JP2000009507A - River current velocity measuring instrument - Google Patents

River current velocity measuring instrument

Info

Publication number
JP2000009507A
JP2000009507A JP10175717A JP17571798A JP2000009507A JP 2000009507 A JP2000009507 A JP 2000009507A JP 10175717 A JP10175717 A JP 10175717A JP 17571798 A JP17571798 A JP 17571798A JP 2000009507 A JP2000009507 A JP 2000009507A
Authority
JP
Japan
Prior art keywords
signal
river
received
flow velocity
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10175717A
Other languages
Japanese (ja)
Inventor
Yuji Matsumoto
優治 松本
Hideyuki Takahashi
秀幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIZUOKA OKI DENKI KK
Oki Electric Industry Co Ltd
Original Assignee
SHIZUOKA OKI DENKI KK
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIZUOKA OKI DENKI KK, Oki Electric Industry Co Ltd filed Critical SHIZUOKA OKI DENKI KK
Priority to JP10175717A priority Critical patent/JP2000009507A/en
Publication of JP2000009507A publication Critical patent/JP2000009507A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a river current velocity measuring instrument which is complied with changes of water quality. SOLUTION: When a command signal S50a is outputted from a detection arithmetic part 50, a receive signal S62a is detected by the detection arithmetic part 50 through a transmitter/receivers 61, a wave transmitter/receiver 71, a transmitter/receiver 65, a wave transmitter/receiver 75, a wave transmitter/ receiver 72, and a transmitter/receiver 62 in order. In the reverse direction, a receive signal S61b is detected by the detection arithmetic part 50 similarly to calculate a current velocity V1. A signal transmitting and receiving means consisting of the transmitter/receivers 63, 64, and 65 and the wave transmitter/ receivers 73, 74, and 75 calculates a current velocity V2 by the detection arithmetic part 50 as well as the current velocity V1 and a display unit 51 displays it. The mean current velocity Vav of the overall river width is obtained by finding the mean value of the current velocities V1 and V2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水深によって音速
が異なる音速分布特性を有する河川の流速を、超音波信
号を用いて測定する河川流速測定装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a river flow velocity measuring apparatus for measuring a flow velocity of a river having a sound velocity distribution characteristic whose sound velocity varies depending on the water depth, using an ultrasonic signal.

【0002】[0002]

【従来の技術】従来、このような分野の技術としては、
例えば、次のような文献に記載されるものがあった。 文献;特開昭55-20174号公報 図2は、前記文献に記載された従来の河川流速測定装置
を示す構成図である。この河川流速測定装置は、送信信
号の出力指令用の指令信号S10a,S10bを出力す
ると共に、これらの指令信号S10a,S10bにそれ
ぞれ対応した受信信号S22a,S21bを受信して河
川1の被測定媒質(即ち、河水)1Wの流速Vを演算
し、演算結果S10cを出力する検出演算部10を有し
ている。検出演算部10には、演算結果S10cを表示
する表示器11が接続されている。更に、検出演算部1
0には、指令信号S10aを入力して送信信号S21a
を出力すると共に、与えられた受波信号S31bを受信
して受信信号S21bを出力する送受信器21、及び指
令信号S10bを入力して送信信号S22bを出力する
と共に、与えられた受波信号S32aを受信して受信信
号S22aを出力する送受信器22が接続され、これら
の送受信器21,22が河川1の一方の岸辺に設置され
ている。又、この河川流速測定装置は、河川1の他方の
岸辺に設置された送受信器23を有している。送受信器
23は、与えられた受波信号S33a1を受信して送信
信号S23aを送信し、与えられた受波信号S33b1
を受信して送信信号S23bを送信するものである。
2. Description of the Related Art Conventionally, techniques in such a field include:
For example, there is one described in the following literature. Reference: JP-A-55-20174 FIG. 2 is a configuration diagram showing a conventional river flow velocity measuring device described in the above-mentioned reference. This river flow velocity measuring device outputs command signals S10a and S10b for commanding output of a transmission signal, and receives reception signals S22a and S21b corresponding to these command signals S10a and S10b, respectively, to measure the medium to be measured of the river 1. (I.e., river water) has a detection calculation unit 10 that calculates a flow velocity V of 1 W and outputs a calculation result S10c. A display 11 for displaying the calculation result S10c is connected to the detection calculation unit 10. Further, the detection operation unit 1
0, the command signal S10a is input and the transmission signal S21a
And a transmitter / receiver 21 that receives a given received signal S31b and outputs a received signal S21b, and receives a command signal S10b and outputs a transmitted signal S22b, and outputs a given received signal S32a. A transceiver 22 that receives and outputs a reception signal S22a is connected, and these transceivers 21 and 22 are installed on one shore of the river 1. This river flow velocity measuring device has a transceiver 23 installed on the other shore of the river 1. The transceiver 23 receives the received wave signal S33a1 and transmits the transmission signal S23a, and receives the received wave signal S33b1.
And transmits the transmission signal S23b.

【0003】送受信器21には、河川1の一方の岸辺か
ら所定の距離隔てた水中に配置された送受波器31が接
続されている。送受波器31は、送信信号S21aを超
音波信号S31aに変換して送波し、与えられた超音波
信号S33b2を受波して受波信号S31bに変換して
出力するものである。送受信器22には、送受波器31
から河川1の河道方向に距離d隔てた位置に配置された
送受波器32が接続されている。送受波器32は、送信
信号S22bを超音波信号S32bに変換して送波し、
与えられた超音波信号S33a2を受波して受波信号S
32aに変換して出力するものである。送受信器23に
は、河川1の岸辺から所定の距離隔てた水中で且つ送受
波器31,32から距離rの位置に配置された送受波器
33が接続されている。送受波器33は、超音波信号S
31aを受波して受波信号S33a1に変換して出力
し、超音波信号S32bを受波して受波信号S33b1
に変換して出力するものである。
[0003] The transceiver 21 is connected to a transmitter / receiver 31 disposed underwater at a predetermined distance from one shore of the river 1. The transmitter / receiver 31 converts the transmission signal S21a into an ultrasonic signal S31a and transmits it, receives the supplied ultrasonic signal S33b2, converts it into a received signal S31b, and outputs the converted signal. The transceiver 22 includes a transducer 31
The transmitter / receiver 32 arranged at a position separated by a distance d in the direction of the river 1 of the river 1 is connected. The transducer 32 converts the transmission signal S22b into an ultrasonic signal S32b and transmits the signal,
The received ultrasonic signal S33a2 is received and the received signal S33a2 is received.
32a and output. The transmitter / receiver 23 is connected to a transmitter / receiver 33 arranged in water at a predetermined distance from the shore of the river 1 and at a distance r from the transmitter / receivers 31 and 32. The transducer 33 receives the ultrasonic signal S
31a is received and converted into a received signal S33a1 and output, and the ultrasonic signal S32b is received and received signal S33b1.
Is converted and output.

【0004】次に、図2の動作を説明する。この河川流
速測定装置では、検出演算部10から送受信器21に対
して指令信号S10aが出力されると、送受信器21か
ら送信信号S21aが出力されて送受波器31が駆動さ
れ、河水1W中に超音波信号S31aが発射される。超
音波信号S31aは送受波器33で受波され、受信信号
S33a1に変換されて送受信器23へ送られる。受信
信号S33a1は、送受信器23で一定レベルまで増幅
され、信号として検出された場合、送信信号S23aと
して送受波器33に入力される。そして、送受波器33
から超音波信号S33a2が発射される。超音波信号S
33a2は送受波器32で受波され、受波信号S32a
に変換されて送受信器22に送られる。受信信号S32
aは、送受信器22で一定レベルまで増幅され、受信信
号S22aとして検出演算部10に送られて検出され
る。
Next, the operation of FIG. 2 will be described. In this river flow velocity measuring device, when the command signal S10a is output from the detection operation unit 10 to the transceiver 21, the transmission signal S21a is output from the transceiver 21 and the transducer 31 is driven. An ultrasonic signal S31a is emitted. The ultrasonic signal S31a is received by the transmitter / receiver 33, converted into a reception signal S33a1, and sent to the transceiver 23. The reception signal S33a1 is amplified to a certain level by the transmitter / receiver 23 and, when detected as a signal, is input to the transmitter / receiver 33 as a transmission signal S23a. And the transducer 33
, An ultrasonic signal S33a2 is emitted. Ultrasonic signal S
33a2 is received by the transmitter / receiver 32, and the received signal S32a
And transmitted to the transceiver 22. Received signal S32
The signal a is amplified to a certain level by the transceiver 22 and sent to the detection operation unit 10 as a received signal S22a to be detected.

【0005】同様に、検出演算部10から送受信器22
に対して指令信号S10bが出力されると、送受信器2
2から送信信号S22bが出力されて送受波器32が駆
動され、河水1W中に超音波信号S32bが発射され
る。超音波信号S32bは送受波器33で受波され、受
信信号S33b1に変換されて送受信器23へ送られ
る。受信信号S33b1は、送受信器23で一定レベル
まで増幅され、信号として検出された場合、送信信号S
23bとして送受波器33に入力される。そして、送受
波器33から超音波信号S33b2が発射される。超音
波信号S33b2は送受波器31で受波され、受信信号
S31bに変換されて送受信器21に送られる。受信信
号S31bは、送受信器21で一定レベルまで増幅さ
れ、受信信号S21bとして検出演算部10に送られて
検出される。検出演算部10では、例えば、周波数差方
式、時間差方式、逆時間差方式等を用いて流速Vが演算
され、この流速Vが表示器11で表示される。
[0005] Similarly, the detection operation unit 10 transmits the signal to the transceiver 22.
When the command signal S10b is output to the
The transmission signal S22b is output from 2 and the transducer 32 is driven, and the ultrasonic signal S32b is emitted in the river water 1W. The ultrasonic signal S32b is received by the transmitter / receiver 33, converted into a received signal S33b1, and sent to the transceiver 23. The reception signal S33b1 is amplified to a certain level by the transceiver 23, and when detected as a signal, the transmission signal S33b1 is amplified.
23b is input to the transducer 33. Then, the ultrasonic wave signal S33b2 is emitted from the transducer 33. The ultrasonic signal S33b2 is received by the transmitter / receiver 31, converted into a reception signal S31b, and transmitted to the transceiver 21. The reception signal S31b is amplified to a certain level by the transmitter / receiver 21, sent to the detection operation unit 10 as the reception signal S21b, and detected. The detection operation unit 10 calculates the flow velocity V using, for example, a frequency difference method, a time difference method, an inverse time difference method, or the like, and the flow velocity V is displayed on the display 11.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
図2の河川流速測定装置では、次のような課題があっ
た。河水1Wの温度及び塩分濃度は、表面付近と水底付
近とで異なるので、河川1には水深によって音速Cが異
なる音速分布特性(以下、「垂直音速分布」という)が
ある。即ち、水深が深くなるほど音速Cが低くなり、特
に、夏季等では垂直音速分布の勾配が急になる。このと
き、水平に発射された超音波信号S31a,S33a
2,S32b,S33b2は、スネルの法則によって下
方に曲がりながら進行し、水底にぶつかることがある。
超音波信号S31a,S33a2,S32b,S33b
2が水底に当たって反射すると、波形の立上がりが曖昧
になり、流速Vの測定が不可能になる。そのため、垂直
音速分布の勾配が急な河川では、河幅が広い場合には、
流速Vの測定が不可能になることがあるという課題があ
った。
However, the conventional river flow velocity measuring device shown in FIG. 2 has the following problems. Since the temperature and salinity of the river water 1W are different between near the surface and near the water bottom, the river 1 has a sound velocity distribution characteristic (hereinafter, referred to as "vertical sound velocity distribution") in which the sound velocity C varies depending on the water depth. That is, the sound velocity C becomes lower as the water depth becomes deeper. In particular, the gradient of the vertical sound velocity distribution becomes steeper in summer or the like. At this time, the horizontally emitted ultrasonic signals S31a and S33a
2, S32b and S33b2 progress while bending downward according to Snell's law and may hit the water bottom.
Ultrasonic signals S31a, S33a2, S32b, S33b
When 2 hits the water bottom and is reflected, the rise of the waveform becomes ambiguous, and the measurement of the flow velocity V becomes impossible. Therefore, in a river with a steep vertical sound velocity distribution, if the river width is wide,
There has been a problem that the measurement of the flow velocity V may not be possible.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
に、本発明のうちの請求項1に係る発明は、水深によっ
て音速が異なる音速分布特性を有する河川の流速を測定
する河川流速測定装置において、次のような手段を備え
ている。超音波信号が直接伝搬する距離の範囲内で河幅
が分割された複数の分割領域毎にそれぞれ設けられ、送
信信号の出力指令用の第1及び第2の指令信号を入力
し、流速演算用の第1及び第2の受信信号を出力する複
数の信号送受信手段と、複数の前記第1及び第2の指令
信号を出力すると共に、複数の前記第1及び第2の受信
信号を受信して前記河川の流速を演算によって求める演
算手段とを備えている。
In order to solve the above-mentioned problems, a first aspect of the present invention is a river flow velocity measuring apparatus for measuring a flow velocity of a river having a sound velocity distribution characteristic whose sound velocity varies depending on water depth. Has the following means. It is provided for each of a plurality of divided areas where the river width is divided within a range of a distance where an ultrasonic signal directly propagates, and inputs first and second command signals for output command of a transmission signal, and calculates a flow rate. A plurality of signal transmitting / receiving means for outputting the first and second received signals, and a plurality of the first and second command signals, and receiving the plurality of the first and second received signals. Calculating means for calculating the flow velocity of the river by calculation.

【0008】前記各信号送受信手段は、前記第1の指令
信号を入力して第1の送信信号を送信し、第1の受波信
号を受信して前記第1の受信信号を出力する第1の送受
信器と、前記分割領域における一方の端部近辺に配置さ
れ、前記第1の送信信号を第1の超音波信号に変換して
送波し、第2の超音波信号を伝搬時間t2遅れて受波
し、前記第1の受波信号に変換して出力する第1の送受
波器と、前記第2の指令信号を入力して第2の送信信号
を送信し、第2の受波信号を受信して前記第2の受信信
号を出力する第2の送受信器と、前記第1の送受波器か
ら前記河川の河道方向に距離d隔てた位置に配置され、
前記第2の送信信号を第3の超音波信号に変換して送波
し、第4の超音波信号を伝搬時間t4遅れて受波し、前
記第2の受波信号に変換して出力する第2の送受波器
と、前記分割領域における他方の端部近辺で且つ前記第
1及び第2の送受波器から距離rの位置に配置され、伝
搬時間t1をもった前記第1の超音波信号を受波して第
3の受波信号に変換して出力し、前記第3の超音波信号
を伝搬時間t3遅れて受波して第4の受波信号に変換し
て出力し、第3の送信信号を前記第4の超音波信号に変
換して送波し、且つ第4の送信信号を前記第2の超音波
信号に変換して送波する第3の送受波器と、前記第3の
受波信号を受信して前記第3の送信信号を送信し、前記
第4の受波信号を受信して前記第4の送信信号を送信す
る第3の送受信器とをそれぞれ備えている。
Each of the signal transmission / reception means receives the first command signal, transmits a first transmission signal, receives a first reception signal, and outputs the first reception signal. And a transmitter / receiver, which is arranged near one end of the divided area, converts the first transmission signal into a first ultrasonic signal and transmits the same, and delays the second ultrasonic signal by a propagation time t2. A first transmitter / receiver for receiving and transmitting the second command signal, transmitting a second transmission signal by inputting the second command signal, A second transceiver that receives a signal and outputs the second received signal; and a second transceiver that is disposed at a distance d from the first transducer in the direction of the river channel of the river,
The second transmission signal is converted into a third ultrasonic signal and transmitted, the fourth ultrasonic signal is received with a delay of propagation time t4, converted into the second received signal, and output. A second transducer, the first ultrasonic wave being disposed near the other end of the divided area and at a distance r from the first and second transducers and having a propagation time t1; Receiving the signal, converting the signal into a third received signal and outputting the signal, receiving the third ultrasonic signal with a delay of propagation time t3, converting the signal into a fourth received signal, and outputting the signal; A third transmitter / receiver that converts the third transmission signal into the fourth ultrasonic signal and transmits the fourth ultrasonic signal, and converts the fourth transmission signal into the second ultrasonic signal and transmits the third ultrasonic signal; A third transceiver that receives a third received signal, transmits the third transmission signal, receives the fourth received signal, and transmits the fourth transmission signal; It is provided, respectively.

【0009】前記演算手段は、前記伝搬時間t1,t
2,t3,t4を検出し、次式を用いて前記各分割領域
毎の流速Vpをそれぞれ求め、該各流速Vpの平均値を
求めて前記河川の流速Vavを演算する構成にしたことを
特徴とする河川流速測定装置。 Vp=(r2 /d)(ΔTan +Tan+1 )/Tan 2 但し、 ΔTan =Tbn −Tan 、ΔTan+1 =Tan −Ta
n+1 Ta=t1+t4 Tb=t2+t3 C:河水が静止している場合の音速 n:測定回数 このような構成を採用したことにより、演算手段から第
1の指令信号が出力されると、第1の送受信器、第1の
送受波器、第3の送受波器、第3の送受信器、第3の送
受波器、第2の送受波器、及び第2の送受信器を順次経
て第2の受信信号が演算手段で検出される。逆方向につ
いても、同様に、第1の受信信号が演算手段で検出さ
れ、各分割領域毎の流速が演算される。河幅全体におけ
る平均流速は、各分割領域毎の流速の平均値を求めるこ
とによって得られる。
The calculating means calculates the propagation times t1, t
2, t3, and t4, and the flow velocity Vp of each of the divided areas is calculated using the following equation, and the average value of the flow velocities Vp is calculated to calculate the flow velocity Vav of the river. River velocity measuring device. Vp = (r 2 / d) (ΔTa n + Ta n + 1) / Ta n 2 where, ΔTa n = Tb n -Ta n , ΔTa n + 1 = Ta n -Ta
n + 1 Ta = t1 + t4 Tb = t2 + t3 C: Sound velocity when the river water is stationary n: Number of measurements By adopting such a configuration, when the first command signal is output from the arithmetic means, the first command signal is output. , A first transceiver, a third transceiver, a third transceiver, a third transceiver, a second transceiver, and a second transceiver through the second transceiver sequentially. The received signal is detected by the calculating means. Similarly, in the reverse direction, the first received signal is detected by the calculating means, and the flow velocity of each divided area is calculated. The average flow velocity over the entire river width can be obtained by calculating the average value of the flow velocity for each divided area.

【0010】請求項2に係る発明では、水深によって音
速が異なる音速分布特性を有する河川1の流速を測定す
る河川流速測定装置において、次のような手段を設けて
いる。超音波信号が直接伝搬する距離の範囲内で河幅が
分割された第1及び第2の分割領域毎にそれぞれ設けら
れた2つの請求項1に係る発明の信号送受信手段と、前
記第1の分割領域における第1の送受波器と第2の送受
波器との中間の位置に設けられ、前記第2の分割領域に
おける前記第1の超音波信号を受波して第3の受波信号
に変換して出力し、前記第3の超音波信号を受波して第
4の受波信号に変換して出力し、第3の送信信号を前記
第4の超音波信号に変換して送波し、且つ第4の送信信
号を前記第2の超音波信号に変換して送波する第4の送
受波器と、前記第4の送受波器又は前記第2の分割領域
における前記第3の送受波器を前記第3の送受信器に選
択的に接続する切替手段とを、備えている。これによ
り、河幅が超音波信号が直接伝搬する距離の範囲内であ
る場合には、第4の送受波器と、第2の分割領域におけ
る第1、第2の送受波器と、第1、第2、第3の送受信
器と、切替手段とで1つの信号送受信部が構成され、該
河幅が該範囲よりも大きい場合には第1及び第2の分割
領域に2つの信号送受信部がそれぞれ構成される。そし
て、各信号送受信部において請求項1に係る発明と同様
の作用が行われる。
In the invention according to claim 2, the following means is provided in a river flow velocity measuring device for measuring the flow velocity of a river 1 having a sound velocity distribution characteristic whose sound velocity varies depending on the water depth. 2. The signal transmission / reception means according to claim 1, wherein the signal transmission / reception means is provided for each of the first and second divided areas in which the river width is divided within a range of a distance in which an ultrasonic signal directly propagates. A third receiving signal which is provided at an intermediate position between the first transducer and the second transducer in the divided area and receives the first ultrasonic signal in the second divided area; The third ultrasonic signal is received and converted to a fourth received signal and output, and the third transmission signal is converted to the fourth ultrasonic signal and transmitted. And a fourth transducer for converting a fourth transmission signal into the second ultrasonic signal and transmitting the fourth ultrasonic signal, and the third transducer in the fourth transducer or the second divided area. Switching means for selectively connecting the third transceiver to the third transceiver. Thereby, when the river width is within the range of the distance where the ultrasonic signal directly propagates, the fourth transducer, the first and second transducers in the second divided region, and the first transducer , The second and third transceivers, and the switching means constitute one signal transceiver, and when the river width is larger than the range, two signal transceivers are provided in the first and second divided areas. Are respectively constituted. Then, the same operation as the invention according to claim 1 is performed in each signal transmitting / receiving unit.

【0011】[0011]

【発明の実施の形態】第1の実施形態 図1は、本発明の第1の実施形態を示す河川流速測定装
置の構成図である。この河川流速測定装置は、演算手段
(例えば、検出演算部)50を有している。この検出演
算部50は、送信信号の出力指令用の指令信号S50
a,S50b,S50c,S50dを出力すると共に、
これらの指令信号S50a,S50b,S50c,S5
0dにそれぞれ対応した受信信号S62a,S61b,
S64c,S63dを受信して河川1の分割領域A,B
における河水1Wの流速V1,V2を演算し、演算結果
S50eを出力する機能を有している。分割領域A,B
は、超音波信号が直接伝搬する距離の範囲内で河幅が分
割されたものである。検出演算部50には、演算結果S
50eを表示する表示器51が接続されている。更に、
検出演算部50には、送受信器61,62,63,64
が接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment FIG. 1 is a block diagram of a river flow velocity measuring device showing a first embodiment of the present invention. This river flow velocity measuring device has a calculation means (for example, a detection calculation unit) 50. The detection operation unit 50 includes a command signal S50 for a transmission signal output command.
a, S50b, S50c, and S50d,
These command signals S50a, S50b, S50c, S5
0d, the received signals S62a, S61b,
Receiving S64c and S63d, the divided areas A and B of the river 1
Has the function of calculating the flow velocities V1 and V2 of the river water 1W in the above, and outputting the calculation result S50e. Division areas A and B
Is obtained by dividing the river width within the range where the ultrasonic signal directly propagates. The detection calculation unit 50 includes a calculation result S
A display 51 for displaying 50e is connected. Furthermore,
The detection calculation unit 50 includes transceivers 61, 62, 63, 64
Is connected.

【0012】送受信器61は、指令信号S50aを入力
して送信信号S61aを出力すると共に、与えられた受
波信号S71bを受信して受信信号S61bを出力する
ものであり、送受信器62が、指令信号S50bを入力
して送信信号S62bを出力すると共に、与えられた受
波信号S72aを受信して受信信号S62aを出力する
ものである。送受信器63は、指令信号S50cを入力
して送信信号S63cを出力すると共に、与えられた受
波信号S74dを受信して受信信号S63dを出力する
ものであり、送受信器64が、指令信号S50dを入力
して送信信号S64dを出力すると共に、与えられた受
波信号S75cを受信して受信信号S64cを出力する
ものである。これらの送受信器61,62,63,64
は、河川1の一方の岸辺に設置されている。又、この河
川流速測定装置は、河川1の他方の岸辺に設置された送
受信器65を有している。送受信器65は、与えられた
受波信号S73a1を受信して送信信号S65aを送信
し、与えられた受波信号S73b1を受信して送信信号
S65bを送信し、与えられた受波信号S73c1を受
信して送信信号S65cを送信し、且つ与えられた受波
信号S73d1を受信して送信信号S65dを送信する
ものである。
The transceiver 61 receives a command signal S50a and outputs a transmission signal S61a, and receives a given reception signal S71b and outputs a reception signal S61b. A signal S50b is input, a transmission signal S62b is output, and a given reception signal S72a is received and a reception signal S62a is output. The transceiver 63 receives the command signal S50c and outputs the transmission signal S63c, and receives the received reception signal S74d and outputs the reception signal S63d. The transceiver 64 transmits and receives the command signal S50d. It inputs and outputs a transmission signal S64d, and receives a given reception signal S75c and outputs a reception signal S64c. These transceivers 61, 62, 63, 64
Is installed on one shore of the river 1. Further, this river flow velocity measuring device has a transceiver 65 installed on the other shore of the river 1. The transceiver 65 receives the given received signal S73a1, transmits the transmitted signal S65a, receives the given received signal S73b1, transmits the transmitted signal S65b, and receives the given received signal S73c1. Then, the transmission signal S65c is transmitted, and the received reception signal S73d1 is received and the transmission signal S65d is transmitted.

【0013】送受信器61には、河川1の一方の岸辺か
ら所定の距離隔てた分割領域Aの水中に配置された送受
波器71が接続されている。送受波器71は、送信信号
S61aを超音波信号S71aに変換して送波し、与え
られた超音波信号S75b2を受波して受波信号S71
bに変換して出力するものである。送受信器62には、
送受波器71から河川1の河道方向に距離d隔てた位置
に配置された送受波器72が接続されている。送受波器
72は、送信信号S62bを超音波信号S72bに変換
して送波し、与えられた超音波信号S75a2を受波し
て受波信号S62aに変換して出力するものである。送
受信器63には、河川1の他方の岸辺から所定の距離隔
てた分割領域Bの水中に配置された送受波器73が接続
されている。送受波器73は、送信信号S63cを超音
波信号S73cに変換して送波し、与えられた超音波信
号S75d2を受波して受波信号S73dに変換して出
力するものである。送受信器64には、送受波器73か
ら河川1の河道方向に距離d隔てた位置に配置された送
受波器74が接続されている。送受波器74は、送信信
号S64dを超音波信号S74dに変換して送波し、与
えられた超音波信号S75c2を受波して受波信号S7
4cに変換して出力するものである。
The transmitter / receiver 61 is connected to a transmitter / receiver 71 disposed underwater in a divided area A at a predetermined distance from one shore of the river 1. The transmitter / receiver 71 converts the transmission signal S61a into an ultrasonic signal S71a and transmits it, receives the supplied ultrasonic signal S75b2, and receives the received ultrasonic signal S71b2.
b and output. The transceiver 62 includes:
A transducer 72 arranged at a distance d from the transducer 71 in the direction of the river channel of the river 1 is connected. The transmitter / receiver 72 converts the transmission signal S62b into an ultrasonic signal S72b and transmits it, and receives the supplied ultrasonic signal S75a2, converts it into a received signal S62a, and outputs the converted signal. The transmitter / receiver 63 is connected to a transmitter / receiver 73 arranged in the water in the divided area B at a predetermined distance from the other shore of the river 1. The transmitter / receiver 73 converts the transmission signal S63c into an ultrasonic signal S73c and transmits it, receives the supplied ultrasonic signal S75d2, converts it into a received signal S73d, and outputs it. The transmitter / receiver 64 is connected to a transmitter / receiver 74 arranged at a distance d from the transmitter / receiver 73 in the river direction of the river 1. The transmitter / receiver 74 converts the transmission signal S64d into an ultrasonic signal S74d and transmits it, receives the supplied ultrasonic signal S75c2, and receives the received ultrasonic signal S7.
4c.

【0014】送受信器65には、分割領域A,Bの境界
の水中で且つ送受波器71,72,73,74から距離
rの位置に配置された送受波器75が接続されている。
送受波器75は、超音波信号S71aを受波して受波信
号S75a1に変換して出力し、超音波信号S72bを
受波して受波信号S75b1に変換して出力し、超音波
信号S73cを受波して受波信号S75c1に変換して
出力し、且つ超音波信号S74dを受波して受波信号S
75d1に変換して出力するものである。送受信器6
1,62,65及び送受波器71,72,75で1つの
信号送受信手段が構成されている。又、送受信器63,
64,65及び送受波器73,74,75で他の信号送
受信手段が構成されている。
The transmitter / receiver 65 is connected to a transmitter / receiver 75 disposed in the water at the boundary between the divided areas A and B and at a distance r from the transmitter / receivers 71, 72, 73 and 74.
The transmitter / receiver 75 receives the ultrasonic signal S71a, converts the received ultrasonic signal S71a into a received signal S75a1, and outputs the received ultrasonic signal S72b, converts the received ultrasonic signal S72b into a received signal S75b1, and outputs the received ultrasonic signal S73c. Is received and converted into a received signal S75c1 and output, and the ultrasonic signal S74d is received and the received signal S75c1 is received.
75d1 and output. Transceiver 6
1, 62, 65 and the transducers 71, 72, 75 constitute one signal transmitting / receiving means. Also, the transceiver 63,
The other signal transmission / reception means is constituted by 64, 65 and the transducers 73, 74, 75.

【0015】次に、図1の動作を説明する。この河川流
速測定装置では、分割領域A,Bにおける河水1Wの流
速V1,V2の演算動作(a),(b)が行われる。 (a) 流速V1の演算動作 検出演算部50から送受信器61に対して指令信号S5
0aが出力されると、送受信器61から送信信号S61
aが出力されて送受波器71が駆動され、分割領域Aの
河水1W中に超音波信号S71aが発射される。超音波
信号S71aは伝搬時間t1で送受波器75で受波さ
れ、受信信号S75a1に変換されて送受信器65へ送
られる。受信信号S75a1は、送受信器65で一定レ
ベルまで増幅され、信号として検出された場合、送信信
号S65aとして送受波器75に入力される。そして、
送受波器75から超音波信号S75a2が発射される。
超音波信号S75a2は伝搬時間t4で送受波器72で
受波され、受波信号S72aに変換されて送受信器62
に送られる。受波信号S72aは、送受信器62で一定
レベルまで増幅され、受信信号S62aとして検出演算
部50に送られて検出される。
Next, the operation of FIG. 1 will be described. In this river flow velocity measuring device, the calculation operations (a) and (b) of the flow velocities V1 and V2 of the river water 1W in the divided areas A and B are performed. (A) Calculation operation of flow velocity V1 Command signal S5 from detection calculation unit 50 to transceiver 61
0a is output, the transmission signal S61 is transmitted from the transceiver 61.
is output, the transducer 71 is driven, and an ultrasonic signal S71a is emitted into the river water 1W in the divided area A. The ultrasonic signal S71a is received by the transmitter / receiver 75 at the propagation time t1, converted into a received signal S75a1, and transmitted to the transceiver 65. The reception signal S75a1 is amplified to a certain level by the transmitter / receiver 65 and, when detected as a signal, is input to the transmitter / receiver 75 as a transmission signal S65a. And
An ultrasonic signal S75a2 is emitted from the transducer 75.
The ultrasonic signal S75a2 is received by the transmitter / receiver 72 at the propagation time t4, converted into the received signal S72a, and
Sent to The received signal S72a is amplified to a certain level by the transceiver 62, sent to the detection operation unit 50 as a received signal S62a, and detected.

【0016】同様に、検出演算部50から送受信器62
に対して指令信号S50bが出力されると、送受信器6
2から送信信号S62bが出力されて送受波器72が駆
動され、分割領域Aの河水1W中に超音波信号S72b
が発射される。超音波信号S72bは伝搬時間t3で送
受波器75で受波され、受信信号S75b1に変換され
て送受信器65へ送られる。受信信号S75b1は、送
受信器65で一定レベルまで増幅され、信号として検出
された場合、送信信号S65bとして送受波器75に入
力される。そして、送受波器75から超音波信号S75
b2が発射される。超音波信号S75b2は伝搬時間t
2で送受波器71で受信され、受波信号S71bに変換
されて送受信器21に送られる。受波信号S71bは、
送受信器61で一定レベルまで増幅され、受信信号S6
1bとして検出演算部50に送られて検出される。検出
演算部50では、逆時間差法を用いて次式(1)に示す
流速V1が演算され、演算結果S50eとして表示器5
1で表示される。
Similarly, the transmission / reception device 62
When the command signal S50b is output to the
2 outputs the transmission signal S62b, drives the transducer 72, and outputs the ultrasonic signal S72b in the river 1W in the divided area A.
Is fired. The ultrasonic signal S72b is received by the transmitter / receiver 75 at the propagation time t3, converted into a received signal S75b1, and sent to the transceiver 65. The reception signal S75b1 is amplified to a certain level by the transmitter / receiver 65 and, when detected as a signal, is input to the transmitter / receiver 75 as a transmission signal S65b. Then, the ultrasonic signal S75 is transmitted from the transducer 75.
b2 is fired. The ultrasonic signal S75b2 has a propagation time t
The signal is received by the transmitter / receiver 71 at step 2, converted into a received signal S 71 b, and sent to the transceiver 21. The received signal S71b is
The signal is amplified to a certain level by the transceiver 61 and the received signal S6
1b is sent to the detection calculation unit 50 and detected. In the detection calculation unit 50, the flow velocity V1 shown in the following equation (1) is calculated using the inverse time difference method, and the display unit 5 calculates the calculation result S50e.
1 is displayed.

【0017】 V1=(r2 /d){(1/Tan −1/Tbn ) +(1/Tan+1 −1/Tn )} +(r/4d)(ΔCn −ΔCn+1 ) ・・・(1) 但し、 t1;送受波器71から送受波器75までの超音波信号
S71aの伝搬時間 t4;送受波器75から送受波器72までの超音波信号
S75a2の伝搬時間 t2;送受波器75から送受波器71までの超音波信号
S75b2の伝搬時間 t3;送受波器72から送受波器75までの超音波信号
S72bの伝搬時間 Ta;送受波器71から送受波器75を介して送受波器
72に伝達した超音波信号S71a,S75a2の伝搬
時間(=t1+t4) Tb;送受波器72から送受波器75を介して送受波器
71ヘ伝達した超音波信号S72b,S75b2の伝搬
時間(=t2+t3) C:河水1Wが静止している場合の音速 n:測定回数 d;送受波器31,32間の距離 r;送受波器31,33間の距離、送受波器33,32
間の距離 式(1)中の(ΔCn −ΔCn+1 )は測定毎の音速Cの
変動分であるので、無視できる。従って、 V1=(r2 /d) ×{(1/Tan −1/Tbn )+(1/Tn+1 −1/Tn )} =(r2 /d){ΔTan /(Tan ・Tbn ) +ΔTan+1 /(Tan+1 ・Tbn )} ・・・(2) 但し、 ΔTan =Tbn −Tan 、ΔTan+1 =Tan −Ta
n+1 ここで、ΔTan =Tan+1 、Tan =Tbn とし、
(2)式の分母を共通にしても誤差は小さい。従って、
流速V1は次式(3)で表される。 V1=(r2 /d)(ΔTan +Tan+1 )/Tan 2 ・・・(3) (b) 流速V2の演算動作 送受信器63,64,65及び送受波器73,74,7
5からなる信号送受信手段により、流速V1と同様に検
出演算部50で流速V2が演算され、演算結果S50e
として表示器51で表示される。河幅全体における平均
流速Vavは、次式(4)で表される。 Vav=(1/2)Σ(V1+V2) =(r2 /2d)Σ[{(ΔT(V1)n +ΔT(V1)n+1 )/Tn 2 } +{(ΔT(V2)n +ΔT(V2)n+1 )/Tn 2 }] ・・・(4) 又、流速V1,V2の両者が測定できる場合、平均流速
Vavと流速V1との相関関係、及び平均流速Vavと流速
V2との相関関係を演算して相関関数を求めておけば、
例えば送受信器61等の故障又は垂直音速分布の勾配が
急激になり、流速V1又は流速V2のいずれか一方が測
定できない場合でも、この相関関数を用いて流速V1又
は流速V2から平均流速Vavを演算することができる。
又、流速V1及び流速V2を測定する場合、同一周波数
の音波を使用すると、同時に測定することは困難なの
で、時分割で測定する必要がある。
V1 = (r 2 / d) {(1 / Ta n− 1 / Tb n ) + (1 / T n + 1 −1 / T n )} + (r / 4d) (ΔC n −ΔC n +1 ) (1) where t1 is the propagation time of the ultrasonic signal S71a from the transducer 71 to the transducer 75 t4; the propagation of the ultrasonic signal S75a2 from the transducer 75 to the transducer 72 Time t2: Propagation time of ultrasonic signal S75b2 from transmitter / receiver 75 to transmitter / receiver 71 t3; Propagation time of ultrasonic signal S72b from transmitter / receiver 72 to transmitter / receiver 75 Ta: Transmission / reception from transmitter / receiver 71 Time (= t1 + t4) of the ultrasonic signals S71a and S75a2 transmitted to the transmitter / receiver 72 via the transmitter 75 Tb; The ultrasonic signal S72b transmitted from the transmitter / receiver 72 to the transmitter / receiver 71 via the transmitter / receiver 75 , S75b2 (= t2 + t3) C: Speed of sound in the case where water 1W is stationary n: number of measurements d; distance r between the transducer 31 and 32; distance between transducers 31 and 33, transducer 33 and 32
(ΔC n −ΔC n + 1) in the equation (1) is a fluctuation amount of the sound speed C for each measurement and can be ignored. Thus, V1 = (r 2 / d ) × {(1 / Ta n -1 / Tb n) + (1 / T n + 1 -1 / T n)} = (r 2 / d) {ΔTa n / ( Ta n · Tb n) + ΔTa n + 1 / (Ta n + 1 · Tb n)} ··· (2) where, ΔTa n = Tb n -Ta n , ΔTa n + 1 = Ta n -Ta
n + 1 Here, the ΔTa n = Ta n + 1, Ta n = Tb n,
Even if the denominator of equation (2) is common, the error is small. Therefore,
The flow velocity V1 is represented by the following equation (3). V1 = (r 2 / d) (ΔTa n + Ta n + 1) / Ta n 2 ··· (3) (b) flow rate V2 of the arithmetic operation transceivers 63,64,65 and transducer 73,74,7
5, the flow rate V2 is calculated by the detection calculation unit 50 in the same manner as the flow rate V1, and the calculation result S50e
Is displayed on the display 51. The average velocity Vav over the entire river width is represented by the following equation (4). Vav = (1/2) Σ (V1 + V2) = (r 2 / 2d) Σ [{(ΔT (V1) n + ΔT (V1) n + 1) / T n 2} + {(ΔT (V2) n + ΔT ( V2) n + 1 ) / T n 2 }] (4) When both the flow velocities V1 and V2 can be measured, the correlation between the average flow velocity Vav and the flow velocity V1, and the average flow velocity Vav and the flow velocity V2 If the correlation function is calculated by calculating the correlation of
For example, even if a failure occurs in the transmitter / receiver 61 or the gradient of the vertical sound velocity distribution becomes steep and either the flow velocity V1 or the flow velocity V2 cannot be measured, the average flow velocity Vav is calculated from the flow velocity V1 or the flow velocity V2 using this correlation function. can do.
When measuring the flow velocity V1 and the flow velocity V2, if sound waves of the same frequency are used, it is difficult to measure them at the same time.

【0018】以上のように、この第1の実施形態では、
河幅を分割領域A,Bに分割して流速V1,V2を測定
するようにしたので、超音波信号S71a,S75b
2,S72b,S75a2,S73c,S75d2,S
74d,S75c2の伝搬路が従来よりも短くなり、垂
直音速分布の勾配が急になっていても、これらの超音波
信号S71a,S75b2,S72b,S75a2,S
73c,S75d2,S74d,S75c2が水底にぶ
つかることがない。そのため、安定した伝搬を確保で
き、誤計測のない安定した流速V1,V2及び平均流速
Vavの測定ができる。更に、流速V1,V2の両者を測
定できる場合に、平均流速Vavと流速V1、平均流速V
と流速V2との相関関係を演算して相関関数を求めてお
くことにより、垂直音速分布の勾配が更に急になり、流
速V1又はV2のどちらか一方が測定できない場合で
も、流速V1又はV2の一方が測定できれば、この相関
関数を用いて流速V1又はV2から平均流速Vavを演算
することができるので、欠測の頻度が下がり、安定した
測定ができる。
As described above, in the first embodiment,
Since the river width is divided into the divided areas A and B and the flow velocities V1 and V2 are measured, the ultrasonic signals S71a and S75b
2, S72b, S75a2, S73c, S75d2, S
Even if the propagation paths of 74d and S75c2 are shorter than before and the gradient of the vertical sound velocity distribution is steep, these ultrasonic signals S71a, S75b2, S72b, S75a2, and S75a2
73c, S75d2, S74d, and S75c2 do not hit the water bottom. Therefore, stable propagation can be ensured, and stable measurement of the flow velocities V1, V2 and the average flow velocity Vav without erroneous measurement can be performed. Further, when both the flow velocities V1 and V2 can be measured, the average flow velocity Vav, the flow velocity V1, and the average flow velocity V1 are measured.
By calculating the correlation function between the velocity V2 and the flow velocity V2, the gradient of the vertical sound velocity distribution becomes steeper, and even if either the velocity V1 or V2 cannot be measured, the velocity V1 or V2 cannot be measured. If one of them can be measured, the average flow velocity Vav can be calculated from the flow velocity V1 or V2 using this correlation function, so that the frequency of missing measurement is reduced and stable measurement can be performed.

【0019】第2の実施形態 図3は、本発明の第2の実施形態を示す河川流速測定装
置の構成図であり、第1の実施形態を示す図1中の要素
と共通の要素には共通の符号が付されている。この河川
流速測定装置では、送受波器73,74の中間の位置に
送受波器76が設けられ、送受波器75,76と送受信
器65との間に該送受波器75,76を切替えて使用す
るための切替手段(例えば、切替器)80が付加されて
いる。他は、図1と同様の構成である。
Second Embodiment FIG. 3 is a block diagram of a river flow velocity measuring apparatus showing a second embodiment of the present invention. Elements common to those in FIG. 1 showing the first embodiment are the same as those shown in FIG. Common symbols are assigned. In this river flow velocity measuring device, a transmitter / receiver 76 is provided at an intermediate position between the transmitters / receivers 73, 74, and the transmitter / receivers 75, 76 are switched between the transmitter / receivers 75, 76 and the transceiver 65. A switching means (for example, a switching device) 80 for use is added. Other configurations are the same as those in FIG.

【0020】次に、図3の動作(a),(b)を説明す
る。 (a) 垂直音速分布の勾配が急の場合の流速V1,V
2の演算動作 切換器80を送受波器73側に切替える。そして、第1
の実施形態と同様に、送受信器61,62及び送受波器
71,72,75からなる信号送受信手段と、 送受信
器63,64及び送受波器73,74,75からなる信
号送受信手段とにより、流速V1,V2を測定する。 (b) 垂直音速分布の勾配が小さい場合の流速V1,
V2の演算動作 切換器80を送受波器76側に切替える。そして、従来
技術と同様に、送受信器61,62及び送受波器71,
72,76からなる信号送受信手段により、河幅全体の
流速Vを測定する。
Next, the operations (a) and (b) of FIG. 3 will be described. (A) Flow velocities V1 and V when the gradient of vertical sound velocity distribution is steep
2. Arithmetic operation The switch 80 is switched to the transducer 73 side. And the first
Similarly to the embodiment, the signal transmission / reception means including the transceivers 61 and 62 and the transmitter / receivers 71, 72, and 75, and the signal transmission / reception means including the transceivers 63 and 64 and the transmitter / receivers 73, 74, and 75, The flow rates V1 and V2 are measured. (B) Flow velocity V1, when the gradient of the vertical sound velocity distribution is small
Operation of V2 The switch 80 is switched to the transducer 76 side. Then, similarly to the prior art, the transceivers 61 and 62 and the transmitter / receiver 71,
The flow velocity V over the entire river width is measured by the signal transmission / reception means 72 and 76.

【0021】以上のように、この第2の実施形態では、
垂直音速分布の勾配が急である場合は、領域A,Bに分
割して流速V1,V2を測定するようにしたので、超音
波信号S71a,S75b2,S72b,S75a2,
S73c,S75d2,S74d,S75c2の伝搬路
が短くなり、第1の実施形態と同様の利点がある。又、
河水1Wの垂直音速分布の勾配が小さい場合は、従来と
同様の長い伝搬路で流速Vを測定するようにしたので、
安定した測定ができる。この場合、超音波信号S71
a,S75b2,S72b,S75a2,S73c,S
75d2,S74d,S75c2の伝搬距離が長くなる
ので、逆時間差が大きく取れ、送受信器61,62,6
5の遅延時間の影響を小さくすることができる。更に、
送受信器63,64を使用しないので、検出演算部50
における演算動作が高速に行われる。
As described above, in the second embodiment,
When the gradient of the vertical sound velocity distribution is steep, the flow rates V1 and V2 are measured by dividing the area into the areas A and B. Therefore, the ultrasonic signals S71a, S75b2, S72b, S75a2,
The propagation paths of S73c, S75d2, S74d, and S75c2 are shortened, and have the same advantages as in the first embodiment. or,
When the gradient of the vertical sound velocity distribution of the river water 1W is small, the flow velocity V is measured on a long propagation path similar to the conventional one.
Stable measurement is possible. In this case, the ultrasonic signal S71
a, S75b2, S72b, S75a2, S73c, S
Since the propagation distances of 75d2, S74d, and S75c2 are long, a large reverse time difference can be obtained, and the transceivers 61, 62, 6
5 can be less affected by the delay time. Furthermore,
Since the transceivers 63 and 64 are not used, the detection operation unit 50
Is performed at high speed.

【0022】尚、本発明は上記実施形態に限定されず、
種々の変形が可能である。その変形例としては、例えば
次のようなものがある。 (a) 第1の実施形態では、河幅を分割領域A,Bに
分割にしたが、更に広い河幅に対しては3つ以上の分割
領域に分割してもよい。 (b) 第2の実施形態では、送受波器76が送受波器
73,74の中間の位置に配置されているが、これを送
受波器71,72の中間の位置に配置してもよい。
The present invention is not limited to the above embodiment,
Various modifications are possible. For example, there are the following modifications. (A) In the first embodiment, the river width is divided into the divided areas A and B. However, a wider river width may be divided into three or more divided areas. (B) In the second embodiment, the transmitter / receiver 76 is disposed at a position intermediate between the transmitters / receivers 73 and 74, but this may be disposed at a position intermediate between the transmitters / receivers 71 and 72. .

【0023】[0023]

【発明の効果】以上詳細に説明したように、請求項1に
係る発明によれば、河幅を複数の分割領域に分割して各
流速をそれぞれ測定するようにしたので、各第1、第
2、第3及び第4の超音波信号の伝搬路が従来よりも短
くなり、垂直音速分布の勾配が急になっていても、これ
らの超音波信号が水底にぶつかることがない。そのた
め、安定した伝搬を確保でき、誤計測のない安定した各
分割領域における流速及び平均流速の測定ができる。更
に、各分割領域における流速を測定できる場合に、平均
流速と各分割領域における流速との相関関係を演算して
相関関数を求めておくことにより、垂直音速分布の勾配
が更に急になり、各分割領域における流速の一部が測定
できない場合でも、他の分割領域における流速が測定で
きれば、この相関関数を用いて平均流速を演算すること
ができるので、欠測の頻度が下がり、安定した測定がで
きる。
As described above in detail, according to the first aspect of the present invention, the river width is divided into a plurality of divided areas and the respective flow velocities are measured. Even if the propagation paths of the second, third, and fourth ultrasonic signals are shorter than before and the gradient of the vertical sound velocity distribution is steep, these ultrasonic signals do not hit the water bottom. Therefore, stable propagation can be ensured, and the flow velocity and the average flow velocity in each divided region can be measured without erroneous measurement. Further, when the flow velocity in each divided area can be measured, the gradient of the vertical sound velocity distribution becomes steeper by calculating the correlation function between the average flow velocity and the flow velocity in each divided area and calculating the correlation function. Even if a part of the flow velocity in the divided area cannot be measured, if the flow velocity in the other divided areas can be measured, the average flow velocity can be calculated using this correlation function. it can.

【0024】請求項2に係る発明によれば、河幅が超音
波信号が直接伝搬する距離の範囲内である場合には、切
替手段により、第4の送受波器と、第2の分割領域にお
ける第1、第2の送受波器と、第1、第2、第3の送受
信器と、切替手段とで1つの信号送受信手段を構成した
ので、第1、第2、第3及び第4の超音波信号の伝搬距
離が長くなる。そのため、逆時間差が大きく取れ、各送
受信器の遅延時間の影響を小さくできる。更に、第1の
分割領域における第1、第2の送受信器を使用しないの
で、演算手段における演算動作が高速に行われる。又、
河幅が該範囲よりも大きい場合には、切替手段により、
第1及び第2の分割領域に2つの信号送受信部をそれぞ
れ構成したので、請求項1に係る発明と同様の効果があ
る。
According to the second aspect of the present invention, when the river width is within the range of the direct propagation of the ultrasonic signal, the switching means switches the fourth transducer and the second divided area. , The first, second and third transducers, the first, second and third transceivers, and the switching means constitute one signal transmitting and receiving means, so that the first, second, third and fourth The propagation distance of the ultrasonic signal becomes longer. Therefore, a large inverse time difference can be obtained, and the influence of the delay time of each transceiver can be reduced. Furthermore, since the first and second transceivers in the first divided area are not used, the operation of the operation means is performed at high speed. or,
When the river width is larger than the range, by the switching means,
Since two signal transmission / reception units are respectively formed in the first and second divided areas, the same effect as the invention according to claim 1 can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態の河川流速測定装置の
構成図である。
FIG. 1 is a configuration diagram of a river flow velocity measuring device according to a first embodiment of the present invention.

【図2】従来の河川流速測定装置の構成図である。FIG. 2 is a configuration diagram of a conventional river flow velocity measuring device.

【図3】本発明の第2の実施形態の河川流速測定装置の
構成図である。
FIG. 3 is a configuration diagram of a river flow velocity measuring device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

50 検出演算部 61,62,63,64,65 送受信器 71,72,73,74,75,76 送受波器 80 切替器 A,B 分割領域 V1,V2 流速 50 Detection calculation unit 61, 62, 63, 64, 65 Transceiver 71, 72, 73, 74, 75, 76 Transceiver 80 Switch A, B Division area V1, V2 Flow rate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 秀幸 東京都港区虎ノ門1丁目7番12号 沖電気 工業株式会社内 Fターム(参考) 2F035 AA03 DA04 DA07 DA21  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hideyuki Takahashi 1-7-12 Toranomon, Minato-ku, Tokyo Oki Electric Industry Co., Ltd. F-term (reference) 2F035 AA03 DA04 DA07 DA21

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水深によって音速が異なる音速分布特性
を有する河川の流速を測定する河川流速測定装置におい
て、 超音波信号が直接伝搬する距離の範囲内で河幅が分割さ
れた複数の分割領域毎にそれぞれ設けられ、送信信号の
出力指令用の第1及び第2の指令信号を入力し、流速演
算用の第1及び第2の受信信号を出力する複数の信号送
受信手段と、 複数の前記第1及び第2の指令信号を出力すると共に、
複数の前記第1及び第2の受信信号を受信して前記河川
の流速を演算によって求める演算手段とを備え、 前記
各信号送受信手段は、 前記第1の指令信号を入力して第1の送信信号を送信
し、第1の受波信号を受信して前記第1の受信信号を出
力する第1の送受信器と、 前記分割領域における一方の端部近辺に配置され、前記
第1の送信信号を第1の超音波信号に変換して送波し、
第2の超音波信号を伝搬時間t2遅れて受波し、前記第
1の受波信号に変換して出力する第1の送受波器と、 前記第2の指令信号を入力して第2の送信信号を送信
し、第2の受波信号を受信して前記第2の受信信号を出
力する第2の送受信器と、 前記第1の送受波器から前記河川の河道方向に距離d隔
てた位置に配置され、前記第2の送信信号を第3の超音
波信号に変換して送波し、第4の超音波信号を伝搬時間
t4遅れて受波し、前記第2の受波信号に変換して出力
する第2の送受波器と、 前記分割領域における他方の端部近辺で且つ前記第1及
び第2の送受波器から距離rの位置に配置され、伝搬時
間t1をもった前記第1の超音波信号を受波して第3の
受波信号に変換して出力し、前記第3の超音波信号を伝
搬時間t3遅れて受波して第4の受波信号に変換して出
力し、第3の送信信号を前記第4の超音波信号に変換し
て送波し、且つ第4の送信信号を前記第2の超音波信号
に変換して送波する第3の送受波器と、 前記第3の受波信号を受信して前記第3の送信信号を送
信し、前記第4の受波信号を受信して前記第4の送信信
号を送信する第3の送受信器とをそれぞれ備え、 前記
演算手段は、 前記伝搬時間t1,t2,t3,t4を検出し、次式を
用いて前記各分割領域毎の流速Vpをそれぞれ求め、該
各流速Vpの平均値を求めて前記河川の流速Vavを演算
する構成にしたことを特徴とする河川流速測定装置。 Vp=(r2 /d)(ΔTan +Tan+1 )/Tan 2 但し、 ΔTan =Tbn −Tan 、ΔTan+1 =Tan −Ta
n+1 Ta=t1+t4 Tb=t2+t3 C:河水が静止している場合の音速 n:測定回数
1. A river flow velocity measuring device for measuring a flow velocity of a river having a sound velocity distribution characteristic in which a sound velocity varies depending on a water depth, wherein the river width is divided within a range where an ultrasonic signal directly propagates. A plurality of signal transmission / reception means provided respectively for inputting first and second command signals for transmission command output commands and outputting first and second reception signals for flow velocity calculation; Outputting the first and second command signals,
Calculating means for receiving the plurality of first and second received signals and calculating the flow velocity of the river by calculation, wherein each of the signal transmitting and receiving means receives the first command signal and performs a first transmission A first transceiver that transmits a signal, receives a first received signal, and outputs the first received signal; and a first transceiver that is disposed near one end of the divided area, Is converted into a first ultrasonic signal and transmitted.
A first transducer that receives the second ultrasonic signal with a delay of a propagation time t2, converts the received signal into the first received signal, and outputs the first received signal; A second transmitter / receiver that transmits a transmission signal, receives a second reception signal, and outputs the second reception signal, and is separated by a distance d from the first transmission / reception device in a river channel direction of the river. The second transmission signal is converted into a third ultrasonic signal and transmitted, and the fourth ultrasonic signal is received with a delay of a propagation time t4. A second transducer for converting and outputting, the second transducer being disposed near the other end of the divided area and at a distance r from the first and second transducers and having a propagation time t1. The first ultrasonic signal is received, converted to a third received signal and output, and the third ultrasonic signal is received with a propagation time t3 delay. A fourth received signal is converted and output, a third transmitted signal is converted to the fourth ultrasonic signal and transmitted, and a fourth transmitted signal is converted to the second ultrasonic signal. A third transmitter / receiver that transmits and transmits the third received signal, transmits the third transmitted signal, receives the fourth received signal, and transmits the fourth transmitted signal. A third transmitter / receiver for transmitting a signal, wherein the calculating means detects the propagation times t1, t2, t3, and t4, and obtains a flow velocity Vp for each of the divided areas using the following equation, A river flow velocity measuring device, wherein an average value of the respective flow velocities Vp is obtained to calculate the flow velocity Vav of the river. Vp = (r 2 / d) (ΔTa n + Ta n + 1) / Ta n 2 where, ΔTa n = Tb n -Ta n , ΔTa n + 1 = Ta n -Ta
n + 1 Ta = t1 + t4 Tb = t2 + t3 C: Sound velocity when the river is stationary n: Number of measurements
【請求項2】 水深によって音速が異なる音速分布特性
を有する河川の流速を測定する河川流速測定装置におい
て、 超音波信号が直接伝搬する距離の範囲内で河幅が分割さ
れた第1及び第2の分割領域毎にそれぞれ設けられた2
つの請求項1記載の信号送受信手段と、 前記第1の分割領域における第1の送受波器と第2の送
受波器との中間の位置に設けられ、前記第2の分割領域
における前記第1の超音波信号を受波して第3の受波信
号に変換して出力し、前記第3の超音波信号を受波して
第4の受波信号に変換して出力し、第3の送信信号を前
記第4の超音波信号に変換して送波し、且つ第4の送信
信号を前記第2の超音波信号に変換して送波する第4の
送受波器と、 前記第4の送受波器又は前記第2の分割領域における前
記第3の送受波器を前記第3の送受信器に選択的に接続
する切替手段とを、備えたことを特徴とする河川流速測
定装置。
2. A river flow velocity measuring apparatus for measuring a flow velocity of a river having a sound velocity distribution characteristic in which a sound velocity varies depending on a water depth, wherein the first and second river widths are divided within a range where an ultrasonic signal directly propagates. 2 provided for each divided area
2. The signal transmission / reception means according to claim 1, wherein the signal transmission / reception means is provided at an intermediate position between the first transducer and the second transducer in the first division area, and the first transmission means in the second division area The third ultrasonic signal is received and converted to a third received signal and output. The third ultrasonic signal is received and converted to a fourth received signal and output. A fourth transducer that converts a transmission signal into the fourth ultrasonic signal and transmits the same, and converts a fourth transmission signal into the second ultrasonic signal and transmits the fourth ultrasonic signal; A switching means for selectively connecting the third transceiver to the third transceiver in the second divided region or the third transceiver in the second divided region.
JP10175717A 1998-06-23 1998-06-23 River current velocity measuring instrument Withdrawn JP2000009507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10175717A JP2000009507A (en) 1998-06-23 1998-06-23 River current velocity measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10175717A JP2000009507A (en) 1998-06-23 1998-06-23 River current velocity measuring instrument

Publications (1)

Publication Number Publication Date
JP2000009507A true JP2000009507A (en) 2000-01-14

Family

ID=16001016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10175717A Withdrawn JP2000009507A (en) 1998-06-23 1998-06-23 River current velocity measuring instrument

Country Status (1)

Country Link
JP (1) JP2000009507A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100382034B1 (en) * 2001-06-27 2003-05-01 한국수자원공사 Method of Stream Liquid Velocity Determination and Apparatus for thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100382034B1 (en) * 2001-06-27 2003-05-01 한국수자원공사 Method of Stream Liquid Velocity Determination and Apparatus for thereof

Similar Documents

Publication Publication Date Title
US4024760A (en) Fluid flow measurement apparatus
US7290455B2 (en) Driver configuration for an ultrasonic flow meter
KR101513697B1 (en) Ultrasonic transducing apparatus for measuring pipe thickness and apparatus for measuring flow velocity using the same
JP2000009507A (en) River current velocity measuring instrument
JP2006317187A (en) Ultrasonic flowmeter
JP2005300244A (en) Ultrasonic flow meter
JPH11351928A (en) Flowmetr and flow rate measuring method
JP4836176B2 (en) Ultrasonic flow meter
JP5156918B2 (en) Ultrasonic density meter
JP3583838B2 (en) Ultrasonic underwater detector
JP2007064792A (en) Ultrasonic flow measuring instrument
JP2000298047A (en) Ultrasonic flow meter
JP3512512B2 (en) Ultrasonic flow velocity measuring device
GB2023828A (en) Determining ship position
JP3036172B2 (en) Liquid level detector in pressure vessel
JPH1090029A (en) Ultrasonic wave flowmeter
JP3622613B2 (en) Ultrasonic flow meter
JP4789182B2 (en) Ultrasonic flow meter
JP2008304283A (en) Ultrasonic flow meter
JP3465100B2 (en) Vortex flow meter
JPH07174843A (en) Sonic velocity correcting device in position measurement and its method
JPH06118169A (en) Acoustic position measuring device
JPS6040916A (en) Correcting method of temperature-change error of ultrasonic wave flow speed and flow rate meter
JPH0117090B2 (en)
JPS5981515A (en) Ultrasonic flow rate measuring device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906