JP2000013917A - Controller for battery pack of electric automobile - Google Patents

Controller for battery pack of electric automobile

Info

Publication number
JP2000013917A
JP2000013917A JP10177013A JP17701398A JP2000013917A JP 2000013917 A JP2000013917 A JP 2000013917A JP 10177013 A JP10177013 A JP 10177013A JP 17701398 A JP17701398 A JP 17701398A JP 2000013917 A JP2000013917 A JP 2000013917A
Authority
JP
Japan
Prior art keywords
terminal voltage
voltage
battery
circuit system
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10177013A
Other languages
Japanese (ja)
Other versions
JP3827123B2 (en
Inventor
Takashi Yamashita
貴史 山下
Tetsuya Kobayashi
徹也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP17701398A priority Critical patent/JP3827123B2/en
Publication of JP2000013917A publication Critical patent/JP2000013917A/en
Application granted granted Critical
Publication of JP3827123B2 publication Critical patent/JP3827123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

PROBLEM TO BE SOLVED: To improve operability of a battery module without damaging the safety of the module by estimating the terminal voltage of the module detected by means of an abnormal detecting circuit system from prestored data when the abnormality in the circuit system is detected. SOLUTION: Each voltage detecting line 301-321 is extended from each terminal of each battery module 101-120 and differential amplifiers 201-220 are module voltage detecting means. In addition, a CPU 1 constitutes an abnormal detecting circuit judging means and a charge/discharge control means. Firstly, the CPU 1 reads the terminal voltages Vi of the modules 101-120 one after another from the amplifiers 201-220 and judges the abnormality of each detecting circuit system from the voltages Vi. The abnormality of each detecting circuit system is judged when the lowering rate of the terminal voltage of the circuit system is smaller than a prescribed value in a prescribed period of time when a prescribed current or larger is discharged or the value of the terminal voltage deviates from a prescribed range.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気自動車用組電
池の制御装置に関する。
The present invention relates to a control device for an assembled battery for an electric vehicle.

【0002】[0002]

【従来の技術】従来のハイブリッド形式または純バッテ
リ形式の電気自動車用組電池の制御装置では、それぞれ
1乃至複数の電池セルを直列接続されてなる多数の電池
モジュールを直列接続して組み電池を構成し、この組み
電池の充放電により走行エネルギーの供給乃至回収を行
っている。
2. Description of the Related Art In a conventional control device for an assembled battery for an electric vehicle of a hybrid type or a pure battery type, an assembled battery is formed by serially connecting a number of battery modules each having one or more battery cells connected in series. The running energy is supplied or recovered by charging and discharging the assembled battery.

【0003】組み電池の放電により走行エネルギーを供
給する場合、組み電池を構成するどれか一つの電池モジ
ュールが劣化したり、放電完了すると、他の電池モジュ
ールが正常に放電可能であっても、組み電池として放電
続行は好ましくないので、従来は、すべての電池モジュ
ールの端子電圧をモニターし、どれか一つの端子電圧が
所定値以下となる場合に放電を停止している。
When running energy is supplied by discharging the assembled battery, if one of the battery modules constituting the assembled battery is deteriorated or the discharge is completed, even if the other battery modules can be normally discharged, the assembled battery is discharged. Conventionally, it is not preferable to continue discharging as a battery. Conventionally, terminal voltages of all battery modules are monitored, and discharging is stopped when any one of the terminal voltages falls below a predetermined value.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来の電池制御では、電池モジュールから延出される
電圧検出ライン、又は、電圧検出ライン間の電位差によ
り電池モジュールの端子電圧を検出するモジュール電圧
検出回路などの検出回路系に異常(たとえばどれかの電
圧検出ラインの断線)が生じる可能性があり、この場合
にはすべての電池モジュールの劣化の度合いまたは残存
容量が判定できない。
However, in the conventional battery control described above, a module voltage detection circuit for detecting a terminal voltage of a battery module based on a voltage detection line extending from the battery module or a potential difference between the voltage detection lines. (For example, disconnection of one of the voltage detection lines) may occur in the detection circuit system. In this case, the degree of deterioration or the remaining capacity of all battery modules cannot be determined.

【0005】そこで、各電池モジュールの端子電圧を検
出する多数の検出回路系のどれかが異常である場合、組
み電池の放電を停止させる安全制御回路をセットするこ
とも考えられるが、この場合、検出回路系は異常でも、
組み電池そのものは放電可能すなわち電気自動車は走行
可能であり、使い勝手が悪いという問題が派生する。本
発明は上記問題点に鑑みなされたものであり、安全性を
損なうことなく、使い勝手に優れる電気自動車用組電池
の制御装置を提供することを、その目的としている。
[0005] Therefore, if any of a large number of detection circuit systems for detecting the terminal voltage of each battery module is abnormal, it is conceivable to set a safety control circuit for stopping discharging of the assembled battery. Even if the detection circuit is abnormal,
The assembled battery itself can be discharged, that is, the electric vehicle can be driven, which causes a problem that the usability is poor. The present invention has been made in view of the above problems, and an object of the present invention is to provide a control device of an assembled battery for an electric vehicle which is excellent in usability without impairing safety.

【0006】[0006]

【課題を解決するための手段】請求項1記載の電気自動
車用組電池の制御装置によれば、たとえどれかの電池モ
ジュールの検出回路系すなわち電圧検出ラインやモジュ
ール電圧検出手段が異常となっても、この異常検出時
に、あらかじめ記憶する記憶データに基づいてこの異常
な検出回路系が検出する電池モジュールの端子電圧を推
定するので、検出回路系異常発生後もなんら支障なく各
電池モジュールの状態推移を推定することができ、充放
電を継続することができるので、電池モジュールの安全
性を損なうことなく、使い勝手に優れる電気自動車用組
電池の制御装置を実現することができる。
According to the control apparatus for an assembled battery for an electric vehicle of the present invention, the detection circuit system of any one of the battery modules, that is, the voltage detection line or the module voltage detection means becomes abnormal. Also, when this abnormality is detected, the terminal voltage of the battery module detected by the abnormal detection circuit system is estimated based on the stored data stored in advance, so that the state transition of each battery module without any trouble even after the detection circuit system abnormality occurs. Can be estimated and charge / discharge can be continued, so that an easy-to-use control device for an assembled battery for an electric vehicle can be realized without impairing the safety of the battery module.

【0007】請求項2記載の構成によれば請求項1記載
の電気自動車用組電池の制御装置において更に、端子電
圧の最小値である正常時代表端子電圧を発生する検出回
路系(最小値発生検出回路系)以外の検出回路系の異常
の場合に正常時代表端子電圧の推移に基づいて放電を制
御する。すなわち、放電においては各電池モジュールの
端子電圧のうち最小値を発生する電池モジュール(最小
値発生電池モジュールともいう)が最も早期に放電不能
となるので、正常な最小値発生検出回路系を通じてこの
最小値発生電池モジュールの端子電圧の低下をモニタす
るだけで、なんら安全性を損なうことなく組み電池の放
電を続行することができる。
According to a second aspect of the present invention, the control apparatus for an assembled battery for an electric vehicle according to the first aspect further includes a detection circuit system (minimum value generation) for generating a normal terminal voltage which is the minimum value of the terminal voltage. In the case of an abnormality in a detection circuit system other than the detection circuit system, the discharge is controlled based on the transition of the normal terminal voltage at normal time. That is, in the discharging, the battery module that generates the minimum value among the terminal voltages of the battery modules (also referred to as the minimum value generating battery module) cannot be discharged at the earliest time. The discharge of the assembled battery can be continued without compromising safety only by monitoring the decrease in the terminal voltage of the value generating battery module.

【0008】一方、最小値発生検出回路系が異常となっ
た場合には、最小値発生検出回路系以外の所定の検出回
路系で検出される端子電圧を臨時代表端子電圧として検
出する。そして、この臨時代表端子電圧と正常時代表端
子電圧との間の端子電圧関係(記憶データ)をあらかじ
め記憶しておき、最小値発生検出回路系の異常の場合に
臨時代表端子電圧と端子電圧関係とに基づいて最小値発
生電池モジュールの端子電圧(最小端子電圧)を推定す
る。
On the other hand, when the minimum value generation detection circuit system becomes abnormal, a terminal voltage detected by a predetermined detection circuit system other than the minimum value generation detection circuit system is detected as a temporary representative terminal voltage. The terminal voltage relationship (storage data) between the temporary representative terminal voltage and the normal representative terminal voltage is stored in advance, and when the minimum value detection circuit system is abnormal, the temporary representative terminal voltage and the terminal voltage relationship are stored. The terminal voltage (minimum terminal voltage) of the minimum value generating battery module is estimated based on the above.

【0009】このようにすれば、最小値発生検出回路系
の異常が生じても、放電時に最も早期に過放電となる
(放電不能となる)最小値発生電池モジュールの最小端
子電圧を正確かつ簡単に推定することができるので、な
んら安全性を損なうことなく組み電池の放電を続行する
ことができる。請求項3記載の構成によれば請求項2記
載の電気自動車用組電池の制御装置において更に、検出
した各端子電圧のうちの二番目の最小値を発生する電池
モジュールの端子電圧を臨時代表端子電圧として設定す
る。
With this configuration, even if an abnormality occurs in the minimum value generation detection circuit system, the minimum terminal voltage of the minimum value generation battery module that is overdischarged (discharge disabled) at the earliest time during discharging can be accurately and simply determined. Therefore, the discharge of the assembled battery can be continued without impairing the safety at all. According to the third aspect of the present invention, in the electric vehicle assembled battery control apparatus according to the second aspect, the terminal voltage of the battery module that generates the second minimum value among the detected terminal voltages is also temporarily represented by the temporary representative terminal. Set as voltage.

【0010】このようにすれば、この二番目の最小値を
発生する電池モジュールの端子電圧(二番目に小さい端
子電圧)と上記最小端子電圧との差が小さく、かつ、両
電池モジュールの劣化の度合いも近似しているので、放
電中におけるそれらの端子電圧の低下特性も近似するの
で、推定精度を向上することができる。
With this arrangement, the difference between the terminal voltage of the battery module that generates the second minimum value (the second lowest terminal voltage) and the minimum terminal voltage is small, and the deterioration of both battery modules is reduced. Since the degrees are similar, the characteristics of lowering the terminal voltages during discharge are also similar, so that the estimation accuracy can be improved.

【0011】[0011]

【発明の実施の形態】以下、本発明の好適な態様を以下
の実施例により詳細に説明する。ただし、本発明は下記
の実施例の構成に限定されるものではなく、置換可能な
公知回路を用いても構成できることは当然である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the following examples. However, the present invention is not limited to the configuration of the following embodiment, and it is obvious that the present invention can be configured using a replaceable known circuit.

【0012】[0012]

【実施例】本発明の組み電池の電圧検出装置の一実施例
を図1、図2を参照して説明する。図1は、組み電池1
9の各モジュ−ル電圧をデジタル信号に変換する組み電
池の電圧検出装置を示すブロック図であり、組み電池1
9、差動型電圧検出回路201〜220、A/D変換回
路5〜8、フォトカプラ素子20aが図示されている。
図2は図1のこの電圧検出装置を用いた電池モニタ装置
の一実施例を示すブロック図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a voltage detecting device for a battery pack according to the present invention will be described with reference to FIGS. FIG. 1 shows an assembled battery 1
9 is a block diagram showing an assembled battery voltage detecting device for converting each module voltage into a digital signal, and
9, differential voltage detection circuits 201 to 220, A / D conversion circuits 5 to 8, and a photocoupler element 20a are illustrated.
FIG. 2 is a block diagram showing one embodiment of a battery monitoring device using the voltage detecting device of FIG.

【0013】1は電池の充放電を制御するCPU、2は
デマルチプレクサからなるクロック信号分配用のセレク
タ回路(以下、クロック信号セレクタ回路ともいう)、
3はデマルチプレクサからなる制御信号分配用のセレク
タ回路(以下、制御信号セレクタ回路ともいう)、4は
マルチプレクサからなるデジタル信号選択用のセレクタ
回路(以下、デ−タセレクタ回路ともいう)、5〜10
はA/D変換回路、201〜220及び13は差動型電
圧検出回路、14はアナログ増幅回路、15は電流セン
サ、101〜120は組み電池19の各電池モジュ−ル
(単にモジュ−ルともいう)である。ただし、図2にお
いて、電池モジュ−ル106〜120、差動型電圧検出
回路206〜220、A/D変換回路6〜8は図示省略
されている。
1 is a CPU for controlling charging and discharging of a battery, 2 is a selector circuit for distributing a clock signal comprising a demultiplexer (hereinafter also referred to as a clock signal selector circuit),
Reference numeral 3 denotes a selector circuit for distributing a control signal comprising a demultiplexer (hereinafter also referred to as a control signal selector circuit). Reference numeral 4 denotes a selector circuit for selecting a digital signal comprising a multiplexer (hereinafter also referred to as a data selector circuit).
Is an A / D converter circuit, 201 to 220 and 13 are differential voltage detection circuits, 14 is an analog amplifier circuit, 15 is a current sensor, and 101 to 120 are each battery module of the assembled battery 19 (also simply referred to as a module). ). However, in FIG. 2, the battery modules 106 to 120, the differential voltage detection circuits 206 to 220, and the A / D conversion circuits 6 to 8 are not shown.

【0014】電池モジュ−ル101〜120はそれぞれ
1個の単電池(電池セル)からなる。なお、更に多数の
電池モジュールを縦続接続して組み電池19を構成して
もよいことはもちろんである。電池モジュ−ル101は
最高位のモジュ−ル電圧をもち、電池モジュ−ル120
は最低位のモジュ−ル電圧をもつ。20は各セレクタ回
路2〜4と各A/D変換回路5〜10を接続するシリア
ル信号線群であり、この実施例では、各信号線はCPU
1の保護のためにそれぞれフォトカプラ(たとえば20
a)を有している。A/D変換回路5〜10はそれぞれ
5チャンネル入力の切り替え入力型のA/D変換回路で
あり、入力される切り替え信号により、各A/D変換回
路5〜10は同期してチャンネル切り替えされる。
Each of the battery modules 101 to 120 is composed of one unit cell (battery cell). It is needless to say that the assembled battery 19 may be constructed by cascade-connecting more battery modules. Battery module 101 has the highest module voltage and battery module 120
Has the lowest module voltage. Reference numeral 20 denotes a serial signal line group for connecting each of the selector circuits 2 to 4 and each of the A / D conversion circuits 5 to 10. In this embodiment, each signal line is a CPU.
Each of the photocouplers (for example, 20
a). Each of the A / D conversion circuits 5 to 10 is a switching input type A / D conversion circuit of 5 channel input, and each of the A / D conversion circuits 5 to 10 is synchronously switched by an input switching signal. .

【0015】図1からわかるように、モジュ−ル101
のモジュ−ル電圧は差動型電圧検出回路201で所定の
基準電位1に対する信号電圧に変換されてからA/D変
換回路5でA/D変換される。同様に、モジュ−ル10
2のモジュ−ル電圧は差動型電圧検出回路202で所定
の基準電位1に対する信号電圧に変換されてからA/D
変換回路5でA/D変換され、モジュ−ル103のモジ
ュ−ル電圧は差動型電圧検出回路203で所定の基準電
位1に対する信号電圧に変換されてからA/D変換回路
5でA/D変換され、モジュ−ル104のモジュ−ル電
圧は差動型電圧検出回路203で所定の基準電位1に対
する信号電圧に変換されてからA/D変換回路5でA/
D変換され、モジュ−ル105のモジュ−ル電圧は差動
型電圧検出回路205で所定の基準電位1に対する信号
電圧に変換されてからA/D変換回路5でA/D変換さ
れる。
As can be seen from FIG.
Is converted into a signal voltage corresponding to a predetermined reference potential 1 by the differential voltage detection circuit 201 and then A / D converted by the A / D conversion circuit 5. Similarly, module 10
2 is converted into a signal voltage corresponding to a predetermined reference potential 1 by a differential voltage detection circuit 202, and then A / D
A / D conversion is performed by the conversion circuit 5, and the module voltage of the module 103 is converted into a signal voltage corresponding to a predetermined reference potential 1 by the differential voltage detection circuit 203, and then A / D conversion is performed by the A / D conversion circuit 5. The module voltage of the module 104 is converted into a signal voltage corresponding to a predetermined reference potential 1 by the differential voltage detection circuit 203 and then converted by the A / D conversion circuit 5 into an A / D signal.
The D / D conversion is performed, and the module voltage of the module 105 is converted into a signal voltage corresponding to a predetermined reference potential 1 by the differential voltage detection circuit 205, and then A / D converted by the A / D conversion circuit 5.

【0016】同様に、電池モジュ−ル106〜110の
モジュ−ル電圧は差動型電圧検出回路206〜210を
通じてA/D変換回路6に入力され、電池モジュ−ル1
11〜115のモジュ−ル電圧は差動型電圧検出回路2
11〜215を通じてA/D変換回路7に入力され、電
池モジュ−ル116〜120のモジュ−ル電圧は差動型
電圧検出回路216〜220を通じてA/D変換回路8
に入力される。
Similarly, the module voltages of the battery modules 106 to 110 are input to the A / D conversion circuit 6 through the differential voltage detection circuits 206 to 210, and the battery module 1
The module voltages of 11 to 115 are applied to the differential voltage detection circuit 2.
The module voltages of the battery modules 116 to 120 are input to the A / D conversion circuit 7 through 11 to 215, and the A / D conversion circuit 8 is output to the A / D conversion circuit 8 through the differential voltage detection circuits 216 to 220.
Is input to

【0017】また、組み電池19の総電圧は差動型電圧
検出回路13で所定の共通接地電位に対する信号電圧に
変換されからA/D変換回路9でA/D変換され、組み
電池19の電流は増幅回路14を通じてA/D変換回路
19でA/D変換される。各A/D変換回路5〜10の
出力は、デ−タセレクタ回路4にて時間順次に選択さ
れ、信号SINとしてCPU1に読み込まれる。A/D
変換回路5〜10は同期動作シリアル出力型のA/D変
換回路であって、変換デ−タすなわちシリアルデジタル
信号はデジタル信号確定後に入力するクロックパルスに
同期して出力される。
The total voltage of the assembled battery 19 is converted by the differential voltage detection circuit 13 into a signal voltage with respect to a predetermined common ground potential, and then A / D-converted by the A / D conversion circuit 9. Is subjected to A / D conversion by the A / D conversion circuit 19 through the amplification circuit 14. The outputs of the A / D conversion circuits 5 to 10 are selected in time sequence by the data selector circuit 4 and read into the CPU 1 as a signal SIN. A / D
The conversion circuits 5 to 10 are synchronous operation serial output type A / D conversion circuits. The conversion data, that is, the serial digital signal is output in synchronization with the input clock pulse after the digital signal is determined.

【0018】更に説明すると、A/D変換回路5は、ア
ナログ信号が入力されるアナログ入力端子、シリアル信
号であるデジタル信号を出力するデ−タ出力端子、シリ
アル信号である制御命令が入力される制御命令入力端
子、及び、同期用のクロックパルスが入力されるクロッ
クパルス入力端子を有し、読み込み指令が制御命令入力
端子へ入力されると、クロックパルス入力端子へ入力さ
れるクロックパルスのエッジに同期してアナログ信号の
読み込みが行われ、その後、次のクロックパルスの入力
により8ビットのシリアルデジタル信号が出力される。
その他のA/D変換回路6〜10も同じ構造を有してい
る。
More specifically, the A / D conversion circuit 5 receives an analog input terminal for inputting an analog signal, a data output terminal for outputting a digital signal as a serial signal, and a control command as a serial signal. A control command input terminal, and a clock pulse input terminal to which a clock pulse for synchronization is input, and when a read command is input to the control command input terminal, an edge of the clock pulse input to the clock pulse input terminal The reading of the analog signal is performed in synchronism, and then the input of the next clock pulse outputs an 8-bit serial digital signal.
The other A / D conversion circuits 6 to 10 have the same structure.

【0019】この組み電池の電圧検出装置の更に詳細な
動作を以下に説明する。CPU1は、クロック信号セレ
クタ回路2へクロックパルスSCLK及びA/D変換回
路選択信号SELを出力し、制御信号セレクタ回路3へ
読み込み指令などの制御命令信号SOUT及びA/D変
換回路選択信号SELを出力し、デ−タセレクタ回路4
へA/D変換回路選択信号SELを出力し、デ−タセレ
クタ回路4からシリアルデジタル信号を受け取る。
A more detailed operation of the battery pack voltage detecting device will be described below. The CPU 1 outputs a clock pulse SCLK and an A / D conversion circuit selection signal SEL to the clock signal selector circuit 2, and outputs a control command signal SOUT such as a read command and an A / D conversion circuit selection signal SEL to the control signal selector circuit 3. Data selector circuit 4
And outputs an A / D conversion circuit selection signal SEL to the data selector circuit 4 to receive a serial digital signal.

【0020】(同時読み込み)CPU1は、A/D変換
回路選択信号SELによりA/D変換回路5〜10の全
てを選択することをクロック信号セレクタ回路2及び制
御信号セレクタ回路3に通知し、これにより制御信号セ
レクタ回路3は読み込み命令をA/D変換回路5〜10
全てに送信し、クロック信号セレクタ回路2はクロック
パルスSCLKをA/D変換回路5〜10全てに送信
し、各A/D変換回路5〜10は読み込み命令入力直後
に入力するクロックパルスのエッジに同期してアナログ
信号の読み込みを行い、それを8ビットのデジタル信号
に変換して保持する。なお、この時、A/D変換回路5
〜10の全てを選択するA/D変換回路選択信号SEL
はデ−タセレクタ回路4に対してはデ−タセレクタ回路
4の内部において無効とされる。
(Simultaneous reading) The CPU 1 notifies the clock signal selector circuit 2 and the control signal selector circuit 3 that all of the A / D conversion circuits 5 to 10 are to be selected by the A / D conversion circuit selection signal SEL. Control signal selector circuit 3 converts the read command into A / D conversion circuits 5 to 10
The clock signal selector circuit 2 transmits the clock pulse SCLK to all the A / D conversion circuits 5 to 10, and each of the A / D conversion circuits 5 to 10 transmits the clock pulse SCLK to the edge of the clock pulse input immediately after the input of the read command. The analog signal is read synchronously, converted into an 8-bit digital signal, and held. At this time, the A / D conversion circuit 5
A / D conversion circuit selection signal SEL for selecting all of -10
Is invalidated inside the data selector circuit 4 with respect to the data selector circuit 4.

【0021】(順次出力)次に、CPU1は、A/D変
換回路選択信号SELによりA/D変換回路5を選択す
ることをセレクタ回路2〜4に通知し、これによりクロ
ック信号セレクタ回路2はクロックパルスSCLKをA
/D変換回路5にだけ送信し、これによりA/D変換回
路5はクロックパルスSCLKのエッジに同期してシリ
アルデジタル信号をデ−タセレクタ回路4に出力し、デ
−タセレクタ回路4はA/D変換回路選択信号SELに
よりA/D変換回路5を選択しているので、このA/D
変換回路5からのシリアルデジタル信号はCPU1に送
信される。
(Sequential output) Next, the CPU 1 notifies the selector circuits 2 to 4 that the A / D converter circuit 5 is to be selected by the A / D converter circuit selection signal SEL. Clock pulse SCLK is set to A
A / D conversion circuit 5 transmits the serial digital signal to the data selector circuit 4 in synchronism with the edge of the clock pulse SCLK. Since the A / D conversion circuit 5 is selected by the conversion circuit selection signal SEL,
The serial digital signal from the conversion circuit 5 is transmitted to the CPU 1.

【0022】次に、CPU1は、A/D変換回路選択信
号SELによりA/D変換回路6を選択することをセレ
クタ回路2〜4に通知し、その後は上記と同じ動作を行
ってA/D変換回路6のシリアルデジタル信号をCPU
1へ送信し、以下同様に、各A/D変換回路8〜10の
シリアルデジタル信号がCPU1へ送信される。なお、
上記一連の動作は入力切り替え型のマルチ入力A/D変
換回路5〜10の第1の入力チャンネルに対して実行さ
れるが、その後、上記一連の動作が、第2〜第5の各チ
ャンネル入力に対して実施される。
Next, the CPU 1 notifies the selector circuits 2 to 4 that the A / D conversion circuit 6 is to be selected by the A / D conversion circuit selection signal SEL, and thereafter performs the same operation as described above to execute the A / D conversion. Converts the serial digital signal of the conversion circuit 6 into a CPU
1, and similarly, the serial digital signal of each of the A / D conversion circuits 8 to 10 is transmitted to the CPU 1. In addition,
The above-described series of operations is performed on the first input channels of the input switching type multi-input A / D conversion circuits 5 to 10. Thereafter, the above-described series of operations is performed on the second to fifth channel input. It is carried out for.

【0023】次に、組み電池19の各モジュ−ル電圧を
検出する差動型電圧検出回路201〜220について、
図1を参照して説明する。この実施例では組み電池19
を構成する合計240個の単電池が互いに縦続接続され
る20個の電池モジュ−ル101〜120に区分され、
更に、電池モジュ−ル101〜105は第1の電圧検出
ブロックを構成し、電池モジュ−ル106〜110は第
2の電圧検出ブロックを構成し、電池モジュ−ル111
〜115は第3の電圧検出ブロックを構成し、電池モジ
ュ−ル116〜120は第4の電圧検出ブロックを構成
している。
Next, differential voltage detection circuits 201 to 220 for detecting each module voltage of the assembled battery 19 will be described.
This will be described with reference to FIG. In this embodiment, the assembled battery 19 is used.
Are divided into 20 battery modules 101 to 120 that are cascade-connected to each other.
Furthermore, the battery modules 101 to 105 constitute a first voltage detection block, the battery modules 106 to 110 constitute a second voltage detection block, and the battery module 111
115 to 115 constitute a third voltage detection block, and the battery modules 116 to 120 constitute a fourth voltage detection block.

【0024】第1の電圧検出ブロックは、第1の基準電
位である基準電位1をもち、第2の電圧検出ブロックは
第2の基準電位である基準電位2をもち、第3の電圧検
出ブロックは、第3の基準電位である基準電位3をも
ち、第4の電圧検出ブロックは第4の基準電位である基
準電位4をもち、第5の電圧検出ブロックは第5の基準
電位である基準電位5を有している。
The first voltage detection block has a reference potential 1 as a first reference potential, the second voltage detection block has a reference potential 2 as a second reference potential, and a third voltage detection block. Has a reference potential 3 that is a third reference potential, the fourth voltage detection block has a reference potential 4 that is a fourth reference potential, and the fifth voltage detection block has a reference potential that is a fifth reference potential. It has a potential of 5.

【0025】この実施例では、基準電位1は電池モジュ
−ル103の低位側端子電圧(電池モジュ−ル104の
高位側端子電圧)に設定され、以下同様に、各基準電位
2〜4は、各電圧検出ブロックにおける高電位側から3
番目の電池モジュ−ルの低位側端子電圧(低位側から2
番目の電池モジュ−ルの高位側端子電圧)に設定されて
いる。
In this embodiment, the reference potential 1 is set to the lower terminal voltage of the battery module 103 (the higher terminal voltage of the battery module 104). 3 from the high potential side in each voltage detection block
The lower terminal voltage of the second battery module (2 from the lower side)
(The higher terminal voltage of the second battery module).

【0026】すなわち、この実施例では、同一の電圧検
出ブロック内の各差動型電圧検出回路の基準電位(入力
側抵抗回路網の一端に印加される定電位)は等しくさ
れ、また、各電圧検出ブロックには異なる基準電位1〜
4が印加される。更に、各基準電位1〜4は、電圧検出
ブロック内の各電池モジュ−ルの中間電位(最高端子電
圧と最低端子電圧との中間の値にできるだけ近い値)に
設定され、更に、各基準電位1〜4として電池モジュ−
ルの端子電圧を用いている。
That is, in this embodiment, the reference potential (constant potential applied to one end of the input-side resistor network) of each differential voltage detection circuit in the same voltage detection block is equalized. The detection block has different reference potentials 1 to
4 is applied. Further, each of the reference potentials 1 to 4 is set to an intermediate potential (a value as close as possible to an intermediate value between the highest terminal voltage and the lowest terminal voltage) of each battery module in the voltage detection block. Battery modules as 1-4
Terminal voltage is used.

【0027】図3に差動型電圧検出回路201の回路図
を示す。2011は入力抵抗r1、r2及び帰還抵抗r
f1をもつオペアンプであって、電池モジュ−ル101
の高電位側の端子電圧V1と基準電位1(ここでは電池
モジュ−ル103の低位側端子電圧(電池モジュ−ル1
04の高位側端子電圧に設定されている)との差(V1
−V4)を検出する。
FIG. 3 is a circuit diagram of the differential voltage detection circuit 201. 2011 is input resistance r1, r2 and feedback resistance r
An operational amplifier having f1 and a battery module 101
The terminal voltage V1 on the high potential side and the reference potential 1 (here, the low-side terminal voltage of the battery module 103 (the battery module 1)
04 (which is set to the high-side terminal voltage of V.04).
-V4) is detected.

【0028】同様に、2012は入力抵抗r3、r4及
び帰還抵抗rf2をもつオペアンプであって、電池モジ
ュ−ル101の低電位側の端子電圧V2と差(V1−V
4)との和から基準電位1(ここでは電池モジュ−ル1
03の低位側端子電圧(電池モジュ−ル104の高位側
端子電圧に設定されている)を減算することにより、差
V1−V2を検出する。
Similarly, an operational amplifier 2012 having input resistors r3 and r4 and a feedback resistor rf2 has a difference (V1-V) between the terminal voltage V2 on the low potential side of the battery module 101 and (V1-V2).
4) and the reference potential 1 (here, the battery module 1)
The difference V1-V2 is detected by subtracting the lower terminal voltage of 03 (set to the higher terminal voltage of the battery module 104).

【0029】オペアンプ2011、2012の正、負の
電源電圧は、オペアンプの正、負の入力端の電位が仮想
接地電位すなわち、この実施例では基準電位V4にほぼ
等しくなることから、正の電源電圧VHは基準電位V4
より所定電圧(ここでは7.5V)高く設定し、負の電
源電圧VLは基準電位V4より所定電圧(ここでは7.
5V)低く設定した電圧を形成すればよい。
The positive and negative power supply voltages of the operational amplifiers 2011 and 2012 are set to the positive power supply voltage because the potentials at the positive and negative input terminals of the operational amplifier are substantially equal to the virtual ground potential, that is, the reference potential V4 in this embodiment. VH is the reference potential V4
The negative power supply voltage VL is set higher than the reference potential V4 by a predetermined voltage (7.5 V here).
5V) A low voltage may be formed.

【0030】なお、基準電位V1はこの電圧検出ブロッ
クの最高電位V1と最低電位V6の中間電位であればよ
く、特別の電圧発生回路を用いて形成してもよい。次
に、この実施例の特徴をなす組み電池19の放電停止制
御動作を図4に示すフローチャートを参照して以下に説
明する。なお、このフローチャートで示される組み電池
の放電停止制御ルーチンは他の種々の電池制御ルーチン
とともに車両走行時に一定周期でCPU1で実行され
る。
The reference potential V1 may be an intermediate potential between the highest potential V1 and the lowest potential V6 of the voltage detection block, and may be formed by using a special voltage generating circuit. Next, a discharge stop control operation of the assembled battery 19, which is a feature of this embodiment, will be described below with reference to a flowchart shown in FIG. It should be noted that the discharge stop control routine of the assembled battery shown in this flowchart is executed by the CPU 1 at a constant cycle during vehicle running together with other various battery control routines.

【0031】なお、図1において301〜321は各電
池モジュール101〜120の各端子から延出される電
圧検出ラインであり、差動増幅器201〜220は本発
明でいうモジュール電圧検出手段であり、CPU1は本
発明でいう検出回路系異常判定手段及び充放電制御手段
を構成している。まず、各電池モジュール101〜12
0の端子電圧(電位差)Viを差動増幅器201〜22
0から順次読み込み(S100)、これら端子電圧Vi
に基づいて各検出回路系の異常を判定する(S10
2)。なお、この検出回路系の異常は、周知の種々の方
法で検出することができるが、この実施例では、所定電
流以上の放電時における所定期間中の端子電圧低下率が
所定値未満の場合、又は、端子電圧の値が所定の範囲外
に逸脱した場合に異常と判定するものとする。
In FIG. 1, reference numerals 301 to 321 denote voltage detection lines extending from the terminals of the battery modules 101 to 120, and differential amplifiers 201 to 220 are module voltage detection means according to the present invention. Constitutes a detection circuit system abnormality determination unit and a charge / discharge control unit referred to in the present invention. First, each of the battery modules 101 to 12
0 terminal voltage (potential difference) Vi is applied to the differential amplifiers 201 to 22
0 (S100), and these terminal voltages Vi
Of each detection circuit system is determined on the basis of
2). Note that the abnormality of the detection circuit system can be detected by various known methods.In this embodiment, when the terminal voltage drop rate during a predetermined period during discharging at a predetermined current or more is less than a predetermined value, Alternatively, if the value of the terminal voltage deviates from a predetermined range, it is determined that the terminal voltage is abnormal.

【0032】S102において検出回路系がすべて正常
であれば読み込んだ各端子電圧Viのうち、最小値V
1、二番目に小さい値V2を抽出し、これらV1、V2
及びそれらの端子電圧番号を不揮発メモリに書き込み
(S104)、更に最小値V1と二番目に小さい値V2
との電圧差ΔVを算出し、それも不揮発メモリに書き込
み(S104)、S114へジャンプする。
In S102, if all the detection circuit systems are normal, the minimum value V among the read terminal voltages Vi
First, the second smallest value V2 is extracted, and these V1 and V2 are extracted.
And the terminal voltage numbers thereof are written in the nonvolatile memory (S104), and the minimum value V1 and the second smallest value V2
Is calculated in the nonvolatile memory (S104), and the process jumps to S114.

【0033】一方、S102にて、どれかの検出回路系
が異常であればそれがS104で前回記憶した最小値V
1を発生する検出回路系(最小値発生検出回路系)かど
うかを判別し、そうでなければS114へジャンプし、
そうであれば最小値V1を所定の算出式を用いて算出す
る(S112)。この算出式の一例を以下に説明する。
On the other hand, if any of the detection circuit systems is abnormal in S102, it is the minimum value V previously stored in S104.
It is determined whether or not the detection circuit system generates 1 (minimum value generation detection circuit system). If not, the process jumps to S114,
If so, the minimum value V1 is calculated using a predetermined calculation formula (S112). An example of the calculation formula will be described below.

【0034】前に正常に算出した最小値をV1、二番目
に小さい値(二番目の最小値ともいう)をV2とすれ
ば、 V1=(V1−V2)+V2 =ΔV+V2となる。 ここで、前の正常時から今回の異常発生時までのV1の
電圧低下率はV2の電圧低下率に等しくKであるとし、
今回の推定最小値をV1’、今回の二番目の最小値をV
2’とすれば、 V1’=KΔV+V2’ となる。また、K=V2’/V2であるので、最終的
に、 V1’=ΔV・V2’/V2+V2’ となる。
Assuming that the previously calculated minimum value is V1 and the second smallest value (also called the second minimum value) is V2, V1 = (V1−V2) + V2 = ΔV + V2. Here, it is assumed that the voltage drop rate of V1 from the previous normal time to the time of this abnormal occurrence is K, which is equal to the voltage drop rate of V2.
The estimated minimum value of this time is V1 ′, and the second minimum value of this time is V
Assuming 2 ′, V1 ′ = KΔV + V2 ′. Further, since K = V2 '/ V2, finally, V1' =. DELTA.V.V2 '/ V2 + V2'.

【0035】次に、S104またはS112で算出また
は推定した最小値V1又はV1’が規制範囲すなわちか
なり容量が減少して急激な放電は電池エコノミー上好ま
しくないかどうかを調べ(S114)、規制範囲であれ
ば警報を出力して不要な負荷を遮断してS118へ進
み、大電流放電を規制し、規制範囲外であればS118
へジャンプする。
Next, it is determined whether or not the minimum value V1 or V1 'calculated or estimated in S104 or S112 is in the regulation range, that is, the capacity is considerably reduced, and rapid discharge is not preferable in the battery economy (S114). If so, an alarm is output, unnecessary loads are cut off, and the process proceeds to S118, where large-current discharge is regulated.
Jump to

【0036】S118では、最小値V1又はV1’がも
はや電池保護上、放電をただちに禁止するレベルにまで
低下したかどうかを調べ、達したら、警報を出力して放
電を禁止して(S120)、そうでなければただちにメ
インルーチンへリターンする。なお、上記実施例では、
端子電圧として電池モジュールの単純な電位差を用いた
が、端子電圧と電池容量との関係は放電電流値により変
動し、かつ、開放端子電圧のほうがより電池容量に正確
な相関関係をもつので、検出した端子電圧から放電電流
・内部抵抗で示される電池内部電圧降下を差し引いて各
電池モジュールの開放端子電圧を求めてそれを用いて図
4のルーチンを実行してもよい。なお、この場合、放電
電流は電流センサで検出され、内部抵抗は端子電圧や温
度の関数としてマップからサーチすることが好ましい。
In S118, it is checked whether or not the minimum value V1 or V1 'has already fallen to a level for immediately prohibiting discharge for battery protection, and if reached, an alarm is output to prohibit discharge (S120). Otherwise, return to the main routine immediately. In the above embodiment,
Although the simple potential difference of the battery module was used as the terminal voltage, the relationship between the terminal voltage and the battery capacity fluctuated depending on the discharge current value, and the open terminal voltage had a more accurate correlation with the battery capacity. The routine of FIG. 4 may be executed by obtaining the open terminal voltage of each battery module by subtracting the battery internal voltage drop represented by the discharge current and the internal resistance from the terminal voltage thus obtained. In this case, the discharge current is preferably detected by a current sensor, and the internal resistance is preferably searched from a map as a function of the terminal voltage and the temperature.

【0037】なお、上記実施例では、最小値V1が異常
である場合に、二番目に小さい端子電圧V2に基づいて
最小値V1を推定したが、二番目に小さい端子電圧では
なく他の端子電圧に基づいて推定することもできる。ま
た、正常な複数の端子電圧の平均値などに基づいて推定
してもよい。
In the above embodiment, when the minimum value V1 is abnormal, the minimum value V1 is estimated based on the second smallest terminal voltage V2. Can also be estimated based on Alternatively, the estimation may be performed based on an average value of a plurality of normal terminal voltages.

【図面の簡単な説明】[Brief description of the drawings]

【図1】組み電池1の各モジュ−ル電圧をデジタル信号
に変換する組み電池の電圧検出装置を示すブロック図で
ある。
FIG. 1 is a block diagram showing an assembled battery voltage detecting device for converting each module voltage of the assembled battery 1 into a digital signal.

【図2】図1の組み電池の電圧検出装置を用いた電気自
動車用組電池の制御装置の一実施例を示すブロック回路
図である。
FIG. 2 is a block circuit diagram showing one embodiment of a control device for an assembled battery for an electric vehicle using the assembled battery voltage detection device of FIG. 1;

【図3】図1のA/D変換回路5のブロック回路図であ
る。
FIG. 3 is a block circuit diagram of the A / D conversion circuit 5 of FIG.

【図4】放電停止制御ルーチンを示すフローチャートで
ある。
FIG. 4 is a flowchart showing a discharge stop control routine.

【符号の説明】 19は組み電池、101〜120は電池モジュ−ル、2
01〜220は差動型電圧検出回路、301〜321は
電圧検出ライン、CPU1は本発明でいう検出回路系異
常判定手段及び充放電制御手段。
[Description of Signs] 19 is an assembled battery, 101 to 120 are battery modules, 2
01 to 220 are differential voltage detection circuits, 301 to 321 are voltage detection lines, and CPU 1 is a detection circuit system abnormality determination means and charge / discharge control means referred to in the present invention.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5G003 BA03 CA11 EA08 EA09 FA06 GC05 5H111 BB02 BB06 CC16 DD11 HA05 HA06  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5G003 BA03 CA11 EA08 EA09 FA06 GC05 5H111 BB02 BB06 CC16 DD11 HA05 HA06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】直列接続されて電気自動車の走行モータ給
電用の組電池を構成する多数の電池モジュールの各端子
から延出される多数の電圧検出ラインと、 算出した各前記電圧検出ラインの電位差により各前記電
池モジュールの端子電圧を検出するモジュール電圧検出
手段と、 前記各電池モジュールの端子電圧に基づいて前記電池モ
ジュールの充放電を制御する充放電制御手段と、 を備える電気自動車用組電池の制御装置において、 前記電圧検出ライン又は前記モジュール電圧検出手段を
含む検出回路系の異常を前記端子電圧に基づいて判定す
る検出回路系異常判定手段を備え、 前記充放電制御手段は、前記検出回路系が異常であると
判定した場合に、あらかじめ記憶する記憶データに基づ
いて前記異常な検出回路系が検出する電池モジュールの
端子電圧を推定し、推定した前記端子電圧に基づいて前
記組み電池の充放電を制御することを特徴とする電気自
動車用組電池の制御装置。
A voltage detection line extending from each terminal of a number of battery modules connected in series to form a battery pack for supplying power to a traveling motor of an electric vehicle, and a calculated potential difference between the voltage detection lines. Control of an assembled battery for an electric vehicle, comprising: module voltage detection means for detecting a terminal voltage of each of the battery modules; and charge / discharge control means for controlling charge / discharge of the battery modules based on the terminal voltage of each of the battery modules. The apparatus, further comprising: a detection circuit system abnormality determination unit that determines abnormality of the detection circuit system including the voltage detection line or the module voltage detection unit based on the terminal voltage, wherein the charge / discharge control unit includes: When it is determined that the battery module is abnormal, the battery module detected by the abnormal detection circuit system based on stored data stored in advance. Terminal voltage estimate, estimated control device of the set electric vehicle battery pack, which comprises controlling the charging and discharging of the battery based on the terminal voltage.
【請求項2】請求項1記載の電気自動車用組電池の制御
装置において、 前記充放電制御手段は、 検出した前記各端子電圧のうちの最小値を発生する電池
モジュールの端子電圧を正常時代表端子電圧として設定
し、 前記正常時代表端子電圧を発生する前記検出回路系であ
る最小値発生検出回路系以外の前記検出回路系の異常の
場合に前記正常時代表端子電圧の推移に基づいて放電を
制御し、 前記最小値発生検出回路系以外の所定の前記検出回路系
で検出される前記端子電圧である臨時代表端子電圧と前
記正常時代表端子電圧との間の端子電圧関係を前記記憶
データとしてあらかじめ記憶しておき、 前記最小値発生検出回路系の異常の場合に前記臨時代表
端子電圧及び前記端子電圧関係に基づいて推定した前記
最小値を発生する前記電池モジュールの端子電圧に基づ
いて放電を制御することを特徴とする電気自動車用組電
池の制御装置。
2. The control apparatus for an assembled battery for an electric vehicle according to claim 1, wherein said charge / discharge control means represents a terminal voltage of a battery module which generates a minimum value among the detected terminal voltages in a normal state. A terminal voltage is set, and in the case of an abnormality in the detection circuit system other than the minimum value generation detection circuit system that is the detection circuit system that generates the normal terminal voltage, the discharge is performed based on the transition of the normal representative terminal voltage. Controlling the terminal voltage relationship between an extraordinary representative terminal voltage, which is the terminal voltage detected by the predetermined detection circuit system other than the minimum value generation detection circuit system, and the normal time representative terminal voltage. The battery module that generates the minimum value estimated based on the temporary representative terminal voltage and the terminal voltage relationship in the case of an abnormality in the minimum value generation detection circuit system. Control apparatus for an electric automobile battery pack, characterized in that controlling the discharge based on a terminal voltage of Lumpur.
【請求項3】請求項2記載の電気自動車用組電池の制御
装置において、 前記充放電制御手段は、 検出した前記各端子電圧のうちの二番目の最小値を発生
する電池モジュールの端子電圧を前記臨時代表端子電圧
として設定することを特徴とする電気自動車用組電池の
制御装置。
3. The control device for an assembled battery for an electric vehicle according to claim 2, wherein the charge / discharge control means determines a terminal voltage of the battery module that generates a second minimum value among the detected terminal voltages. A controller for an assembled battery for an electric vehicle, wherein the controller sets the temporary representative terminal voltage.
JP17701398A 1998-06-24 1998-06-24 Control device for battery pack for electric vehicles Expired - Fee Related JP3827123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17701398A JP3827123B2 (en) 1998-06-24 1998-06-24 Control device for battery pack for electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17701398A JP3827123B2 (en) 1998-06-24 1998-06-24 Control device for battery pack for electric vehicles

Publications (2)

Publication Number Publication Date
JP2000013917A true JP2000013917A (en) 2000-01-14
JP3827123B2 JP3827123B2 (en) 2006-09-27

Family

ID=16023647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17701398A Expired - Fee Related JP3827123B2 (en) 1998-06-24 1998-06-24 Control device for battery pack for electric vehicles

Country Status (1)

Country Link
JP (1) JP3827123B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270492A (en) * 1999-03-18 2000-09-29 Denso Corp Device for detecting charged state of assembly battery and vehicle control device using the same
JP2006042591A (en) * 2004-06-21 2006-02-09 Panasonic Ev Energy Co Ltd Abnormal voltage detecting device for battery pack
JP2009070831A (en) * 2004-04-09 2009-04-02 Sanyo Electric Co Ltd Power supply device
JP2012047491A (en) * 2010-08-24 2012-03-08 Calsonic Kansei Corp Charging rate calculation apparatus for secondary battery and charging rate calculation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270492A (en) * 1999-03-18 2000-09-29 Denso Corp Device for detecting charged state of assembly battery and vehicle control device using the same
JP2009070831A (en) * 2004-04-09 2009-04-02 Sanyo Electric Co Ltd Power supply device
JP2006042591A (en) * 2004-06-21 2006-02-09 Panasonic Ev Energy Co Ltd Abnormal voltage detecting device for battery pack
JP4515339B2 (en) * 2004-06-21 2010-07-28 パナソニックEvエナジー株式会社 Abnormal voltage detection device for battery pack
JP2012047491A (en) * 2010-08-24 2012-03-08 Calsonic Kansei Corp Charging rate calculation apparatus for secondary battery and charging rate calculation method

Also Published As

Publication number Publication date
JP3827123B2 (en) 2006-09-27

Similar Documents

Publication Publication Date Title
JP4186916B2 (en) Battery pack management device
JPH11160367A (en) Apparatus for detecting voltage of battery pack for electric automobile
US7973515B2 (en) Power management systems with controllable adapter output
US7663341B2 (en) System for controlling voltage balancing in a plurality of lithium-ion cell battery packs and method thereof
KR101014981B1 (en) Battery module
US8004239B2 (en) Battery management system for calculating charge and disharge powers
US8004249B2 (en) Battery management system and method
EP3032695B1 (en) Battery control system and vehicle control system
US20030087148A1 (en) Method and apparatus for controlling cooling and detecting abnormality in battery pack system
EP2330431A1 (en) Battery pack and method of sensing voltage of battery pack
JP5092812B2 (en) Battery monitoring device and failure diagnosis method
CN101460859A (en) Method for judging abnormality of battery pack, and battery pack
US5886502A (en) Cell balance circuit having rechargeable cells
JP2008136336A (en) Semiconductor integrated circuit device
EP1146345B1 (en) Multiplex voltage measurement apparatus
US20220045524A1 (en) Charging control device, battery system, and charging control method
JP2008189065A (en) Electric source device for vehicle
US5703467A (en) Apparatus for expanding battery recognition in a battery charging system
JP3226161B2 (en) Battery cell voltage detector
JP4196250B2 (en) Battery pack control device
JPWO2020022344A1 (en) Power supply system and management equipment
JP3624800B2 (en) Battery capacity adjustment method
JP2000013917A (en) Controller for battery pack of electric automobile
JP7078293B2 (en) Current sensor diagnostic device and method
US20040196007A1 (en) Battery pack malfunction detection apparatus and battery pack malfunction detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060629

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees