JP2000015410A - Metod for oscillating mold for continuous casting - Google Patents

Metod for oscillating mold for continuous casting

Info

Publication number
JP2000015410A
JP2000015410A JP19298898A JP19298898A JP2000015410A JP 2000015410 A JP2000015410 A JP 2000015410A JP 19298898 A JP19298898 A JP 19298898A JP 19298898 A JP19298898 A JP 19298898A JP 2000015410 A JP2000015410 A JP 2000015410A
Authority
JP
Japan
Prior art keywords
mold
casting
time
continuous casting
strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19298898A
Other languages
Japanese (ja)
Inventor
Seiji Itoyama
誓司 糸山
Yasuo Kishimoto
康夫 岸本
Kenichi Tanmachi
健一 反町
Hiroshi Nishikawa
廣 西川
Masaki Takashi
昌樹 高士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19298898A priority Critical patent/JP2000015410A/en
Publication of JP2000015410A publication Critical patent/JP2000015410A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the surface defect of a cast slab by shallowing the depth of claws caused at the time of continuously casting without adding any process by oscillating a mold based on a specific correlation. SOLUTION: The mold for continuous casting is oscillated based on the following inequality D>a*Lnb*fcx ΔTd Wherein D is the scale thickness in conversion from a removed slag thickness until a cast slab strand becomes a finish product (mm), Ln is the max. descending distance of the mold in the condition of making the drawing-out cast slab strand as the reference (mm) and (a)-(d) are constants depending on the casting condition. In the formulas I, II III, Vc is the casting velocity (mm/min), VL is the rising velocity of molten metal surface level, tc is the time of starting to satisfy the condition of Vm+ VL>Vc during oscillating the mold (min), tnr is the time satisfying Vm+VL>Vc during oscillating the mold(m), (t) is time (min), S is the mold stroke (mm), (f) is the number of oscillation (cycle/min), T is the overheat degree in the condition of making the solidus of molten steel in a tundish as the reference ( deg.C) and α is the constant (0.6-1.0).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、溶融金属の連続鋳造に
おいて、とくに鋳造鋳片の表面性状を、鋳造過程におい
て簡便な手法でもって有利に改善しようとするものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is intended to advantageously improve the surface properties of cast slabs, particularly in the continuous casting of molten metal, by a simple method in the casting process.

【0002】近年、溶融金属の連続鋳造、とくに、鋼の
連続鋳造においては、省エネルギーを図る観点からホッ
トチャージ圧延 (HCR) や直送圧延 (DHCR) が進
められている。HCRやDHCRを実施するに当たって
の必須の条件は、連続鋳造により得られた鋳造鋳片の表
面やその表皮下に、非金属介在物や表面偏析あるいはノ
ロ噛み等の欠陥がないことであり、そのためには、鋳型
の振動条件の変更や鋳型潤滑材の最適化、鋳型に電磁ブ
レーキ装置を配置して該鋳型内における溶鋼の流動制
御、あるいは鋳型内の溶鋼の湯面の制御性の改善を図る
等、種々の対策がとられていた。
In recent years, in the continuous casting of molten metal, particularly in the continuous casting of steel, hot charge rolling (HCR) and direct rolling (DHCR) have been promoted from the viewpoint of energy saving. An essential condition for carrying out HCR and DHCR is that there is no defect such as nonmetallic inclusions, surface segregation or slagging on the surface of the cast slab obtained by continuous casting or its subcutaneous surface. In order to improve the controllability of the flow of molten steel in the mold or the control of the molten steel level in the mold by changing the vibration conditions of the mold, optimizing the lubricant of the mold, and disposing an electromagnetic brake device in the mold And various other measures were taken.

【0003】ところで、連続鋳造においては、このよう
な対策を施しても実際のところは鋳造鋳片の表面欠陥を
完全に防止するまでには至っておらず、これに起因する
品質不良を伴うことがしばしばあった。このため、鋳造
鋳片について品質不良を伴うおそれがある場合には、H
CRやDHCRの実施を避けて高温状態にある鋳造鋳片
を一たん冷却するか、あるいは高温のままでその表面を
スカーフィング (溶削) して予め表面欠陥を取り除く必
要があったけれども、かかる対策では鋳造鋳片の温度低
下によって熱が無駄になるとともに、スカーフィング工
程の追加等余計な作業工程が必要になること、また、歩
留り(良片歩留り:製品になった重量/鋳造鋳片の重
量)の低下が避けられず省エネルギーを本来の目的とす
るHCRやDHCRによる効果が期待できない状況にあ
った。
However, in continuous casting, even if such measures are taken, it has not actually been possible to completely prevent the surface defects of the cast slab, and the resulting defective quality may be accompanied. Often there was. For this reason, when there is a possibility that the cast slab may be inferior in quality, H
Although it was necessary to cool the cast slab in a high temperature state for a while avoiding the implementation of CR and DHCR, or to scarf (cut) the surface at high temperature to remove surface defects in advance, As a countermeasure, heat is wasted due to the drop in temperature of the cast slab, and unnecessary work steps such as addition of a scarfing step are required. Also, the yield (good piece yield: weight of product / cast cast slab) Weight) cannot be avoided, and the effect of HCR or DHCR intended for energy saving cannot be expected.

【0004】最近では、炭素含有率が0.005 mass%以下
になる極低炭素鋼の鋳造において、オッシレーションマ
ーク部の直下の「爪」と称する凝固組織の不連続部に、
溶融金属中の非金属介在物やアルゴン気泡が鋳型内にお
いて浮上する過程で捕捉され、これが最終製品で表面欠
陥や内部欠陥になることが明らかになってきている。
[0004] Recently, in the casting of ultra-low carbon steel having a carbon content of 0.005 mass% or less, a discontinuous portion of a solidified structure called a "claw" immediately below an oscillation mark portion is formed.
It has become clear that nonmetallic inclusions and argon bubbles in the molten metal are trapped in the process of floating in the mold, and these become surface defects and internal defects in the final product.

【0005】爪の軽減対策としては、「鉄鋼協会編、鉄
と鋼、Vol.4,1994年,T165 」においてネガテイブスリト
ップ時間を減少させることが有効であることが報告され
ており、また、「材料とプロセス,Vol4.1991年,253. 日
本鉄鋼協会編」には鋳造温度を上昇させることが有効で
あることが、さらに、「Steelmaking Conf.Proc.,AIME
(1992),P409」にはメニスカスにおける溶鋼流動が有効
であることが報告されており、とくに、鋳造温度と溶鋼
流速の影響が大きいと考えられていた。
As a countermeasure for reducing claws, it has been reported in "Iron and Steel Association, edited by iron and steel, Vol. 4, 1994, T165" that it is effective to reduce the negative reseat time. "Materials and Processes, Vol.4, 1991, 253. Edited by the Iron and Steel Institute of Japan" states that raising the casting temperature is effective, and furthermore, "Steelmaking Conf.Proc., AIME
(1992), P409 ”reported that the flow of molten steel at the meniscus was effective, and it was thought that the effects of casting temperature and flow velocity of molten steel were particularly large.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、爪の深
さを小さくするために鋳造温度を上昇させた場合には、
精錬過程での熱負荷増大による耐火物の溶損を起こす問
題が生じたり、鋳造速度の増加時のブレークアウトの危
険性が高くなる一方、メニスカスにおける溶鋼流速の増
加はモールドフラックスを巻き込み鋳造鋳片の品質劣化
を招く原因になっていた。
However, when the casting temperature is increased to reduce the depth of the claws,
Increased heat load in the refining process may cause refractory erosion and increase the risk of breakout when the casting speed is increased. This has been a cause of quality deterioration.

【0007】本発明の目的は、連続鋳造において生じて
いた上述のような従来の問題を解決できる新規な鋳型の
振動方法を提案するところにある。
An object of the present invention is to propose a novel mold vibration method which can solve the above-mentioned conventional problems which have occurred in continuous casting.

【0008】[0008]

【課題を解決するための手段】本発明は、連続鋳造用鋳
型に溶融金属を供給し該鋳型の一端から鋳片ストランド
を連続的に引き抜く鋳造操業を実施するに当たり、該連
続鋳造用鋳型を下記の条件に従い振動させることを特徴
とする、溶融金属の連続鋳造方法である。 記 D>a*Ln b *fC *ΔTd … (1) ここに、D:鋳片ストランドが最終製品になるまでに除
去されるスラブ厚さ換算スケール厚さ (mm) a, b, c, d:鋳造条件 (鋼種、鋳片ストランドのサ
イズ、モールドフラックスの物性、浸漬ノズルの使用条
件) に依存する定数
SUMMARY OF THE INVENTION The present invention relates to a continuous casting mold for supplying molten metal to a continuous casting mold and continuously drawing a slab strand from one end of the casting mold. A continuous casting method of molten metal, characterized by vibrating according to the following conditions. Serial D> a * L n b * f C * ΔT d ... (1) Here, D: slab strand slab thickness conversion scale thickness to be removed to a final product (mm) a, b, c, d: Constants depending on casting conditions (steel type, slab strand size, mold flux properties, immersion nozzle use conditions)

【数4】 (Equation 4)

【数5】 VL :απSfcos(2πf・t) =αVm … (3) V L : απSfcos (2πf · t) = αV m (3)

【数6】 Vm :鋳型の下降速度πSfcos(2πf・t) … (4) Vc :鋳造速度 (mm/min) VL :湯面上昇速度(mm/min) t0 :鋳型の振動中にVm +VL >Vc の条件が満足され始める時 間(min) tnr:鋳型の振動中にVm +VL >Vc が満足されている時間 (min) t :時間(min) S :鋳型ストローク (mm) f :鋳型の振動数 (cycle /min) ΔT:タンデッシュ内溶鋼金属の固相温度を基準にした過熱度 (℃) α :定数〔 (0.6 〜1.0)で示される経験値〕V m : descending speed of mold πSfcos (2πf · t) (4) V c : casting speed (mm / min) VL : molten metal rising speed (mm / min) t 0 : during vibration of mold while when the condition of V m + V L> V c starts to be satisfied (min) t nr: during oscillation of the mold V m + V L> V c is satisfied time (min) t: time (min) S : Mold stroke (mm) f: Vibration frequency of the mold (cycle / min) ΔT: Superheat degree (° C) based on solidus temperature of molten steel in tundish α: Constant [empirical value expressed by (0.6 to 1.0) ]

【0009】[0009]

【発明の実施の形態】本発明においては、鋳片サイズ、
モールドフラックスの物性、浸漬ノズルの使用条件が一
定の場合の、爪深さに及ぼす鋳型の振動条件を種々調査
した結果、鋳造する溶融金属の固相温度を基準にしたタ
ンッデシュ内過熱度ΔTを上昇させる以外に、鋳型の振
動数や湯面変動速度の影響を考慮した場合における鋳片
ストランドの引き抜き中の凝固シェルを基準にした鋳型
の最大下降距離Ln (mm)が小さい程、鋳造鋳片のオッシ
レーションマーク直下で観察される爪の深さが浅くなる
ことを突き止めたのであり、ここに、爪深さDt は下記
式で表すことができる。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, the slab size,
As a result of various investigations on the mold vibration conditions affecting the claw depth when the physical properties of the mold flux and the use conditions of the immersion nozzle are constant, the degree of superheat ΔT in the tundesh based on the solidus temperature of the molten metal to be cast is increased. besides to, the greater the maximum lowered distance L n of the mold (mm) is small relative to the solidified shell in the withdrawal of the slab strand in the case of considering the influence of the frequency and the melt surface variation rate of the mold, the cast slab of it than the depth of the nail to be observed directly under Oscillation marks we have found to be a shallow, here, Tsumefuka of D t can be expressed by the following equation.

【0010】Dt =a*Ln b *fC *ΔTd [0010] D t = a * L n b * f C * ΔT d

【0011】[0011]

【数7】 (Equation 7)

【数8】VL :απSfcos(2πf・t) =αVm V L : απSfcos (2πf · t) = αV m

【数9】Vm :πSfcos(2πf・t)V m : πSfcos (2πf · t)

【0012】Vc :鋳造速度 (mm/min) VL :湯面上昇速度(mm/min ) t0 :鋳型の振動中にVm +VL >Vc の条件が満足さ
れ始める時間(min) tnr:鋳型の振動中にVm +VL >Vc が満足されてい
る時間(min) t :時間(min) S :鋳型ストローク (mm) f :鋳型の振動数 (cycle /min)ΔT:タンデッシュ
内溶鋼金属の固相温度を基準にした過熱度(℃) α :定数〔(0.6 〜1.0)で示される経験値) 〕
V c : casting speed (mm / min) VL : molten metal rising speed (mm / min) t 0 : time (min) at which the condition of V m + V L > V c starts to be satisfied during vibration of the mold t nr : time during which V m + V L > V c is satisfied during vibration of the mold (min) t: time (min) S: mold stroke (mm) f: mold frequency (cycle / min) ΔT: Superheat degree (° C) based on the solid phase temperature of molten steel in the tundish α: Constant [experimental value expressed by (0.6 to 1.0)]

【0013】よって、上記のLn が最大値を示す鋳型の
下降速度、すなわち、爪深さに最も悪影響を与える場合
の見かけの鋳型下降速度Vm +VL (湯面変位と鋳型変
位が180 度位相ずれがある場合に相当) は、次式で表現
することができる。
[0013] Thus, lowering speed of the mold above L n is the maximum value, i.e., most template lowering speed of the apparent adversely affect V m + V L (melt surface displacement and the mold displaced Tsumefuka of 180 degrees (Corresponding to a phase shift) can be expressed by the following equation.

【0014】[0014]

【数10】 Vmm=Vm +VL = (1+α) πsfcos (2πft)V mm = V m + V L = (1 + α) πsfcos (2πft)

【0015】鋳型における湯面変動と鋳型振動は同期し
ていると考えられ、湯面の位置を基準にした相対的な鋳
型ストロークを (1+α) sとして計算することができ
αとしては平均値0. 8を使用することができる。
It is considered that the fluctuation of the mold level in the mold and the vibration of the mold are synchronized, and a relative mold stroke based on the position of the mold level can be calculated as (1 + α) s, and α has an average value of 0. 8 can be used.

【0016】上記の要因と爪深さとの関係を重回帰解析
して求めたパラメータの定数a〜dは一般的な鋳造条件
の範囲、例えば、極低炭素鋼、低炭素鋼、SUS30
4、SUS430等の溶融金属を、Vc =0. 8〜2.
3m/min 、s=2〜8mm、f=60〜200cpm 、ネ
ガテイブストリップ時間 (tn ) =0 〜0.33 s、ΔT=
15〜120℃、浸漬ノズルの形状:下向き25〜35
°、浸漬深さ:230mm、鋳型サイズ:厚さ200〜2
60mm、幅1000mm〜1800mmにおいて、それぞ
れ、a=75. 9、b=0. 415、c=−0. 76
1、d=−0. 405となる。
The constants a to d of parameters obtained by performing a multiple regression analysis on the relationship between the above factors and the claw depth are in the range of general casting conditions, for example, ultra-low carbon steel, low carbon steel, SUS30.
4, a molten metal such as SUS430, V c = 0. 8~2 .
3 m / min, s = 2 to 8 mm, f = 60 to 200 cpm, negative strip time (t n ) = 0 to 0.33 s, ΔT =
15-120 ° C, shape of immersion nozzle: downward 25-35
°, immersion depth: 230 mm, mold size: thickness 200-2
A = 75.9, b = 0.415, c = −0.76 at 60 mm and 1000 mm to 1800 mm, respectively.
1, d = −0.405.

【0017】このような値を用いて得た回帰式は、図1
(a)(b) に比較して示すところからも明らかなよう
に、従来から提唱されているオッシレーションマーク深
さのパラメーターであるネガテイブストリップ時間(t
n)よりも爪の深さと強い相関がある。
The regression equation obtained using such values is shown in FIG.
As is clear from the comparison between (a) and (b), the negative strip time (t), which is a conventionally proposed parameter of the oscillation mark depth, is known.
There is a stronger correlation with nail depth than n).

【0018】一方、鋳造鋳片の表層に存在する爪の深さ
が増すに従い、冷延鋼板の表面欠陥(脱酸生成物、モー
ルドフラックス、気泡等によるもの) は増加するが、爪
の深さを、加熱炉、焼鈍炉にて生成され、酸洗工程にて
除去される酸化スケールの総厚さ (スラブ厚み換算のス
ケール厚さ) D (mm)よりも浅くすることによって冷延
鋼板の表面欠陥を著しく軽減することが可能であり、そ
のためには、下記式を満足するような鋳造条件を設定す
る必要があり、これによって製品の表面欠陥を効果的に
軽減できることになる。
On the other hand, as the depth of the nails existing in the surface layer of the cast slab increases, the surface defects (deoxidation products, mold flux, bubbles, etc.) of the cold-rolled steel sheet increase. Is made shallower than the total thickness of the oxide scale generated in the heating furnace and annealing furnace and removed in the pickling process (scale thickness in terms of slab thickness) D (mm) to reduce the surface of the cold rolled steel sheet. It is possible to remarkably reduce defects, and for that purpose, it is necessary to set casting conditions that satisfy the following formula, whereby surface defects of products can be effectively reduced.

【0019】D>t=a*Ln b *fC *ΔTd [0019] D> t = a * L n b * f C * ΔT d

【0020】ここに、定数a, b, cおよびdは鋳造条
件 (鋼種、鋳型の冷却条件、モールドフラックスの物
性、浸漬ノズル) が一定条件における、爪深さの測定結
果と本発明による因子との重回帰分析から容易に求める
ことができ、Dについては、鋳造鋳片が最終製品になる
までの歩留りから計算すればよい。
Here, the constants a, b, c and d are the results of the measurement of the nail depth and the factors according to the present invention under the constant casting conditions (steel type, cooling condition of mold, physical properties of mold flux, immersion nozzle). Can be easily obtained from the multiple regression analysis, and D can be calculated from the yield until the cast slab becomes the final product.

【0021】以上のことから、耐火物に負担をかけない
鋳造温度で、あるいは、モールドフラックスの巻き込み
が発生しないメニスカス溶鋼流速のもとで連続鋳造を行
うことによって爪の深さを小さくすることができる。
From the above, it is possible to reduce the claw depth by performing continuous casting at a casting temperature that does not impose a burden on the refractory, or under a meniscus molten steel flow rate at which mold flux is not involved. it can.

【0022】[0022]

【実施例】C:0.0015mass% (以下単に%で記
す) 、Si:0.01%、Mn:0.05%、P:0.
030%、S:0.007%、Al:0.035%、T
i:0.030%、Nb:0.003%になる極低炭素
鋼 (固相温度1525℃) を、垂直長さが2. 3mにな
る垂直曲げ型の連続鋳造設備を用いて、モールドフラッ
クスの粘度:4poise(1300℃) 、凝固温度:980
度、溶融金属のタンデッシュ内における温度:1555
℃〜1560℃、浸漬ノズル:2孔式で溶鋼噴流の吐出
角度が下向き25°、浸漬深さが230mm、 鋳造速度
c :2. 0m/min 、鋳型振動におけるストローク
S:4mm、振動数f:160cpm:として、幅1560m
m、厚さ260mmの鋳片スラブを鋳造し、次いで、HC
R (加熱炉への装入時の鋳片の表面温度:750〜85
0℃、加熱温度:1150℃、在炉時間:110〜13
0min ) を経て最終的に厚さ1. 5mmに冷間圧延し、得
られた冷延鋼板につき、その表面欠陥 (ヘゲ、スリーバ
ー等) の発生率 (=欠陥発生長さ/コイル長さ×10
0) を調査した (冷延コイルまでのスラブ換算のスケー
ル総厚さは0. 7mm、本発明に従う連続鋳造において爪
深さの推定値は0. 19〜0.55mm)。
EXAMPLES C: 0.0015 mass% (hereinafter simply referred to as%), Si: 0.01%, Mn: 0.05%, P: 0.
030%, S: 0.007%, Al: 0.035%, T
Ultra low carbon steel (solid phase temperature 1525 ° C) with i: 0.030% and Nb: 0.003% was molded flux using a vertical bending type continuous casting facility with a vertical length of 2.3m. Viscosity: 4 poise (1300 ° C), solidification temperature: 980
Degree, temperature in the tundish of molten metal: 1555
℃ ~1560 ℃, immersion nozzle: two-hole discharge angle of downward 25 ° of the molten steel jet by the formula, immersion depth 230 mm, casting speed V c:. 2 0m / min , stroke of mold oscillation S: 4 mm, the frequency f : 160cpm: width 1560m
m, cast slab 260 mm thick, then HC
R (Surface temperature of slab when charged into heating furnace: 750-85
0 ° C, heating temperature: 1150 ° C, furnace time: 110 to 13
0 min) and finally cold-rolled to a thickness of 1.5 mm. The resulting cold-rolled steel sheet has an incidence of surface defects (severes, slivers, etc.) (= defect occurrence length / coil length × 10
0) (the total thickness of the scale in terms of the slab up to the cold-rolled coil was 0.7 mm, and the estimated value of the nail depth in the continuous casting according to the present invention was 0.19 to 0.55 mm).

【0023】また、比較材についても同様の調査を行う
べく、従来の考え方である高温鋳造(鋳造温度:157
0℃) を基本としてブレークアウト防止の観点から鋳造
速度を最大1. 8m/min 、鋳型振動のストロークSを
7. 8mm、振動数fを140cpm に設定して連続鋳造を
行った。なお、この条件で行う連続鋳造における爪深さ
の推定値は0.95mmであった。
Further, in order to conduct a similar investigation on the comparative material, a conventional method of high-temperature casting (casting temperature: 157) was used.
(0 ° C.), from the viewpoint of preventing breakout, continuous casting was performed at a maximum casting speed of 1.8 m / min, a stroke S of mold vibration of 7.8 mm, and a frequency f of 140 cpm. The estimated value of the nail depth in continuous casting performed under these conditions was 0.95 mm.

【0024】その結果、本発明に従い鋳造した場合にお
いては冷延鋼板の表面欠陥発生率が0. 05%であった
のに対して、比較材においては0. 25%であって、本
発明では製品の品質が格段に改善できることが確かめら
れた。また、本発明においては鋳造温度を約10℃程度
低下させることができたので鋳造速度を0. 2m/min
程度増加させることができるようになり、生産性の向上
を図ることができた。
As a result, the rate of occurrence of surface defects of the cold-rolled steel sheet was 0.05% in the case of casting according to the present invention, whereas it was 0.25% in the comparative material. It has been confirmed that the quality of the product can be significantly improved. In the present invention, since the casting temperature could be lowered by about 10 ° C., the casting speed was reduced to 0.2 m / min.
As a result, the productivity can be improved.

【0025】[0025]

【発明の効果】本発明によれば、連続鋳造に際して従来
不可避であった表面欠陥を、余計な工程を付加すること
なしに低減できるのでHCR、あるいはDHCRのもと
無欠陥製品を安定的に製造できる。
According to the present invention, surface defects which have been unavoidable in continuous casting can be reduced without adding an extra step, so that defect-free products can be stably manufactured under HCR or DHCR. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a) は実測による爪深さと推定爪深さの関係
を示した図であり、 (b) はネガティブストリップ時間
tn と実測による爪深さの関係を示した図である。
FIG. 1 (a) is a diagram showing a relationship between an actually measured nail depth and an estimated nail depth, and FIG. 1 (b) is a diagram showing a relationship between a negative strip time tn and an actually measured nail depth.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 反町 健一 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 西川 廣 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 高士 昌樹 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 Fターム(参考) 4E004 AD10 MA02  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Kenichi Sorimachi 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Inside the Technical Research Institute of Kawasaki Steel Corp. (72) Inventor Hiroshi Nishikawa 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki (72) Inventor Masaki Takashi 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba F-term (reference) 4E004 AD10 MA02

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造用鋳型に溶融金属を供給して該
鋳型の一端から鋳片ストランドを連続的に引き抜く鋳造
操業を行うに当たり、 前記連続鋳造用鋳型を下記の条件に従い振動させること
を特徴とする、溶融金属の連続鋳造方法。 記 D>a*Ln b *fC *ΔTd ここに、D:鋳片ストランドが最終製品になるまでに除
去されるスラブ厚さ換算スケール厚さ (mm) Ln :引き抜かれている鋳片ストランドを基準にした鋳
型の最大下降距離 (mm) a, b, c, d:鋳造条件 (鋼種、鋳片ストランドのサ
イズ、モールドフラックスの物性、浸漬ノズルの使用条
件) に依存する定数 【数2】VL :απSfcos(2πf・t) =αVm 【数3】Vm :鋳型の下降速度πSfcos(2πf・t) Vc :鋳造速度 (mm/min) VL :湯面上昇速度(mm/min )t0 :鋳型の振動中に
m +VL >Vc の条件が満足され始める時間(min) tnr:鋳型の振動中にVm +VL >Vc が満足されてい
る時間(min) t :時間(min) S :鋳型ストローク (mm) f :鋳型の振動数 (cycle /min) ΔT:タンデッシュ内溶鋼金属の固相温度を基準にした
過熱度(℃) α :定数〔(0.6 〜1.0)で示される経験値〕
1. A casting operation in which a molten metal is supplied to a continuous casting mold and a slab strand is continuously drawn from one end of the casting mold, wherein the continuous casting mold is vibrated according to the following conditions. A continuous casting method for molten metal. Here serial D> a * L n b * f C * ΔT d, D: slab strand slab thickness conversion scale thickness to be removed to a final product (mm) L n: cast being withdrawn Maximum descent distance of mold based on one strand (mm) a, b, c, d: Constants depending on casting conditions (steel type, size of strand strand, physical properties of mold flux, operating conditions of immersion nozzle) V L : απSf cos (2πf · t) = αV m V m : mold down speed πSf cos (2πf · t) V c : casting speed (mm / min) V L : metal surface rising speed (Mm / min) t 0 : Time (min) at which the condition of V m + V L > V c starts to be satisfied during vibration of the mold t nr : V m + V L > V c is satisfied during vibration of the mold Time (min) t: Time (min) S: Mold stroke (mm) f: Vibration frequency of the mold (cycle / min) ΔT: Superheat degree (° C) based on solid phase temperature of molten steel in tundish α: Constant [Experience value indicated by (0.6 to 1.0)]
JP19298898A 1998-07-08 1998-07-08 Metod for oscillating mold for continuous casting Withdrawn JP2000015410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19298898A JP2000015410A (en) 1998-07-08 1998-07-08 Metod for oscillating mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19298898A JP2000015410A (en) 1998-07-08 1998-07-08 Metod for oscillating mold for continuous casting

Publications (1)

Publication Number Publication Date
JP2000015410A true JP2000015410A (en) 2000-01-18

Family

ID=16300371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19298898A Withdrawn JP2000015410A (en) 1998-07-08 1998-07-08 Metod for oscillating mold for continuous casting

Country Status (1)

Country Link
JP (1) JP2000015410A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120044A (en) * 2008-11-19 2010-06-03 Jfe Steel Corp Method of oscillating die for continuous casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120044A (en) * 2008-11-19 2010-06-03 Jfe Steel Corp Method of oscillating die for continuous casting

Similar Documents

Publication Publication Date Title
JP3019859B1 (en) Continuous casting method
JPH10263767A (en) Method for continuously casting extra-low carbon steel and mold powder for continuous casting
JP4337565B2 (en) Steel slab continuous casting method
JP5741402B2 (en) Continuous casting method for circular section slabs
US4482003A (en) Method for continuous casting of steel
JP2000015410A (en) Metod for oscillating mold for continuous casting
JPH11179507A (en) Method for oscillating mold for continuous casting
JP4527693B2 (en) Continuous casting method of high Al steel slab
JP3588411B2 (en) Stainless steel continuous casting method
CN104057040B (en) A kind of pinion steel horizontal casting applies the devices and methods therefor of ultrasonic wave vibration
JP4654554B2 (en) Steel continuous casting method
JPS5838646A (en) Continuous casting method for slab of middle carbon region steel
JPS61162256A (en) Improvement of surface characteristic of continuous casting steel ingot
JPH09285855A (en) Manufacture of ni containing steel
JP3342774B2 (en) Mold powder for continuous casting
JP2593377B2 (en) Continuous casting method
JP4735269B2 (en) Manufacturing method of continuous slab
JP3642015B2 (en) Stainless steel continuous casting method
JPS583755A (en) Preventing method for cracking of side surface of continuously cast slab
JP2002153946A (en) Method for continuously casting extra-low carbon steel
JP2018058096A (en) Continuous casting method
JPH03193254A (en) Method for continuously casting extremely low carbon steel
JPH10286659A (en) Continuous casting method for steel
JPH09277001A (en) Method for continuously casting stainless steel cast slab
JPH08238541A (en) Method of making supplying quantity definite of molten metal and alloy to cooling base board

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004