に、鋼板に窒化処理を施すことは、インヒ
ビターの抑制力が強化され、良好な二次再結晶を生じさ
せるので有効である。
According to the present invention, in controlling the slab structure as described above, the time during which a portion within 10 mm from the slab surface stays in the temperature range of 1300 ° C. from the solidification temperature during casting is set to 5 times.
It is effective to keep the time within minutes or to perform electromagnetic stirring. In addition, if necessary, after the end of hot rolling and before the start of secondary recrystallization, performing a nitriding treatment on the steel sheet enhances the inhibitory power of the inhibitor and produces a good secondary recrystallization. It is valid.

【0012】[0012]

【発明の実施の形態】以下に、この発明に至った経緯に
ついて述べる。方向性電磁鋼板の熱延板で耳割れが発生
し易い最大の要因は、方向性電磁鋼板のスラブ加熱温度
が一般鋼に比べて格段に高いためではないかと考え、ス
ラブ加熱温度を1150℃から1400℃までの範囲で変更する
実験を行った。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below. We believe that the biggest cause of edge cracking in hot-rolled steel sheets is that the slab heating temperature of grain-oriented electrical steel sheets is much higher than that of general steel. An experiment was performed in which the temperature was changed up to 1400 ° C.

【0013】(条件A)連続鋳造法によりC:0.048
%、Si:3.16%、Mn:0.08%、sol.Al:0.035 %、S:
0.019 %、Se:0.021 %及びN:0.0088%を含有し、残
部は鉄及び不可避的不純物よりなる組成の200 mm厚のス
ラブを8 本鋳込み、1150℃から1400℃の8通りの温度に
加熱後、熱間圧延して2.5 mmの熱延コイルとした。その
後、1000℃に60秒間保持する熱延板焼鈍を施し、酸洗し
たのち、0.34mmの厚みに冷間圧延した。その後、脱脂処
理を行ったのち、850 ℃で120 秒間の脱炭焼鈍を施し
た。脱炭焼鈍後、焼鈍分離剤を塗布して最終仕上焼鈍を
施した。最終仕上焼鈍後、未反応の焼鈍分離剤を除去
し、コロイダルシリカを含有するリン酸マグネシウムを
主成分とする絶縁コーティング剤を塗布し、800 ℃で焼
付け、製品とした。各製品から、板幅方向の中央付近で
圧延方向に沿ってエプスタインサイズの試験片を切り出
し、磁束密度B8を測定した。また、熱間圧延終了後に、
耳割れの発生状況を調査した。スラブ加熱温度と熱延板
の耳割れ発生頻度との関係を図1に、スラブ加熱温度と
製品の磁束密度B8との関係を図2に示す(シンボル○)
なお、耳割れの発生状況については、深さ3 mm以上の割
れの個数頻度を調査したものである(以降も同様)。図
1及び図2の結果から、条件Aではスラブ加熱温度を下
げることによって、確かに耳割れの発生頻度は減少した
が、製品の磁気特性の劣化も同時に生じた。
(Condition A) C: 0.048 by the continuous casting method
%, Si: 3.16%, Mn: 0.08%, sol.Al: 0.035%, S:
Eight 200 mm thick slabs containing 0.019%, Se: 0.021% and N: 0.0088%, with the balance consisting of iron and unavoidable impurities, were cast and heated to eight different temperatures from 1150 ° C to 1400 ° C. And hot-rolled into a 2.5 mm hot-rolled coil. Thereafter, hot-rolled sheet annealing maintained at 1000 ° C. for 60 seconds was performed, pickled, and then cold-rolled to a thickness of 0.34 mm. Thereafter, after degreasing, decarburizing annealing was performed at 850 ° C. for 120 seconds. After decarburizing annealing, a final finish annealing was performed by applying an annealing separator. After the final finish annealing, the unreacted annealing separating agent was removed, an insulating coating agent containing magnesium phosphate containing colloidal silica as a main component was applied, and baked at 800 ° C. to obtain a product. From each product, was cut out Epstein size along the rolling direction in the vicinity of the center of the plate width direction, the magnetic flux density was measured B 8. After hot rolling,
The occurrence of ear cracks was investigated. The relationship between the edge cracking incidence of slab heating temperature and the hot-rolled sheet in FIG. 1, showing the relationship between the magnetic flux density B 8 of the slab heating temperature and the product is shown in Figure 2 (symbol ○)
The frequency of occurrence of cracks in ears was determined by examining the frequency of cracks with a depth of 3 mm or more (the same applies hereinafter). From the results shown in FIGS. 1 and 2, under the condition A, lowering the slab heating temperature certainly reduced the frequency of occurrence of ear cracks, but also caused deterioration of the magnetic properties of the product.

【0014】(条件B)条件Aにおいて、スラブ加熱温
度の低下に伴い、製品の磁気特性が劣化したのは、イン
ヒビターとして含有させているAl、Nがスラブ加熱時に
完全には固溶しきれず、熱間圧延後に粗大な析出物とな
ってしまうからであることがわかった。熱延板でAl、N
が粗大析出すると、後の工程で微細に析出させることが
困難になり、粒成長の抑制力低下を招き、二次再結晶不
良につながる。
(Condition B) Under the condition A, the magnetic properties of the product deteriorated with the decrease in the slab heating temperature because Al and N contained as inhibitors cannot be completely dissolved in the slab during heating. It was found that coarse precipitates were formed after hot rolling. Al, N in hot rolled sheet
When coarse precipitates are formed, it becomes difficult to precipitate finely in a later step, leading to a decrease in the ability to suppress grain growth and leading to secondary recrystallization failure.

【0015】そこで、スラブ加熱温度が低くても、熱延
板でのAl、Nの粗大析出を防止するために、スラブのA
l、N含有量を減少させて完全に固溶させ、また、析出
の核になり易いSe化合物、S化合物を低減するいう方針
で、C:0.053 %、Si:3.14%、Mn:0.08%、sol.Al:
0.015 %、S:0.003 %、Se:0.004 %及びN:0.0079
%を含有し、残部は鉄及び不可避的不純物よりなる組成
のスラブを用いて実験を行った。スラブの鋳込み条件、
熱延以降の条件は条件Aと同じである。スラブ加熱温度
と熱延板の耳割れ発生頻度との関係を図1に、スラブ加
熱温度と製品の磁束密度B8との関係を図2に示す(シン
ボル●)。なお、磁束密度の測定に際しては、板幅方向
の中央付近から圧延方向に沿ってエプスタインサイズの
試験片を切り出し、B8を測定した。
Therefore, even if the slab heating temperature is low, in order to prevent coarse precipitation of Al and N on the hot-rolled sheet, the A
l, to reduce the N content to complete solid solution and to reduce Se compounds and S compounds which are likely to be nuclei for precipitation, C: 0.053%, Si: 3.14%, Mn: 0.08%, sol.Al:
0.015%, S: 0.003%, Se: 0.004% and N: 0.0079
%, With the balance being iron and unavoidable impurities. Slab casting conditions,
The conditions after the hot rolling are the same as the conditions A. The relationship between the edge cracking incidence of slab heating temperature and the hot-rolled sheet in FIG. 1, showing the relationship between the magnetic flux density B 8 of the slab heating temperature and the product is shown in Figure 2 (symbol ●). Note that when measuring the magnetic flux density, was cut out Epstein size along the vicinity of the center in the plate width direction to the rolling direction, were measured B 8.

【0016】図1及び図2の結果から、条件Bの成分組
成とすることにより、スラブ加熱温度低下に伴う製品の
磁気特性の劣化は解消された。また、耳割れの発生頻度
も低減し、スラブ加熱温度1300℃以下では深さ3 mm以上
の割れは全く生じなかった。この原因については、S、
Seの含有量を減らしたことにより、析出Sや析出Seを起
点とする亀裂の発生が抑えられたためと考えられる。
From the results shown in FIGS. 1 and 2, deterioration of the magnetic properties of the product due to the decrease in the slab heating temperature was eliminated by setting the component composition under the condition B. In addition, the frequency of occurrence of ear cracks was also reduced, and cracks with a depth of 3 mm or more did not occur at a slab heating temperature of 1300 ° C or less. As for the cause, S,
It is considered that the generation of cracks originating from the precipitated S and the precipitated Se was suppressed by reducing the content of Se.

【0017】しかしながら、製品のマクロ組織を観察し
たところ、スラブ加熱温度が1300℃以下では幅方向の端
部で二次再結晶不良が生じていた。そこで、スラブ加熱
温度1200℃、1300℃、1400℃の条件の製品について、磁
束密度B8の板幅方向変化を詳細に調査した。その結果を
図3に示す。図3より、板幅方向の中央部ではスラブ加
熱温度によらず磁気特性が良好であるが、板幅方向端部
では、スラブ加熱温度の低下に伴い、磁気特性が劣化す
ることが判明した。スラブの断面組織を観察したとこ
ろ、図4に模式的に示すようにスラブ幅方向端部の柱状
晶領域と製品で二次再結晶不良による磁束密度低下の生
じた領域が対応していることがわかった。
However, when the macrostructure of the product was observed, it was found that when the slab heating temperature was 1300 ° C. or less, secondary recrystallization failure occurred at the end in the width direction. Therefore, the slab heating temperature 1200 ° C., for 1300 ° C., 1400 ° C. Conditions product was investigated sheet width direction change of the magnetic flux density B 8 in detail. The result is shown in FIG. From FIG. 3, it was found that the magnetic properties were good at the center in the sheet width direction irrespective of the slab heating temperature, but the magnetic properties were degraded at the ends in the sheet width direction with a decrease in the slab heating temperature. Observation of the cross-sectional structure of the slab revealed that the columnar crystal region at the end in the width direction of the slab corresponded to the region where the magnetic flux density decreased due to secondary recrystallization failure in the product, as schematically shown in FIG. all right.

【0018】(条件C)幅方向端部の二次再結晶不良が
スラブ組織に起因している可能性が強いと考え、スラブ
の鋳込み速度を変化させる実験を行った。成分組成は条
件Bと同じであり、条件B(スラブb)に比べ鋳込み速
度を速めたスラブb1と、遅くしたスラブb2とを作製
した。いずれもスラブ厚みは200 mmとした。これらのス
ラブb1、b2を1200℃に加熱後、熱間圧延以降の工程
を行って製品とした。熱延以降の条件は条件A,Bと同
じである。得られた各製品に対し、磁束密度B8の板幅方
向変化を調査した。結果を条件Bの結果と共に図5に示
す。鋳込み速度を速めたスラブb1を用いた場合に幅方
向全域で磁束密度が良好であったのに対し、鋳込み速度
を遅くしたスラブb2を用いた場合には、幅方向端部で
の磁気特性劣化がより激しくなった。
(Condition C) It was considered that the secondary recrystallization defect at the end in the width direction might be caused by the slab structure, and an experiment was performed to change the casting speed of the slab. The component composition was the same as the condition B, and a slab b1 having a higher casting speed and a slab b2 having a lower casting speed than the condition B (slab b) were produced. In each case, the slab thickness was 200 mm. After heating these slabs b1 and b2 to 1200 ° C., hot rolling and subsequent steps were performed to obtain products. The conditions after hot rolling are the same as conditions A and B. The obtained each product were investigated the sheet width direction change of the magnetic flux density B 8. The results are shown in FIG. When the slab b1 with a higher casting speed was used, the magnetic flux density was good over the entire width direction. On the other hand, when the slab b2 with a lower casting speed was used, the magnetic characteristics deteriorated at the end in the width direction. Became more intense.

【0019】b1、b2のスラブ断面組織を観察し、条
件Bのスラブ(スラブb)と比較したところ、柱状晶の
存在量に大きな違いはなかったが、柱状晶粒の太さが大
きく異なっていた。柱状晶の伸長方向に垂直な断面の円
相当直径の平均値で評価すると、スラブb1:3.5 mm、
スラブb:11.2mm、スラブb2:14.6mmであった。
The slab cross-sectional structures of b1 and b2 were observed and compared with the slab of condition B (slab b). As a result, there was no significant difference in the abundance of columnar crystals, but the thickness of the columnar crystals was significantly different. Was. When evaluated by the average value of the circle equivalent diameter of the cross section perpendicular to the elongation direction of the columnar crystal, slab b1: 3.5 mm,
The slab b was 11.2 mm and the slab b2 was 14.6 mm.

【0020】スラブの柱状晶部分が二次再結晶に及ぼす
影響については、次のように考えられる。スラブの表面
に近い柱状晶粒は、その伸長方向が〈001〉方向に配
向し易いのに対し、スラブ内側の等軸晶粒は特に配向性
がない。熱延以降の工程で、圧延と再結晶とを繰り返し
ていくうちに、もともと柱状晶であった部分と等軸晶で
あった部分の組織、集合組織の差異は小さくなっていく
が、脱炭焼鈍後の段階でも完全にはなくならない。特
に、幅方向端部は、板厚方向にわたって全体がもともと
柱状晶であったことから、板幅方向内部とは集合組織に
差がある。スラブ加熱温度が高い場合には、インヒビタ
ーが十分固溶され、インヒビターの抑制力が強いため二
次再結晶は安定して生じるが、スラブ加熱温度が低い場
合には、脱炭焼鈍板の集合組織の多少の変化が二次再結
晶不良につながりやすい。
The effect of the columnar portion of the slab on the secondary recrystallization is considered as follows. Columnar grains close to the surface of the slab tend to be oriented in the <001> direction, whereas equiaxed grains inside the slab have no particular orientation. As the rolling and recrystallization are repeated in the steps after hot rolling, the difference in the structure and texture between the originally columnar and equiaxed parts becomes smaller. It does not completely disappear even after annealing. In particular, the end portion in the width direction originally had a columnar crystal throughout the thickness direction, so that there was a difference in texture from the inside in the width direction. When the slab heating temperature is high, the inhibitor is sufficiently dissolved and secondary inhibitor recrystallization occurs stably due to the strong inhibitory power of the inhibitor, but when the slab heating temperature is low, the texture of the decarburized annealed plate is increased. Slight change in the temperature tends to lead to secondary recrystallization failure.

【0021】ところで、再結晶核の生成場所としては、
粒内と粒界近傍があるが、粒径が小さい場合には後者が
主となる。また、粒内核生成では、再結晶方位は加工前
の方位に強く依存するのに対し、粒界近傍核生成では、
再結晶方位は加工前の方位にあまり依存しない。したが
って、スラブの柱状晶近傍であっても柱状晶の太さが細
い場合には、熱延以降の圧延再結晶過程で、粒界近傍か
らの再結晶核生成が主流となり、スラブの内部との集合
組織との差が比較的容易に消滅する。よって、スラブ加
熱温度が低く、インヒビターが比較的弱い条件下でも幅
方向全体で良好な二次再結晶が生じるものと考えられ
る。
By the way, the place where recrystallization nuclei are generated is as follows.
There are intragranular and near grain boundaries, but when the grain size is small, the latter is the main. In addition, in intragranular nucleation, the recrystallization orientation strongly depends on the orientation before processing, whereas in near-grain nucleation,
The recrystallization orientation does not depend much on the orientation before processing. Therefore, when the thickness of the columnar crystals is small even in the vicinity of the columnar crystals of the slab, in the rolling recrystallization process after hot rolling, recrystallization nucleation from the vicinity of the grain boundaries becomes mainstream, and the nucleus with the inside of the slab becomes The difference from the texture disappears relatively easily. Therefore, it is considered that good secondary recrystallization occurs in the entire width direction even under the condition that the slab heating temperature is low and the inhibitor is relatively weak.

【0022】なお、条件C(とB)では、スラブの鋳込
み速度の変化が柱状晶の太さの変化につながったものと
考えられるが、柱状晶の太さを決める主要因子として、
スラブ表面近傍の冷却速度が挙げられる。スラブb1、
b、b2の表面から10mmの部分が凝固温度から1300℃の
温度域に滞在する時間を見積もると、スラブb1:1 分
15秒、スラブb:5 分50秒、スラブb2:8 分0 秒であ
った。
Under conditions C (and B), it is considered that the change in the casting speed of the slab led to the change in the thickness of the columnar crystals. The main factors that determine the thickness of the columnar crystals are as follows.
The cooling rate near the slab surface is mentioned. Slab b1,
Estimating the time for the part 10 mm from the surface of b and b2 to stay in the temperature range of 1300 ° C. from the solidification temperature, slab b1: 1 minute
15 seconds, slab b: 5 minutes and 50 seconds, slab b2: 8 minutes and 0 seconds.

【0023】以下、この発明の構成要件について、より
具体的に説明する。 (成分について) C:0.005 %以上、0.08%以下 Cは、組織を改善し、二次再結晶を安定化させるために
必要な成分であり、そのためには0.005 %以上が必要で
ある。しかし、0.08%を超えると冷延時の破断が増加す
ること、また、脱炭焼鈍の際に脱炭に要する時間が長く
なり生産性が落ちることから、0.08%以下とする。
Hereinafter, the constituent features of the present invention will be described more specifically. (Regarding components) C: 0.005% or more and 0.08% or less C is a component necessary for improving the structure and stabilizing the secondary recrystallization. For that purpose, 0.005% or more is required. However, if the content exceeds 0.08%, the fracture during cold rolling increases, and the time required for decarburization during decarburization annealing increases and the productivity decreases, so the content is set to 0.08% or less.

【0024】Si:1.0 %以上、7.0 %以下 Siは、電気抵抗を増加させ鉄損を低減するのに必須の成
分であり、このためには1.0 %以上含有させることが必
要であるが、7.0 %を超えると加工性が劣化し、製造や
製品の加工が極めて困難になるので、1.0 %以上7.0 %
以下の範囲とする。
Si: 1.0% or more and 7.0% or less Si is an essential component for increasing electric resistance and reducing iron loss. For this purpose, it is necessary to contain 1.0% or more. %, The workability deteriorates and the production and processing of the product become extremely difficult. Therefore, 1.0% or more and 7.0%
The range is as follows.

【0025】Mn:0.03%以上、2.5 %以下 Mnも同じく電気抵抗を高め、また、製造時の熱間加工性
を向上させるので必要な成分である。この目的のために
は、0.03%以上の含有が必要であるが、2.5 %を超えて
含有した場合、γ変態を誘起して磁気特性が劣化するの
で、0.03%以上、2.5 %以下の範囲とする。
Mn: 0.03% or more and 2.5% or less Mn is also a necessary component because it also increases electric resistance and improves hot workability during manufacturing. For this purpose, a content of 0.03% or more is necessary. However, if the content exceeds 2.5%, γ transformation is induced and magnetic properties are deteriorated. Therefore, a range of 0.03% or more and 2.5% or less is set. I do.

【0026】酸可溶性Al:0.001 %以上、0.030 %以下 Alはインヒビター成分として0.001 %以上、0.030% 以
下含有させることが必要である。AlはNと結びついてAl
N としてインヒビターの役割を果たすが、AlNをスラブ
加熱時に固溶させ、熱延板焼鈍の昇温過程で微細析出さ
せることにより、一次再結晶粒の成長抑制効果が高ま
る。しかし、Alの含有量がsol.Alで0.001%未満の場合
は、熱延板焼鈍の昇温過程において析出するAlN の量が
不足し、逆に0.030 %を超える場合は、1300℃以下での
スラブ加熱の際にAlN の固溶が困難となるために熱延板
焼鈍の昇温過程において微細に析出するAlN の量が不足
する。したがって、インヒビターとしての効果を有効に
発揮させるために、Alの含有量は0.001 %以上、0.030
%以下とする。
Acid-soluble Al: 0.001% or more and 0.030% or less Al must be contained as an inhibitor component in an amount of 0.001% or more and 0.030% or less. Al is combined with N and Al
Although N serves as an inhibitor, the effect of suppressing the growth of primary recrystallized grains is enhanced by dissolving AlN during slab heating and finely precipitating it during the heating process of hot-rolled sheet annealing. However, when the Al content is less than 0.001% in sol.Al, the amount of AlN precipitated during the heating process of hot-rolled sheet annealing becomes insufficient. Conversely, when the Al content exceeds 0.030%, the Since the solid solution of AlN becomes difficult during slab heating, the amount of AlN that precipitates finely during the heating process of hot-rolled sheet annealing is insufficient. Therefore, in order to effectively exhibit the effect as an inhibitor, the content of Al should be 0.001% or more and 0.030% or more.
% Or less.

【0027】N:0.0030%以上、0.0100%以下 Nは、AlN を形成し、インヒビターとして機能するの
で、0.030 %以上含有させることが必要である。しかし
ながら、0.0100%を超えて含有すると鋼中でガス化し、
ふくれなどの欠陥をもたらすので、0.0030%以上、0.01
00%以下の範囲にしなければならない。
N: not less than 0.0030% and not more than 0.0100% Since N forms AlN and functions as an inhibitor, it is necessary to contain 0.030% or more. However, if it exceeds 0.0100%, it will gasify in the steel,
0.0030% or more, 0.01 due to defects such as blisters
Must be in the range of 00% or less.

【0028】Se及びS:Se+S≦0.035 % Se、SはMnあるいはCuと結びついてインヒビターとして
機能するが、この発明の技術では、実験1で述べたよう
にSe、Sを過剰に含有させた場合、MnSeあるいはMnS を
核にしてAlN の粗大析出が生じやすくなり、インヒビタ
ーの抑制力が却って弱くなる。Se、S量は、スラブ加熱
温度が1300℃以下の条件下では、Se+2.47Sを0.035 %
以下にすることが必要である。
Se and S: Se + S ≦ 0.035% Se and S are combined with Mn or Cu to function as an inhibitor. In the technique of the present invention, as described in Experiment 1, when Se and S are excessively contained. , MnSe or MnS as a nucleus tends to cause coarse precipitation of AlN, and the inhibitory power of the inhibitor is rather weakened. The amount of Se and S is as follows: under conditions where the slab heating temperature is 1300 ° C. or less, 0.035% of Se + 2.47S
It is necessary to:

【0029】その他のインヒビター成分 Sb、Sn、Cr、Ge、Nb、Ti、Bなどはインヒビターとして
機能させることができるので、必要に応じて添加するこ
ともできる。特に、SbもしくはSnは粒界偏析しやすく、
粒成長抑制力の補強に格段の効果を有する。これらの成
分をインヒビターとして機能させるためのそれぞれの含
有量としては、Sb:0.001 %以上、Sn:0.001 %以上、
Cr:0.001 %以上、Ge:0.001 %以上、Nb:0.001 %以
上、Ti:0.0005%以上、B:0.0001%以上を必要とす
る。しかし、Sb:0.080%を超え、Sn:0.30%超え、C
r:0.30%超え、Ge:0.30%超え、Nb:0.30%超え、T
i:0.0020%超え、B:0.0020%超えで含有した場合に
は、製品のベント特性など機械的特性が劣化する。した
がって、これらの成分をインヒビターとして利用する場
合の含有量は、それぞれ、Sbは0.001 〜0.080 %の範
囲、Snは0.001 〜0.30%の範囲、Crは0.001 〜0.30%の
範囲、Geは0.001 〜0.30%の範囲、Nbは0.001 〜0.30%
の範囲、Tiは0.0005〜0.0020%の範囲、Bは0.0001〜0.
0020%の範囲とする。
Other inhibitor components Sb, Sn, Cr, Ge, Nb, Ti, B, etc. can function as inhibitors, and can be added as necessary. In particular, Sb or Sn tends to segregate at the grain boundaries,
It has a remarkable effect on reinforcing the grain growth suppressing power. The contents of these components to function as inhibitors are as follows: Sb: 0.001% or more, Sn: 0.001% or more,
Cr: 0.001% or more, Ge: 0.001% or more, Nb: 0.001% or more, Ti: 0.0005% or more, B: 0.0001% or more are required. However, Sb: more than 0.080%, Sn: more than 0.30%, C
r: Over 0.30%, Ge: Over 0.30%, Nb: Over 0.30%, T
If i: 0.0020% or more, B: 0.0020% or more, mechanical properties such as vent properties of the product are deteriorated. Therefore, when these components are used as inhibitors, the contents of Sb are in the range of 0.001 to 0.080%, Sn is in the range of 0.001 to 0.30%, Cr is in the range of 0.001 to 0.30%, and Ge is 0.001 to 0.30%. % Range, Nb 0.001 to 0.30%
, Ti is in the range of 0.0005 to 0.0020%, B is 0.0001 to 0.
0020%.

【0030】(スラブの鋳造)以上の成分に調整された
溶鋼を連続鋳造法あるいは造塊法で鋳造し、必要に応じ
て分塊工程を挟んでスラブとする。スラブ組織は、先の
実験で述べたように、スラブの柱状晶部の粒の大きさに
関して柱状晶の伸長方向に垂直な断面の円相当直径が平
均10mm以下となるように制御する。円相当直径が平均10
mmよりも大きいと、鋼板の幅方向端部で磁気特性の劣化
を招く。スラブ組織を、このように制御するにあたり、
スラブ表面から10mm以内の部分が凝固温度から1300℃の
温度域に滞在する時間を5 分以内とすることや電磁攪拌
を施すことが有効である。この他、先の実験で行ったよ
うに鋳込み速度を高めることもできる。
(Casting of Slab) The molten steel adjusted to the above components is cast by a continuous casting method or an ingot making method, and if necessary, a slab is formed with a lumping step. As described in the previous experiment, the slab structure is controlled so that the equivalent circle diameter of the cross section perpendicular to the elongation direction of the columnar crystal is 10 mm or less on average with respect to the grain size of the columnar crystal part of the slab. Average circle equivalent diameter is 10
If it is larger than mm, the magnetic properties will be degraded at the widthwise end of the steel sheet. In controlling the slab organization in this way,
It is effective to make the time within 10mm from the slab surface stay in the temperature range of 1300 ° C from the solidification temperature within 5 minutes or to perform electromagnetic stirring. In addition, the casting speed can be increased as performed in the previous experiment.

【0031】(熱間圧延)以上のように調整されたコイ
ルは、通常の方法に従い、スラブ加熱に供されたのち、
熱間圧延により熱延コイルとされる。スラブ加熱温度
は、熱延時の耳割れを防止するために1300℃以下とす
る。スラブ加熱温度が低いことは、エネルギーコスト低
減のためにも好ましい。なお、近年、スラブ加熱を行わ
ず連続鋳造後、直接に熱間圧延を行う方法が開示されて
いるが、この発明は、スラブ加熱温度を低くとれるの
で、この発明においても好適に実施し得る。
(Hot rolling) The coil adjusted as described above is subjected to slab heating according to a usual method,
A hot-rolled coil is formed by hot rolling. The slab heating temperature is set to 1300 ° C. or less to prevent edge cracks during hot rolling. A low slab heating temperature is also preferable for reducing energy costs. In recent years, a method has been disclosed in which hot rolling is performed directly after continuous casting without performing slab heating. However, the present invention can be suitably implemented in the present invention because the slab heating temperature can be lowered.

【0032】(熱延板焼鈍)熱間圧延された鋼板には、
引き続いて、熱延板焼鈍を施す。熱延板焼鈍の目的は、
昇温過程でのインヒビターAlN の微細析出と組織の均一
化であるが、この発明ではスラブ加熱温度が低いため、
熱延板組織が比較的均一であり、そのため、インヒビタ
ーの微細析出に重点をおいて熱延板焼鈍を行う。熱延板
焼鈍の温度、時間は特に限定するものではないが、他の
工程条件とも組み合わせて、インヒビターの抑制力を強
化すべく適正化された条件で熱延板焼鈍を行うことが有
効である。
(Hot Rolled Sheet Annealing)
Subsequently, hot-rolled sheet annealing is performed. The purpose of hot rolled sheet annealing is
This is the fine precipitation of the inhibitor AlN and the homogenization of the structure during the heating process, but in the present invention, the slab heating temperature is low,
Since the hot-rolled sheet structure is relatively uniform, hot-rolled sheet annealing is performed with emphasis on fine precipitation of the inhibitor. The temperature and time of the hot-rolled sheet annealing are not particularly limited, but it is effective to perform the hot-rolled sheet annealing under conditions optimized to enhance the inhibitory force of the inhibitor in combination with other process conditions. .

【0033】(冷間圧延)熱延板焼鈍を施したのち、1
回あるいは中間焼鈍を挟む2 回以上の冷間圧延により最
終板厚とする。冷間圧延はゼンジミア圧延機で行っても
タンデム圧延機で行っても良い。圧延温度を常温より高
くし、圧延時の動的歪時効あるいはパス間での静的歪時
効により集合組織を制御する方法は、この発明において
も製品の磁気特性の向上に有効である。
(Cold rolling) After hot-rolled sheet annealing, 1
The final thickness is obtained by cold rolling two or more times, with or without intermediate annealing. Cold rolling may be performed by a Sendzimir rolling mill or a tandem rolling mill. A method in which the rolling temperature is set higher than the normal temperature and the texture is controlled by dynamic strain aging during rolling or static strain aging between passes is also effective in improving the magnetic properties of the product in the present invention.

【0034】(脱炭焼鈍、最終仕上焼鈍、コーティン
グ)冷間圧延後、脱炭焼鈍を常法に従い施したのち、焼
鈍分離剤を塗布し、最終仕上焼鈍を施す。最終仕上焼鈍
後は、必要に応じて絶縁コーティングを塗布、焼付け、
更に平坦か焼鈍を施し、製品とする。
(Decarburizing annealing, final finishing annealing, coating) After cold rolling, decarburizing annealing is performed according to a conventional method, and then an annealing separator is applied, followed by final finishing annealing. After final finishing annealing, apply and bake an insulation coating as necessary.
Further, it is flattened or annealed to obtain a product.

【0035】[0035]

【実施例】(実施例1)表1に示すa〜iの成分組成の
200 mm厚のスラブを各1本、連続鋳造法により鋳造し
た。この鋳造の時には電磁攪拌を施し、また、スラブ冷
却過程で表面から10mmの部分が凝固温度から1300℃迄の
温度域に滞在する時間が60秒から120 秒になるように制
御した。次に、各スラブを1200℃の温度に加熱後、熱間
圧延して2.5 mmの熱延コイルとし、引き続き、1000℃に
30秒間保持する熱延板焼鈍を施した。その後、酸洗した
後、0.34mmの厚みに冷間圧延し、脱脂処理を行ったの
ち、850 ℃で120 秒間の脱炭焼鈍を施した。脱炭焼鈍
後、焼鈍分離剤を塗布して最終仕上焼鈍を施した。最終
仕上焼鈍後、未反応の焼鈍分離剤を除去し、コロイダル
シリカを含有するリン酸マグネシウムを主成分とする絶
縁コーティングを塗布し、800 ℃で焼き付け製品とし
た。各製品から、板幅方向の中央付近及び端部から圧延
方向に沿ってエプスタインサイズの試験片を切り出し、
磁束密度B8と鉄損値W1 7/50(磁束密度1.7 T ,50Hzにお
ける鉄損)を測定した。熱間圧延終了後に、深さ3 mm以
上の耳割れの発生状況を調査した。結果を表2に示す。
表2に示されるように、スラブの成分組成がこの発明の
要件を満足する場合に、熱間圧延で耳割れが生じず、か
つ、製品の磁気特性が良好であった。
EXAMPLES (Example 1) The composition of the components a to i shown in Table 1
One 200 mm thick slab was cast by a continuous casting method. During this casting, electromagnetic stirring was applied, and the time during which the portion 10 mm from the surface stayed in the temperature range from the solidification temperature to 1300 ° C. during the slab cooling process was controlled to be 60 seconds to 120 seconds. Next, each slab was heated to a temperature of 1200 ° C., and then hot-rolled into a hot-rolled coil of 2.5 mm.
Hot rolled sheet annealing was performed for 30 seconds. Then, after pickling, it was cold-rolled to a thickness of 0.34 mm, degreased, and then decarburized at 850 ° C. for 120 seconds. After decarburizing annealing, a final finish annealing was performed by applying an annealing separator. After the final finish annealing, the unreacted annealing separating agent was removed, an insulating coating mainly composed of magnesium phosphate containing colloidal silica was applied, and the product was baked at 800 ° C. From each product, cut out Epstein size test pieces along the rolling direction from near the center and the end in the sheet width direction,
The magnetic flux density B 8 and iron loss W 1 7/50 were measured (magnetic flux density 1.7 T, the iron loss in 50 Hz). After the completion of hot rolling, the occurrence of ear cracks having a depth of 3 mm or more was investigated. Table 2 shows the results.
As shown in Table 2, when the component composition of the slab satisfied the requirements of the present invention, ear cracks did not occur in hot rolling and the magnetic properties of the product were good.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】(実施例2)表1に示すfの成分組成の20
0 mm厚のスラブ9本を連続鋳造法により鋳造した。その
冷却過程において、表面から10mmの部分が凝固温度から
1300℃の温度域に滞在する時間を60秒(±10秒)に制御
したスラブを3本、240 秒(±20秒)に制御したスラブ
を3本、480 秒(±30秒)に制御したスラブを3本とし
た。次に、同一条件のスラブ3本に対し、1150℃、1250
℃、1350℃の各温度に加熱後、熱間圧延して2.5 mm厚の
熱延コイルとし、引き続き、900 ℃に50秒間保持する熱
延板焼鈍を施した。その後、酸洗した後、0.34mmの厚み
に冷間圧延し、脱脂処理を行ったのち、850 ℃で120 秒
間の脱炭処理を施した。脱炭焼鈍後、焼鈍分離剤を塗布
して最終仕上焼鈍を施した。最終仕上焼鈍、未反応の焼
鈍分離剤を除去し、コロイダルシリカを含有するリン酸
マグネシウムを主成分とする絶縁コーティングを塗布
し、800 ℃で焼き付け、製品とした。各製品から、板幅
方向の中央付近及び端部から圧延方向に沿ってエプスタ
インサイズの試験片を切り出し、磁束密度B8と鉄損値W
17/50(磁束密度1.7 T ,50Hzにおける鉄損)を測定し
た。また、熱間圧延終了後に、深さ3mm以上の耳割れの
発生状況を調査した。その結果を表3に示す。表3に示
されるように、スラブの柱状晶の粒の大きさに関して柱
状晶の伸長方向に垂直な断面の円相当径が平均10mm以下
であり、かつ、スラブ加熱温度が1300℃以下である場合
に、熱間圧延で耳割れが生じず、かつ、製品の磁気特性
が良好であった。
Example 2 20% of the component composition of f shown in Table 1
Nine slabs having a thickness of 0 mm were cast by a continuous casting method. During the cooling process, the part 10 mm from the surface
Three slabs were controlled to stay in the 1300 ° C temperature range at 60 seconds (± 10 seconds), three slabs were controlled to 240 seconds (± 20 seconds), and 480 seconds (± 30 seconds). There were three slabs. Next, for three slabs under the same conditions, 1150 ° C, 1250
After being heated to each temperature of 1350 ° C. and 1350 ° C., it was hot-rolled into a hot-rolled coil having a thickness of 2.5 mm, and subsequently subjected to hot-rolled sheet annealing maintained at 900 ° C. for 50 seconds. Then, after pickling, it was cold-rolled to a thickness of 0.34 mm, degreased, and then decarburized at 850 ° C. for 120 seconds. After decarburizing annealing, a final finish annealing was performed by applying an annealing separator. The final finish annealing, the unreacted annealing separating agent was removed, an insulating coating mainly composed of magnesium phosphate containing colloidal silica was applied and baked at 800 ° C. to obtain a product. From each product, test specimens of Epstein size were cut out from the vicinity of the center and the end in the strip width direction along the rolling direction, and the magnetic flux density B 8 and iron loss value W
17/50 (magnetic flux density 1.7 T, iron loss at 50 Hz) was measured. After the completion of hot rolling, the occurrence of ear cracks having a depth of 3 mm or more was investigated. Table 3 shows the results. As shown in Table 3, with respect to the size of the columnar crystal grains of the slab, the equivalent circle diameter of the cross section perpendicular to the direction of extension of the columnar crystal is 10 mm or less on average, and the slab heating temperature is 1300 ° C or less. In addition, ear cracks did not occur in the hot rolling, and the magnetic properties of the product were good.

【0039】[0039]

【表3】 [Table 3]

【0040】(実施例3)表1に示すcとfの成分組成
の250 mm厚のスラブを各2本、連続鋳造法により鋳造し
た。鋳造時には電磁攪拌を施し、また、スラブ冷却過程
で表面から10mmの部分が凝固温度から1300℃の温度域に
滞在する時間が60秒から120 秒になるよう制御した。次
に、各成分のスラブに対し、1200℃、1400℃の温度に加
熱後、熱間圧延して2.8 mm厚の熱延コイルとし、引き続
き、950 ℃に50秒間保持する熱延板焼鈍を施した。その
後、酸洗し、1.7 mmの厚みまでの第1回目冷間圧延を施
し、950 ℃で中間焼鈍を施したのち、再び酸洗し、0.22
mmの厚みまでの第2回目の冷間圧延を施した。その後、
脱脂処理を行った後、850 ℃で120 秒間の脱炭焼鈍を施
した。脱炭焼鈍後、焼鈍分離剤を塗布して最終仕上焼鈍
を施した。最終仕上焼鈍後、未反応の焼鈍分離剤を除去
し、コロイダルシリカを含有するリン酸マグネシウムを
主成分とする絶縁コーティングを塗布し、800 ℃で焼き
付け製品とした。各製品から、板幅方向の中央付近と端
部とから圧延方向に沿ってエプスタインサイズの試験片
を切り出し、磁束密度B8と鉄損値W17/50(磁束密度1.7
T ,50Hzにおける鉄損)を測定した。また、熱間圧延終
了後に、深さ3mm以上の耳割れの発生状況を調査した。
その結果を表4に示す。表4に示されるように、スラブ
の成分組成がこの発明の要件を満たし、かつ、スラブ加
熱温度が1300℃以下である場合に、熱間圧延で耳割れが
生じず、かつ、製品の磁気特性が良好であった。
Example 3 Two slabs each having a component composition of c and f shown in Table 1 and having a thickness of 250 mm were cast by a continuous casting method. During casting, electromagnetic stirring was applied, and the time required for the part 10 mm from the surface to stay in the temperature range from the solidification temperature to 1300 ° C during the slab cooling process was controlled from 60 seconds to 120 seconds. Next, the slab of each component was heated to a temperature of 1200 ° C. and 1400 ° C., then hot-rolled into a hot-rolled coil having a thickness of 2.8 mm, and subsequently subjected to hot-rolled sheet annealing at 950 ° C. for 50 seconds. did. Thereafter, it is pickled, subjected to a first cold rolling to a thickness of 1.7 mm, subjected to an intermediate annealing at 950 ° C., and then pickled again to obtain a 0.22
A second cold rolling to a thickness of mm was performed. afterwards,
After the degreasing treatment, decarburization annealing was performed at 850 ° C. for 120 seconds. After decarburizing annealing, a final finish annealing was performed by applying an annealing separator. After the final finish annealing, the unreacted annealing separating agent was removed, an insulating coating mainly composed of magnesium phosphate containing colloidal silica was applied, and the product was baked at 800 ° C. From each product, test specimens of Epstein size were cut out from the vicinity of the center and the end in the sheet width direction along the rolling direction, and the magnetic flux density B 8 and iron loss value W 17/50 (magnetic flux density 1.7
T, iron loss at 50 Hz) was measured. After the completion of hot rolling, the occurrence of ear cracks having a depth of 3 mm or more was investigated.
Table 4 shows the results. As shown in Table 4, when the component composition of the slab satisfies the requirements of the present invention and the slab heating temperature is 1300 ° C. or lower, the ear cracks do not occur in hot rolling and the magnetic properties of the product Was good.

【0041】[0041]

【表4】 [Table 4]

【0042】(実施例4)表1に示すdとiの成分組成
の250 mm厚のスラブを各2本を連続鋳造法により鋳造し
た。鋳造時にはスラブ冷却過程で表面から10mmの部分が
凝固温度から1300℃の温度域に滞在する時間が60秒から
120 秒になるよう制御した。次に、各成分のスラブに対
し、1150℃、1350℃の温度に加熱後、熱間圧延して2.4
mm厚の熱延コイルとし、引き続き、1000℃に50秒間保持
する熱延板焼鈍を施した。その後、酸洗し、0.34mmの厚
みまで冷間圧延を施した。その後、脱脂処理を行った
後、850 ℃で120 秒間の脱炭焼鈍を施した。脱炭焼鈍
後、ストリップを走行させている状態で、750 ℃で30秒
の窒化処理を、水素75%、窒素25%と微量のアンモニア
の混合ガス中で行い、鋼板の窒素量を220 ppm とした。
次いで、焼鈍分離剤を塗布して最終仕上焼鈍を施した。
最終仕上焼鈍後、未反応の焼鈍分離剤を除去し、コロイ
ダルシリカを含有するリン酸マグネシウムを主成分とす
る絶縁コーティングを塗布し、800 ℃で焼き付け製品と
した。各製品から、板幅方向の中央付近と端部とから圧
延方向に沿ってエプスタインサイズの試験片を切り出
し、磁束密度B8と鉄損値W17/50(磁束密度1.7 T ,50Hz
における鉄損)を測定した。また、熱間圧延終了後に、
深さ3mm以上の耳割れの発生状況を調査した。その結果
を表5に示す。表5に示されるように、スラブの成分組
成がこの発明の要件を満たし、かつ、スラブ加熱温度が
1300℃以下である場合に、熱間圧延で耳割れが生じず、
かつ、製品の磁気特性が良好であった。
Example 4 Two 250 mm thick slabs each having the component compositions d and i shown in Table 1 were cast by a continuous casting method. During casting, the time required for the part 10 mm from the surface to stay in the temperature range from the solidification temperature to 1300 ° C during the slab cooling process from 60 seconds
Controlled to 120 seconds. Next, the slab of each component was heated to a temperature of 1150 ° C. and 1350 ° C., and then hot-rolled to 2.4.
A hot-rolled coil having a thickness of mm was formed, and subsequently a hot-rolled sheet was held at 1000 ° C. for 50 seconds. Then, it was pickled and cold rolled to a thickness of 0.34 mm. Then, after performing degreasing, decarburization annealing was performed at 850 ° C. for 120 seconds. After the decarburizing annealing, while the strip was running, nitriding treatment was performed at 750 ° C for 30 seconds in a mixed gas of 75% hydrogen, 25% nitrogen and a small amount of ammonia, and the nitrogen content of the steel sheet was reduced to 220 ppm. did.
Next, an annealing separator was applied to perform a final finish annealing.
After the final finish annealing, the unreacted annealing separating agent was removed, an insulating coating mainly composed of magnesium phosphate containing colloidal silica was applied, and the product was baked at 800 ° C. From each product, test specimens of Epstein size were cut out from the vicinity of the center and the end in the sheet width direction along the rolling direction, and the magnetic flux density B 8 and iron loss value W 17/50 (magnetic flux density 1.7 T, 50 Hz
Was measured. After hot rolling,
The occurrence of ear cracks with a depth of 3 mm or more was investigated. Table 5 shows the results. As shown in Table 5, the component composition of the slab satisfies the requirements of the present invention, and the slab heating temperature is
When the temperature is 1300 ° C or less, edge cracking does not occur in hot rolling,
In addition, the magnetic properties of the product were good.

【0043】[0043]

【表5】 [Table 5]

【0044】[0044]

【発明の効果】かくしてこの発明によれば、耳割れがな
く、磁気特性が良好な方向性電磁鋼板の製造が可能にな
る。
As described above, according to the present invention, it is possible to produce a grain-oriented electrical steel sheet having no cracks and good magnetic properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】スラブ加熱温度と熱延板の耳割れ頻度との関係
を示す図である。
FIG. 1 is a diagram showing a relationship between a slab heating temperature and a frequency of edge cracks of a hot-rolled sheet.

【図2】スラブ加熱温度と製品の磁気特性(磁束密度
B8)との関係を示す図である。
Fig. 2 Slab heating temperature and product magnetic properties (magnetic flux density)
B 8 ) is a diagram showing the relationship.

【図3】製品の磁束密度B8の板幅方向の変化をスラブ加
熱温度ごとに示す図である。
3 is a diagram showing a change in the plate width direction of the product of the magnetic flux density B 8 each slab heating temperature.

【図4】スラブ断面組織と製品の二次再結晶不良発生域
との関係を示す模式図である。
FIG. 4 is a schematic diagram showing a relationship between a slab cross-sectional structure and a secondary recrystallization defect generation region of a product.

【図5】異なる鋳込み条件のスラブを用いた場合の製品
の板幅方向の磁束密度B8の変化を示す図である。
5 is a diagram showing a change in magnetic flux density B 8 in the plate width direction of the product in the case of using slabs different casting conditions.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/16 H01F 1/16 B (72)発明者 中西 匡 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K033 AA02 BA01 CA02 CA03 CA05 CA06 CA07 CA09 DA01 FA01 FA12 GA00 HA01 HA03 JA04 LA00 MA00 5E041 AA02 AA11 AA19 BC01 CA02 HB05 HB07 HB11 HB14 NN01 NN17 NN18 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 1/16 H01F 1/16 B (72) Inventor Tadashi Tadashi Nakanishi 1-chome Mizushima Kawasaki-dori, Kurashiki City, Okayama Prefecture No) Kawasaki Steel Corporation Mizushima Works F-term (reference) 4K033 AA02 BA01 CA02 CA03 CA05 CA06 CA07 CA09 DA01 FA01 FA12 GA00 HA01 HA03 JA04 LA00 MA00 5E041 AA02 AA11 AA19 BC01 CA02 HB05 HB07 HB11 HB14 NN18NN

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 C:0.005 〜0.08wt%、Si:1.0 〜7.0
wt%、Mn:0.03〜2.5 wt%を含有する鋼を溶製し鋳造し
てけい素鋼スラブとし、このけい素鋼スラブを加熱後、
熱間圧延し、次いで熱延板焼鈍を施した後、一回又は中
間焼鈍を挟む二回以上の冷間圧延により最終板厚とし、
更に、脱炭焼鈍及び焼鈍分離剤を塗布して仕上焼鈍を施
す方向性電磁鋼板の製造方法において、 鋼中の酸可溶性Al、N、Se及びSの含有量を、 酸可溶性Al:0.001 〜0.030 wt%、N:0.003 〜0.010
wt%、Se+2.47S≦0.035 wt%の範囲に制御し、 鋳造後のスラブの柱状晶部の粒の大きさを柱状晶の伸長
方向に垂直な断面の円相当径で平均10mm以下に制御し、 スラブ加熱温度を1300℃以下とすることを特徴とする耳
割れのない方向性電磁鋼板の製造方法。
1. C: 0.005 to 0.08 wt%, Si: 1.0 to 7.0
wt%, Mn: 0.03 to 2.5 wt% of steel is melted and cast to form a silicon steel slab. After heating this silicon steel slab,
After hot rolling, and then subjected to hot-rolled sheet annealing, the final thickness by cold rolling one or two or more times sandwiching the intermediate annealing,
Further, in a method for producing a grain-oriented electrical steel sheet in which decarburizing annealing and an annealing separator are applied and finish annealing is performed, the content of acid-soluble Al, N, Se and S in the steel is determined by adjusting the content of acid-soluble Al: 0.001 to 0.030. wt%, N: 0.003 to 0.010
wt%, Se + 2.47S ≦ 0.035 wt%, and control the grain size of the columnar crystal part of the slab after casting to an average of 10 mm or less in terms of the equivalent circle diameter of the cross section perpendicular to the elongation direction of the columnar crystal. A method for producing a grain-oriented electrical steel sheet without edge cracks, wherein the slab heating temperature is 1300 ° C or lower.
【請求項2】 鋳造時にスラブ表面から10mm以内の部分
が凝固温度から1300℃の温度域に滞在する時間を5 分以
内とする請求項1記載の耳割れのない方向性電磁鋼板の
製造方法。
2. The method for producing a grain-oriented electrical steel sheet without edge cracks according to claim 1, wherein the time during which the portion within 10 mm from the slab surface stays in the temperature range of 1300 ° C. from the solidification temperature during casting is within 5 minutes.
【請求項3】 鋳造時に電磁攪拌を施す、請求項1又は
2記載の耳割れがない方向性電磁鋼板の製造方法。
3. The method according to claim 1, wherein electromagnetic stirring is performed during casting.
【請求項4】 熱間圧延終了後、二次再結晶開始までの
間に、鋼板に窒化処理を施すことを特徴とする請求項
1,2又は3記載の耳割れがない方向性電磁鋼板の製造
方法。
4. The grain-oriented electrical steel sheet according to claim 1, wherein the steel sheet is subjected to nitriding treatment after completion of hot rolling and before the start of secondary recrystallization. Production method.
JP19137998A 1998-07-07 1998-07-07 Method for producing grain-oriented electrical steel sheet without ear cracks Expired - Fee Related JP3849310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19137998A JP3849310B2 (en) 1998-07-07 1998-07-07 Method for producing grain-oriented electrical steel sheet without ear cracks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19137998A JP3849310B2 (en) 1998-07-07 1998-07-07 Method for producing grain-oriented electrical steel sheet without ear cracks

Publications (2)

Publication Number Publication Date
JP2000017335A true JP2000017335A (en) 2000-01-18
JP3849310B2 JP3849310B2 (en) 2006-11-22

Family

ID=16273624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19137998A Expired - Fee Related JP3849310B2 (en) 1998-07-07 1998-07-07 Method for producing grain-oriented electrical steel sheet without ear cracks

Country Status (1)

Country Link
JP (1) JP3849310B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530056B1 (en) * 2001-11-13 2005-11-22 주식회사 포스코 Method for manufacturing grain oriented electrical steel sheet with excellent productivity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530056B1 (en) * 2001-11-13 2005-11-22 주식회사 포스코 Method for manufacturing grain oriented electrical steel sheet with excellent productivity

Also Published As

Publication number Publication date
JP3849310B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
WO2014013615A1 (en) Process for producing grain-oriented electrical steel sheet
JP4203238B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH02259020A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2014508858A (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
JP4932544B2 (en) Method for producing grain-oriented electrical steel sheet capable of stably obtaining magnetic properties in the plate width direction
JPH03219020A (en) Production of nonoriented silicon steel sheet
JP2000017334A (en) Production of grain-oriented and nonoriented silicon steel sheet having low core loss and high magnetic flux density and continuous annealing equipment
JP3846064B2 (en) Oriented electrical steel sheet
JPH03294427A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP3928275B2 (en) Electrical steel sheet
JP3849310B2 (en) Method for producing grain-oriented electrical steel sheet without ear cracks
JP2000073120A (en) Production of grain oriented silicon steel sheet free from edge crack and edge distortion
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3326083B2 (en) Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
JP3133855B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH07138643A (en) Production of grain-oriented electrical steel sheet excellent in magnetic property
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
JP3858280B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP3527276B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2735899B2 (en) Method for producing unidirectional silicon steel sheet with uniform magnetic properties
JP2001192733A (en) Method for producing grain oriented silicon steel sheet high in accumulation degree in goss orientation

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050426

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees