JP2000002680A - Co sensor and its manufacture - Google Patents

Co sensor and its manufacture

Info

Publication number
JP2000002680A
JP2000002680A JP18696698A JP18696698A JP2000002680A JP 2000002680 A JP2000002680 A JP 2000002680A JP 18696698 A JP18696698 A JP 18696698A JP 18696698 A JP18696698 A JP 18696698A JP 2000002680 A JP2000002680 A JP 2000002680A
Authority
JP
Japan
Prior art keywords
sno2
sensor
added
metal
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18696698A
Other languages
Japanese (ja)
Inventor
Yasutaka Ozaki
康隆 尾崎
Sachiyo Suzuki
祥代 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP18696698A priority Critical patent/JP2000002680A/en
Publication of JP2000002680A publication Critical patent/JP2000002680A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the dependence of the concentration of CO of a CO sensor by adding Ir in a specific unit in terms of a metal to SnO2 as a gas-sensitive material for the CO sensor. SOLUTION: A sintered compact (a chip-shaped sintered compact or a thick- film sintered compact formed on an insulating substrate) which uses SnO2 as a gas-sensitive material is sintered, e.g. at a temp. of 500 to 850 deg.C. After that, the sintered compact is impregnated with the solution of an Ir compound in such a way that the addition amount of Ir to the SnO2 becomes 5 to 500 μg/g SnO2 in terms of a metal. Then, the impregnated Ir compound is decomposed by thermal decomposition, hydrogen reduction or the like, and the Ir is added to the SnO2. At this time, the temperature of the thermal decomposition is set, e.g. at a temp. of about 500 to 850 deg.C. When the Ir at 5 μg/g SnO2 or higher is added, the dependence α on the concentration of Co of a Co sensor is increased. When the addition amount of the Ir is increased, a sensor resistance Rs is increased. The addition amount of the Ir is set at 500 μg/g SnO2 or lower, and a resistance value Rs which is suitable for practical use is obtained. In addition, when an Ir-Pt composite catalyst is added, the dependence on humidity of the CO sensor can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の利用分野】この発明は、SnO2金属酸化物半導
体を用いたCOセンサとその製造方法に関する。
The present invention relates to a CO sensor using a SnO2 metal oxide semiconductor and a method for manufacturing the same.

【0002】[0002]

【従来技術】SnO2系のCOセンサを高温域と低温域と
に交互に温度変化させ、低温域での出力からCOを検出
することが知られている。例えば出願人のSnO2系ガス
センサTGS203(TGS203は商品名)の場合、
SnO2焼結体中に一対のヒータ兼用電極を埋設し、15
0秒周期で動作させ、前半の60秒を高温域(最高温度
約300℃)に、後半の90秒を低温域(最低温度約8
0℃)に加熱し、低温域終了直前のセンサ信号からCO
を検出する。SnO2にはその1g当たり金属換算で約2
mgのPdが添加されている。
2. Description of the Related Art It is known that a CO sensor based on SnO2 is alternately changed in temperature between a high temperature range and a low temperature range and CO is detected from an output in a low temperature range. For example, in the case of the applicant's SnO2-based gas sensor TGS203 (TGS203 is a trade name),
A pair of heater / electrodes is embedded in the SnO2 sintered body,
It is operated in a 0 second cycle, and the first 60 seconds are in a high temperature range (maximum temperature of about 300 ° C.), and the second 90 seconds are in a low temperature range (minimum temperature of about 8
0 ° C), and from the sensor signal immediately before the end of the low temperature range, CO
Is detected. SnO2 contains about 2 in terms of metal per gram.
mg of Pd has been added.

【0003】このセンサは商用的なCOセンサの代表例
であり、CO濃度依存性をα、センサ抵抗をRsとし
て、 Rs=k・[CO]−α (kは比例定数,αは上付き) (1) によりαを定義すると、αは約1となる。なおセンサ出
力はRsやその逆数等を用いる。そしてαが大きいほ
ど、信頼性の高いCOセンサであることは明らかであ
る。
This sensor is a typical example of a commercially available CO sensor, where Rs = k · [CO] −α (k is a proportional constant, α is a superscript), where α is the CO concentration dependency and Rs is the sensor resistance. When α is defined by (1), α is about 1. Note that Rs and its reciprocal are used as the sensor output. It is clear that the larger α is, the more reliable the CO sensor is.

【0004】[0004]

【発明の課題】この発明の課題は、COセンサ出力のC
O濃度依存性の向上(請求項1〜4)と、湿度依存性の
抑制(請求項2,4)にある。
SUMMARY OF THE INVENTION The object of the present invention is to provide a CO sensor with a C output.
There are improvements in O concentration dependency (claims 1 to 4) and suppression of humidity dependency (claims 2 and 4).

【0005】[0005]

【発明の構成】この発明のCOセンサは、ガス感応材料
のSnO2を周期的に温度変化させながらCOを検出する
COセンサにおいて、前記SnO2に金属換算で5〜50
0μg/gSnO2のIrを添加したことを特徴とする。
好ましくは、前記IrをIr−Pt複合触媒とし、金属換
算でIr/Ptの重量比を1/5〜5とし、SnO2への金
属換算での添加量をIr,Ptとも各5〜500μg/g
SnO2とする。COセンサの種類は、例えば、高温域も
低温域もともに室温よりも高い温度とし、低温域でも高
温域でもCOセンサのヒータに電力を加えるものとす
る。あるいはCOセンサを、例えば高温域を300℃程
度とし、高温域への加熱時間を例えば10m秒〜10
秒、低温域への保持時間を例えば1〜100秒として、
低温域ではヒータ電力を0として、室温付近まで放冷す
るものでも良い。すなわち、COセンサの種類自体は、
SnO2系のCOセンサで、周期的な温度変化を用いるも
のであればよい。
The CO sensor according to the present invention is a CO sensor for detecting CO while periodically changing the temperature of SnO2 as a gas-sensitive material.
It is characterized by adding Ir of 0 μg / g SnO2.
Preferably, the Ir is an Ir-Pt composite catalyst, the weight ratio of Ir / Pt in terms of metal is 1/5 to 5, and the amount of addition to SnO2 in terms of metal is 5 to 500 µg / g for both Ir and Pt.
SnO2. The type of the CO sensor is, for example, a temperature higher than room temperature in both the high temperature range and the low temperature range, and power is applied to the heater of the CO sensor in both the low temperature range and the high temperature range. Alternatively, the temperature of the CO sensor is set to, for example, about 300 ° C. in a high temperature range, and the heating time to the high
Second, the holding time to the low temperature range is, for example, 1 to 100 seconds,
In a low temperature range, the heater power may be set to 0, and the heater may be allowed to cool to around room temperature. That is, the type of the CO sensor itself is
Any SnO2-based CO sensor that uses a periodic temperature change may be used.

【0006】またこの発明のCOセンサの製造方法で
は、SnO2をガス感応材料とする焼結体を例えば500
〜850℃程度で焼結後に、該焼結体にIr化合物の溶
液を、SnO2へのIr添加量が金属換算で5〜500μ
g/gSnO2となるように含浸させ、次いで含浸させた
Ir化合物を熱分解や水素還元等で分解して、SnO2に
Irを添加する。熱分解温度は例えば500〜850℃
程度とする。焼結体は、チップ状の焼結体や、絶縁基板
上に成膜した厚膜焼結体を意味するものとする。好まし
くは、前記Ir化合物の溶液を、Ir化合物とPt化合物
の混合溶液とし、SnO2の1g当たりの金属換算での添
加量を、Ir,Ptとも各5〜500μg/gSnO2と
し、かつSnO2中の金属換算でのIr/Ptの重量比を1
/5〜5とする。
Further, in the method of manufacturing a CO sensor according to the present invention, a sintered body using SnO 2 as a gas
After sintering at about 850 ° C., a solution of an Ir compound is added to the sintered body, and the amount of Ir added to SnO 2 is 5 to 500 μm in terms of metal.
g / g SnO2, and then the impregnated Ir compound is decomposed by thermal decomposition, hydrogen reduction, or the like, and Ir is added to SnO2. The thermal decomposition temperature is, for example, 500 to 850 ° C.
Degree. The sintered body means a chip-shaped sintered body or a thick-film sintered body formed on an insulating substrate. Preferably, the Ir compound solution is a mixed solution of an Ir compound and a Pt compound, the addition amount of SnO2 in terms of metal per gram of both Sn and Pt is 5 to 500 µg / g SnO2, and the metal content in SnO2 is The weight ratio of Ir / Pt in conversion is 1
/ 5 to 5.

【0007】[0007]

【発明の作用と効果】この発明では、SnO2系COセン
サに、SnO2の1g当たり、金属換算で5〜500μg
/gSnO2のIrを添加し、添加量は好ましくは20〜
250μg/gSnO2とする。5μg/gSnO2以上の
Irの添加によりαが増加し、かつIr添加量の増加はセ
ンサ抵抗Rs(以下単にRs)を増加させるので、50
0μg/gSnO2以下とする。なおこの明細書では、金
属換算でIrやPtの添加量を示し、μg/gSnO2の単
位を省略してμg/gと表記することがある。
According to the present invention, the SnO2-based CO sensor is provided with 5 to 500 .mu.g in terms of metal per 1 g of SnO2.
/ GSnO2 Ir, the amount of addition is preferably 20 to
It is 250 μg / g SnO2. Α is increased by the addition of Ir of 5 μg / g SnO2 or more, and an increase in the amount of added Ir increases the sensor resistance Rs (hereinafter simply Rs).
0 μg / g SnO 2 or less. In this specification, the addition amount of Ir or Pt is shown in terms of metal, and the unit of μg / gSnO2 is omitted and may be expressed as μg / g.

【0008】IrをIr−Pt複合触媒として添加する
と、αの増加以外に湿度依存性の抑制との新たな効果が
得られる。このためにはIrとPtとをIr/Ptの重量比
で1/5〜5とする。湿度依存性の抑制はIr−Pt複合
触媒に固有の効果で、Ir−RhやIr−Ru,Ir−Os,
Ir−Pd,Pt−Ru,Pt−Rh,Pt−Pd等の他の組み
合わせでは得られない。IrやIr−Ptの添加は、好ま
しくは焼結後のSnO2焼結体へのIr化合物溶液やIr化
合物とPt化合物の混合溶液の添加で行う。
[0008] When Ir is added as an Ir-Pt composite catalyst, a new effect of suppressing humidity dependence as well as increasing α can be obtained. For this purpose, Ir and Pt are set to a weight ratio of Ir / Pt of 1/5 to 5. The suppression of the humidity dependence is an effect peculiar to the Ir-Pt composite catalyst, and may be Ir-Rh, Ir-Ru, Ir-Os,
It cannot be obtained with other combinations such as Ir-Pd, Pt-Ru, Pt-Rh, and Pt-Pd. Ir or Ir-Pt is preferably added by adding an Ir compound solution or a mixed solution of an Ir compound and a Pt compound to the sintered SnO2 sintered body.

【0009】この発明では、SnO2系COセンサのCO
濃度依存性αを向上させ、それに伴う抵抗値Rsの増加
を制限して実用に適した抵抗値とする。またIr−Pt複
合触媒を添加すると、COセンサの湿度依存性を抑制で
きる。
According to the present invention, the CO 2 of the SnO 2 -based CO sensor
The concentration dependency α is improved, and the increase in the resistance value Rs is limited to a practically suitable resistance value. Further, when the Ir-Pt composite catalyst is added, the humidity dependency of the CO sensor can be suppressed.

【0010】[0010]

【実施例】図1に実施例のガスセンサの構造を示し、図
2に変形例のガスセンサの構造を示し、図3,図4に実
施例のガスセンサの特性を、図5〜図8に比較例のガス
センサの特性を示す。図1において、2はガスセンサ
で、4はSnO2をガス感応材料として焼結した金属酸化
物半導体で、6,8は一対のヒータ兼用のコイル電極で
ある。金属酸化物半導体4は例えばSnO2とアルミナと
の重量比で約1:1の混合物とし、金属酸化物半導体4
の焼結後に硝酸Ir水溶液や、硝酸Irと塩化白金酸との
混合物水溶液を含浸させて、例えば空気中600℃で熱
分解して、IrやIr−Ptを添加する。
FIG. 1 shows the structure of a gas sensor of an embodiment, FIG. 2 shows the structure of a gas sensor of a modification, FIGS. 3 and 4 show the characteristics of the gas sensor of the embodiment, and FIGS. 3 shows the characteristics of the gas sensor shown in FIG. In FIG. 1, reference numeral 2 denotes a gas sensor, 4 denotes a metal oxide semiconductor sintered using SnO2 as a gas-sensitive material, and 6 and 8 denote a pair of coil electrodes serving also as a heater. The metal oxide semiconductor 4 is, for example, a mixture of SnO2 and alumina in a weight ratio of about 1: 1.
After sintering, impregnated with an aqueous solution of Ir nitrate or an aqueous solution of a mixture of Ir nitrate and chloroplatinic acid is thermally decomposed at, for example, 600 ° C in air, and Ir or Ir-Pt is added.

【0011】図1のガスセンサは、高温域を60秒間と
し、最高温度(高温域の終了時)を300℃、低温域を
90秒間とし、最低温度(低温域の終了時)を80℃と
し、1周期150秒で動作し、例えば低温域終了直前の
センサ信号(センサ抵抗Rs)からCOを検出する。
The gas sensor of FIG. 1 has a high temperature range of 60 seconds, a maximum temperature (at the end of the high temperature region) of 300 ° C., a low temperature region of 90 seconds, and a minimum temperature (at the end of the low temperature region) of 80 ° C. It operates in one cycle of 150 seconds, and detects CO from the sensor signal (sensor resistance Rs) immediately before the end of the low temperature range, for example.

【0012】SnO2をガス感応材料とし、周期的に温度
変化させるものであれば、ガスセンサの構造自体は任意
で、例えば図2の変形例のガスセンサ12のように、ア
ルミナ等の絶縁基板16に断熱用のガラス膜18を積層
し、RuO2等の厚膜ヒータ20を設けて、ガラス膜等
の絶縁膜22で被覆し、この上にSnO2系の金属酸化物
半導体14を例えば20μ厚の厚膜に成膜する。ヒータ
20と金属酸化物半導体14とにそれぞれ電極パッドを
介してリード24,26等を接続する。図2のガスセン
サは、例えばヒータ20に10m秒〜1秒間電力を加え
て、約300℃まで加熱し、その後例えば1秒〜100
秒間ヒータ20をオフして、室温付近まで放冷する。こ
の間、例えばヒータ20のオフから1秒後あるいは10
秒後等のセンサ抵抗を用いて、COを検出する。
As long as SnO2 is used as a gas-sensitive material and the temperature is changed periodically, the structure of the gas sensor itself is arbitrary. For example, as in the gas sensor 12 of the modification of FIG. Glass film 18 is laminated, a thick film heater 20 such as RuO2 is provided, and the film is covered with an insulating film 22 such as a glass film, and the SnO 2 -based metal oxide semiconductor 14 is formed thereon to a thickness of, for example, 20 μ. Form a film. Leads 24, 26 and the like are connected to the heater 20 and the metal oxide semiconductor 14 via electrode pads, respectively. For example, the gas sensor of FIG. 2 applies electric power to the heater 20 for 10 ms to 1 second to heat it to about 300 ° C.
The heater 20 is turned off for a second, and is allowed to cool to around room temperature. During this time, for example, one second after turning off the heater 20 or 10 seconds
CO is detected by using the sensor resistance after seconds or the like.

【0013】図2のガスセンサ12では、例えば600
℃でSnO2系の金属酸化物半導体14を焼結し、その後
Ir化合物の溶液やIr化合物とPt化合物の混合溶液等
を含浸させて、例えば空気中600℃で熱分解して、I
rやIr−Ptを添加する。IrやIr−Ptの効果は、図1
のガスセンサ2でも図2のガスセンサ12でも同等で、
Irはセンサ抵抗のCO濃度依存性を高め、Ir−Ptは
CO濃度依存性を高めるとともに、温湿度依存性を抑制
する。以下に、図1のガスセンサについて、製造例と特
性とを示す。
In the gas sensor 12 shown in FIG.
Sintering the SnO2 based metal oxide semiconductor 14 at a temperature of .degree. C., then impregnating with a solution of an Ir compound or a mixed solution of an Ir compound and a Pt compound, and thermally decomposing at 600.degree.
r or Ir-Pt is added. The effects of Ir and Ir-Pt are shown in FIG.
The gas sensor 2 of FIG. 2 and the gas sensor 12 of FIG.
Ir increases the CO concentration dependency of the sensor resistance, and Ir-Pt increases the CO concentration dependency and suppresses the temperature and humidity dependency. Hereinafter, a production example and characteristics of the gas sensor of FIG. 1 will be described.

【0014】SnCl4の水溶液をアンモニアで中和し、
沈殿を乾燥後に700℃で1時間空気中で熱分解してS
nO2とした。このSnO2に、金属換算で添加量が2mg
/gSnO2となるようにPdの王水溶液を加え、乾燥後
に600℃で焼成してPdを担持させた。Pdに変えてP
tやRh、Au等の適宜の貴金属触媒を添加してもよく、
またVや硫酸イオンやチオ尿素等の硫黄化合物を添加し
ても良い。触媒担持後のSnO2を粉砕し、等重量のアル
ミナ粉末と混合し、図1のガスセンサの形状に成型し、
例えば700℃で10分間空気中で焼結する。次いでI
rやIr−Pt、Ir−Rh等の化合物水溶液を一定量ずつ
センサ2に滴下し、例えば空気中600℃で10分間加
熱して、金属のIrやIr−Pt、Ir−Rhへと熱分解し
た。同様に比較例として、RhやPt−Rh等の塩の水溶
液、あるいは触媒無添加の純水を同様に滴下し、600
℃で熱処理して比較例のガスセンサを製造した。Irは
硝酸塩水溶液で、Ptは塩化白金酸水溶液で、Rhは塩化
物の水溶液で滴下した。ただし添加時の形態は任意で、
熱分解温度は例えば500〜850℃とし、熱分解に変
えて水素還元等で金属Irや金属Ir−Pt等に変えても
良い。触媒添加量は、添加液の量とその濃度とから、S
nO21g当たりの添加量に換算した。
An aqueous solution of SnCl4 is neutralized with ammonia,
The precipitate is dried and pyrolyzed in air at 700 ° C. for 1 hour to form S
nO2. To this SnO2, the added amount is 2 mg in metal conversion.
Aqueous solution of Pd was added so as to give Pd / gSnO2, dried and calcined at 600 DEG C. to carry Pd. P instead of Pd
An appropriate noble metal catalyst such as t, Rh, or Au may be added.
Further, sulfur compounds such as V, sulfate ions and thiourea may be added. The catalyst-supported SnO2 is pulverized, mixed with an equal weight of alumina powder, and molded into the shape of the gas sensor of FIG.
For example, sintering is performed at 700 ° C. for 10 minutes in air. Then I
An aqueous solution of a compound such as r, Ir-Pt, Ir-Rh, etc. is dropped into the sensor 2 by a predetermined amount, and heated at 600 ° C. for 10 minutes in the air, for example, to thermally decompose the metal into Ir, Ir-Pt, Ir-Rh. did. Similarly, as a comparative example, an aqueous solution of a salt such as Rh or Pt-Rh, or pure water without a catalyst was dropped in the same manner.
A heat treatment was performed at ℃ to produce a gas sensor of a comparative example. Ir was an aqueous nitrate solution, Pt was an aqueous solution of chloroplatinic acid, and Rh was an aqueous solution of chloride. However, the form at the time of addition is optional,
The thermal decomposition temperature may be, for example, 500 to 850 ° C., and may be changed to metal Ir or metal Ir—Pt by hydrogen reduction or the like instead of thermal decomposition. The amount of catalyst to be added is determined based on the amount of the additive solution and its concentration.
It was converted to the amount added per g of nO2.

【0015】得られたガスセンサ2を各7日間、前記の
使用条件で使用した後に、特性を測定した。測定した特
性は、CO100ppm,300ppm,1000pp
m中での抵抗値(20℃相対湿度65%の雰囲気中)
と、20℃相対湿度65%から、雰囲気を−10℃(露
点−12℃程度)と0℃(露点−5℃程度)に雰囲気を
変化させた際の、CO100,300,1000ppm
中での抵抗値である。20℃65%の測定から抵抗値と
CO濃度依存性αとを求め、雰囲気を−10℃や0℃へ
変化させた際の特性から、ガスセンサ2の温湿度依存性
を測定した。ただしガスセンサの温湿度依存性は大部分
絶対湿度の変化によるものである。また温湿度依存性は
常温常湿付近と低温との間で特に大きいため、20℃か
ら−10℃の温湿度依存性を測定した。
After the obtained gas sensor 2 was used under the above-mentioned use conditions for 7 days, the characteristics were measured. The measured characteristics were 100 ppm, 300 ppm, and 1000 pp of CO.
Resistance in m (in an atmosphere of 20 ° C. and 65% relative humidity)
And CO100, 300, and 1000 ppm when the atmosphere is changed from -20 ° C relative humidity 65% to -10 ° C (dew point of about -12 ° C) and 0 ° C (dew point of about -5 ° C).
It is the resistance value inside. The resistance value and the CO concentration dependency α were determined from the measurement at 20 ° C. and 65%, and the temperature and humidity dependency of the gas sensor 2 was measured from the characteristics when the atmosphere was changed to −10 ° C. or 0 ° C. However, the temperature and humidity dependence of the gas sensor is mostly due to the change in the absolute humidity. Since the temperature and humidity dependency is particularly large between the vicinity of room temperature and normal humidity and the low temperature, the temperature and humidity dependency from 20 ° C. to −10 ° C. was measured.

【0016】図3〜図8に結果を示す。なおセンサ数は
いずれも5個である。図3は60μg/gのIrを添加
した際の特性で、図4は各60μg/gのIrとPt(硝
酸Irと塩化白金酸の混合水溶液として添加)とを添加
した際の特性である。図5は、Ir等に変えて純水を滴
下し、600℃で熱処理した比較例の特性である。図6
は、Pt60μg/gを添加した際の特性で、図7はRh
32μg/gを添加した際の特性で、図8はPt60μ
g/gとRh32μg/gの複合触媒を添加した際の特
性である。いずれも複合触媒は、金属塩の混合水溶液と
した添加した。
FIGS. 3 to 8 show the results. The number of sensors is five in each case. FIG. 3 shows the characteristics when 60 μg / g of Ir was added, and FIG. 4 shows the characteristics when 60 μg / g of Ir and Pt (added as a mixed aqueous solution of Ir nitrate and chloroplatinic acid) were added. FIG. 5 shows the characteristics of a comparative example in which pure water was dropped in place of Ir or the like and heat-treated at 600 ° C. FIG.
Shows the characteristics when Pt 60 μg / g was added, and FIG.
FIG. 8 shows the characteristics when 32 μg / g was added.
This is the characteristic when a composite catalyst of g / g and Rh of 32 μg / g was added. In each case, the composite catalyst was added as a mixed aqueous solution of a metal salt.

【0017】図3,図4と図5の比較から、IrやIr−
Ptの添加はCO濃度依存性αを増加させ、Ir−Ptの
添加は温湿度依存性を小さくすることが明らかである。
αの増加はIrを添加しないと発現せず、また温湿度依
存性の改善はIr−Ptでのみ生じる。
3, 4 and 5 show that Ir and Ir-
It is clear that the addition of Pt increases the CO concentration dependency α, and the addition of Ir-Pt reduces the temperature and humidity dependency.
The increase in α does not occur unless Ir is added, and the improvement in the temperature-humidity dependence occurs only with Ir-Pt.

【0018】表1に、各種試料(上記と同様に調製)の
CO100ppm(20℃65%中)でのセンサ抵抗R
s、20℃65%でのCO100〜1000ppmの範
囲でのCO濃度依存性α、−10℃でCO300ppm
のセンサ抵抗が20℃65%で相当するCO濃度を示
す。結果は各5個のセンサの平均である。
Table 1 shows the sensor resistance R of various samples (prepared in the same manner as above) at 100 ppm of CO (at 20 ° C. and 65%).
s, CO concentration dependence α in the range of 100 to 1000 ppm of CO at 65% at 20 ° C., 300 ppm of CO at −10 ° C.
Shows the corresponding CO concentration at a sensor resistance of 20 ° C. and 65%. The result is the average of each of the five sensors.

【0019】[0019]

【表1】 センサ特性 サンプル番号 センサ抵抗 α 温湿度依存性触媒量(μg/g) Rs(KΩ) 1 無し 8 1.0 150 2 Ir 5 10 1.3 180 3 Ir 24 15 1.4 190 4 Ir 60 22 1.5 200 5 Ir100 50 1.5 210 6 Ir200 120 1.5 210 7 Ir450 270 1.6 180 8 Ir1000 約2000 1.5 180 9 Ir60−Pt60 90 1.5 270 10 Ir60−Pt15 35 1.4 250 11 Ir240−Pt50 170 1.5 250 12 Ir24−Pt100 75 1.4 250 13 Ir100−Pt450 150 1.4 230 14 Ir100−Pt24 130 1.4 240 15 Ir60−Rh60 32 1.5 200 16 Rh32 5 1.0 100 17 Pt60−Rh32 20 1.1 150 18 Pt60 6 1.0 170 19 Pt60−Rh32 20 1.1 150 20 Pt60 6 1.0 170 21 無触媒*+NonIr 3 0.8 60 22 無触媒*+Ir60−Pt60 21 1.3 220Table 1 Sensor characteristics Sample number Sensor resistance α Temperature / humidity dependent catalyst amount (μg / g) Rs (KΩ) 1 None 8 1.0 150 2 Ir 5 10 1.3 180 3 Ir 24 15 1.4 190 4 Ir 60 22 1.5 200 5 Ir 100 50 1.5 210 6 Ir 200 120 1.5 1.5 7 7 Ir 450 270 1.6 180 8 Ir 1000 About 2000 1.5 180 1 809 Ir 60-Pt 60 90 1.5 270 10 Ir 60-Pt 15 1.4 250 11 Ir240-Pt50 170 1.5 250 250 12 Ir24-Pt100 75 1.4 1.4 250 13 Ir100-Pt450 150 1.4 230 14 Ir100-Pt24 130 1.4 1.415 15 Ir60-Rh60 32 1.6 200 Rh32 5 1.0 100 17 Pt60-Rh32 20 1.1 150 18 Pt60 6 1.0 170 19 Pt60-Rh32 20 1.1 150 20 Pt60 6 1.0 170 21 No catalyst * + NonIr 3 0.860 22 No catalyst * + Ir60-Pt60 21 1.3 220

【0020】表1中で実施例はサンプル番号2〜15と
22で、サンプル番号21はSnO2へPdもIrも無添加
の比較例で、サンプル番号22はPd無添加のSnO2ガ
スセンサ2にIr−Pt複合触媒を滴下で担持した実施例
である。
In Table 1, Examples are Sample Nos. 2 to 15 and 22, Sample No. 21 is a comparative example in which neither Pd nor Ir is added to SnO2, and Sample No. 22 is an Ir-containing SnO2 gas sensor 2 in which Pd is not added. This is an example in which a Pt composite catalyst is supported by dropping.

【0021】表1から明らかなように、Irの添加はα
を著しく増加させ、αの増加効果はIr以外では見られ
ない。またαの増加作用はサンプル番号9〜15のIr
−Pt触媒やIr−Rh触媒でも見られる。αの増加はIr
濃度が5μg/gの添加で既に発現する。ただしIrの
添加に伴ってセンサ抵抗は増加し、1000μg/gの
添加ではセンサ抵抗は約2MΩで非実用的な値となるの
で、Ir添加量は5〜500μg/gとし、好ましくは
20〜250μg/gとする。
As is clear from Table 1, the addition of Ir is α
Is remarkably increased, and the effect of increasing α is not observed except for Ir. In addition, the increasing effect of α was measured by Ir of sample numbers 9 to 15.
It is also found in -Pt catalysts and Ir-Rh catalysts. The increase in α is Ir
It is already expressed at a concentration of 5 μg / g. However, the sensor resistance increases with the addition of Ir, and when 1000 μg / g is added, the sensor resistance becomes about 2 MΩ, which is an impractical value. Therefore, the Ir addition amount is 5 to 500 μg / g, preferably 20 to 250 μg. / G.

【0022】同様に表1から、Ir−Pt複合触媒の添加
は、温湿度依存性を小さくすることが明らかである。こ
の作用はIr−Pt複合触媒以外では見られず、Ir−Pt
複合触媒に固有のものである。サンプル番号9〜14か
ら明らかなように、Ir−Pt触媒でのPt添加量は5〜
500μg/gが好ましく、より好ましくは10〜50
0μg/gとする。またIr/Ptの重量比(金属換算)
は5〜1/5が好ましい。
Similarly, from Table 1, it is clear that the addition of the Ir-Pt composite catalyst reduces the temperature and humidity dependence. This effect is not observed except for the Ir-Pt composite catalyst, and the Ir-Pt
Specific to composite catalysts. As is apparent from Sample Nos. 9 to 14, the amount of Pt added to the Ir-Pt catalyst was 5 to 10.
500 μg / g is preferred, and more preferably 10 to 50
0 μg / g. Also, the weight ratio of Ir / Pt (in terms of metal)
Is preferably 5 to 1/5.

【0023】発明者は、上記の試料以外に、Ir−Pd,
Ir−Ru,Ir−Os,Ir−Re,Pt−Re,Pt−Pd,
Ru,Os等を同様にしてガスセンサ2に添加した(添加
量は各元素に付き60μg/g)。しかし温湿度依存性
の改善が得られた試料はなく、またαの増加はIr−P
d,Ir−Re,Ir−Ru,Ir−Osでも得られたが、R
u,Os,Pt−Re,Pt−Pdでは得られなかった。
The inventor of the present invention has reported that Ir-Pd,
Ir-Ru, Ir-Os, Ir-Re, Pt-Re, Pt-Pd,
Ru, Os and the like were similarly added to the gas sensor 2 (the addition amount was 60 μg / g for each element). However, none of the samples showed improvement in the temperature and humidity dependence, and the increase in α was Ir-P
d, Ir-Re, Ir-Ru and Ir-Os
u, Os, Pt-Re and Pt-Pd could not be obtained.

【0024】サンプル番号21,22はSnO2への粉体
段階でのPdの添加を省略した例であるが、ここでもIr
−Pt複合触媒はαの増加と、温湿度依存性の低減、並
びにセンサ抵抗Rsの増加との作用を生じた。なおIr
やIr−Pt複合触媒を粉体段階のSnO2に添加すると効
果は小さくなる。
Sample Nos. 21 and 22 are examples in which the addition of Pd to SnO2 at the powder stage is omitted.
The -Pt composite catalyst has the effect of increasing α, reducing the temperature and humidity dependence, and increasing the sensor resistance Rs. Note that Ir
If an Ir-Pt composite catalyst is added to SnO2 in the powder stage, the effect is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例のガスセンサの断面図FIG. 1 is a cross-sectional view of a gas sensor according to an embodiment.

【図2】 変形例のガスセンサの断面図FIG. 2 is a cross-sectional view of a gas sensor according to a modification.

【図3】 Ir添加量が60μg/gの実施例のガス
センサでの、−10℃から20℃でCO100ppm〜
1000ppmでの温湿度依存性を示す特性図
FIG. 3 shows a gas sensor according to an example in which the addition amount of Ir is 60 μg / g.
Characteristic diagram showing temperature and humidity dependence at 1000 ppm

【図4】 Ir,Ptを各60μg/g添加した実施例
のガスセンサでの、−10℃から20℃でCO100p
pm〜1000ppmでの温湿度依存性を示す特性図
FIG. 4 shows a gas sensor according to an example in which Ir and Pt were added at 60 μg / g, respectively, from -10 ° C. to 20 ° C. and CO 100 p.
Characteristic diagram showing temperature and humidity dependence at pm to 1000 ppm

【図5】 Ir,Ptとも無添加の従来例のガスセンサ
での、−10℃から20℃でCO100ppm〜100
0ppmでの温湿度依存性を示す特性図
FIG. 5 shows a conventional gas sensor in which both Ir and Pt are not added, with CO of 100 ppm to 100 at −10 ° C. to 20 ° C.
Characteristic diagram showing temperature and humidity dependence at 0 ppm

【図6】 Ptを60μg/g添加した従来例のガス
センサでの、−10℃から20℃でCO100ppm〜
1000ppmでの温湿度依存性を示す特性図
FIG. 6 shows a conventional gas sensor to which Pt was added at 60 μg / g.
Characteristic diagram showing temperature and humidity dependence at 1000 ppm

【図7】 Rhを32μg/g添加した従来例のガス
センサでの、−10℃から20℃でCO100ppm〜
1000ppmでの温湿度依存性を示す特性図
FIG. 7 shows a conventional gas sensor to which Rh was added at 32 μg / g.
Characteristic diagram showing temperature and humidity dependence at 1000 ppm

【図8】 Ptを60μg/g,Rhを32μg/g添
加した従来例のガスセンサでの、−10℃から20℃で
CO100ppm〜1000ppmでの温湿度依存性を
示す特性図
FIG. 8 is a characteristic diagram showing the temperature / humidity dependence of a conventional gas sensor containing 60 μg / g of Pt and 32 μg / g of Rh at -10 ° C. to 20 ° C. and 100 ppm to 1000 ppm CO.

【符号の説明】[Explanation of symbols]

2,12 ガスセンサ 4,14 金属酸化物半導体 6,8 ヒータ兼用電極 16 絶縁基板 18 ガラス膜 20 ヒータ 22 絶縁膜 24,26 リード 2,12 Gas sensor 4,14 Metal oxide semiconductor 6,8 Heater / electrode 16 Insulating substrate 18 Glass film 20 Heater 22 Insulating film 24,26 Lead

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガス感応材料のSnO2を周期的に温度変
化させながらCOを検出するCOセンサにおいて、 前記SnO2に金属換算で5〜500μg/gSnO2のI
rを添加したことを特徴とするCOセンサ。
1. A CO sensor for detecting CO while periodically changing the temperature of SnO2 of a gas-sensitive material, wherein said SnO2 has an I of 5 to 500 μg / g SnO2 in terms of metal.
A CO sensor to which r is added.
【請求項2】 前記IrをIr−Pt複合触媒とし、金属
換算でIr/Ptの重量比を1/5〜5とし、SnO2への
金属換算での添加量をIr,Ptとも各5〜500μg/
gSnO2としたことを特徴とする、請求項1のCOセン
サ。
2. The above-mentioned Ir is an Ir-Pt composite catalyst, the weight ratio of Ir / Pt is 1/5 to 5 in terms of metal, and the amount of addition to SnO2 in terms of metal is 5 to 500 μg for both Ir and Pt. /
2. The CO sensor according to claim 1, wherein the CO sensor is gSnO2.
【請求項3】 SnO2をガス感応材料とする焼結体の焼
結後に、該焼結体にIr化合物の溶液をSnO2へのIr添
加量が金属換算で5〜500μg/gSnO2となるよう
に含浸させ、次いで含浸させたIr化合物を分解して、
前記SnO2にIrを添加することを特徴とする、COセ
ンサの製造方法。
3. After sintering a sintered body using SnO2 as a gas-sensitive material, impregnating the sintered body with a solution of an Ir compound so that the amount of Ir added to SnO2 is 5 to 500 μg / g SnO2 in terms of metal. And then decompose the impregnated Ir compound,
A method for manufacturing a CO sensor, characterized by adding Ir to said SnO2.
【請求項4】 前記Ir化合物の溶液をIr化合物とPt
化合物の混合溶液とし、SnO2への金属換算での添加量
をIr,Ptとも各5〜500μg/gSnO2とし、かつ
SnO2中の金属換算でのIr/Ptの重量比を1/5〜5
としたことを特徴とする、請求項3のCOセンサの製造
方法。
4. The method of claim 1, wherein the Ir compound solution is mixed with an Ir compound and Pt.
A mixed solution of the compounds was added to SnO2 at a metal conversion amount of 5 to 500 .mu.g / g SnO2 for both Ir and Pt, and a weight ratio of Ir / Pt of SnO2 in terms of metal to 1/5 to 5 .mu.g.
4. The method of manufacturing a CO sensor according to claim 3, wherein:
JP18696698A 1998-06-16 1998-06-16 Co sensor and its manufacture Pending JP2000002680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18696698A JP2000002680A (en) 1998-06-16 1998-06-16 Co sensor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18696698A JP2000002680A (en) 1998-06-16 1998-06-16 Co sensor and its manufacture

Publications (1)

Publication Number Publication Date
JP2000002680A true JP2000002680A (en) 2000-01-07

Family

ID=16197852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18696698A Pending JP2000002680A (en) 1998-06-16 1998-06-16 Co sensor and its manufacture

Country Status (1)

Country Link
JP (1) JP2000002680A (en)

Similar Documents

Publication Publication Date Title
JP3606874B2 (en) Sensor for detecting nitrogen oxides
CA1208424A (en) Gas sensor
JP3097287B2 (en) Gas sensor and method of manufacturing the same
JP3795944B2 (en) Manufacturing method of semiconductor gas sensor
KR20000006215A (en) Co sensor and its fabrication
JP2000074866A (en) Co sensor and manufacture thereof
JP2000002680A (en) Co sensor and its manufacture
JP3854358B2 (en) Gas sensor material
JP2980290B2 (en) Gas detection method and gas sensor used therefor
JPS6036017B2 (en) Manufacturing method of reducing gas detection element
EP0115953B1 (en) Gas sensor
JP4041228B2 (en) CFC gas sensor and manufacturing method thereof
JPH07198651A (en) Thin film type gas sensor
JPS5840695B2 (en) gas sensing element
JPH08226909A (en) Contact-combustion-type carbon monoxide gas sensor
JP2570440B2 (en) Gas sensor
JPH0429050A (en) Gas sensor
JPH11258192A (en) Semiconductor gas sensor
JP2544144B2 (en) Gas sensor and manufacturing method thereof
JP2001074681A (en) Semiconductor gas sensor
JPH0380257B2 (en)
JPH0868775A (en) Sensor for hydrogen sulfide gas
JPH11271255A (en) Semiconductor gas sensor
JPH0390848A (en) Gas sensor
JPH0382945A (en) Semiconductor gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050407

A131 Notification of reasons for refusal

Effective date: 20051027

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060228

Free format text: JAPANESE INTERMEDIATE CODE: A02