JPH0868775A - Sensor for hydrogen sulfide gas - Google Patents

Sensor for hydrogen sulfide gas

Info

Publication number
JPH0868775A
JPH0868775A JP6228929A JP22892994A JPH0868775A JP H0868775 A JPH0868775 A JP H0868775A JP 6228929 A JP6228929 A JP 6228929A JP 22892994 A JP22892994 A JP 22892994A JP H0868775 A JPH0868775 A JP H0868775A
Authority
JP
Japan
Prior art keywords
oxide semiconductor
hydrogen sulfide
metal oxide
detection
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6228929A
Other languages
Japanese (ja)
Other versions
JP3541968B2 (en
Inventor
Noboru Yamazoe
昇 山添
Norio Miura
則雄 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP22892994A priority Critical patent/JP3541968B2/en
Publication of JPH0868775A publication Critical patent/JPH0868775A/en
Application granted granted Critical
Publication of JP3541968B2 publication Critical patent/JP3541968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To promptly detect hydrogen sulfide of low concentration by providing the surface of oxygen ion conductive solid electrolyte with a detection pole and a reference pole of precious metal and coating the surface of detection pole with a metal oxide semiconductor layer. CONSTITUTION: Relating to a hydrogen sulfide gas sensor, the surface of oxygen ion conductive solid electrolyte of ZrO2 , CeO2 , etc., with a reference pole and a detection pole, respectively, of precious metal group, and, the surface of detection pole is coated with a metal oxide semiconductor layer. For example, the inside and outside surfaces at the tip of a ZrO2 tube 2 are coated with porous Pt pastes 4 and 4 (detection pole, reference pole), and, Pt wire nets 6 and 6 are partially buried in the pastes 4 and 4, and, Pt wires 8 and 8 are connected, thus an output is taken out. A metal oxide semiconductor layer 10, such as polous WO3 , oxidizes such gas as H2 S, receives oxygen ion required for oxidation from ZrO2 and Pt paste 4, and further, transports the electron generated by oxidation to the Pt paste. This sensor detects H2 S of 1ppm or below in such response time as 2-3 minutes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の利用分野】この発明は、H2SやCH3SH,
(CH3)2S等の硫化水素系のガスの検出に関し、特に
1ppmオーダーの低濃度での検出に関する。
BACKGROUND OF THE INVENTION The present invention relates to H2S, CH3SH,
The present invention relates to detection of hydrogen sulfide-based gas such as (CH3) 2S, and particularly to detection at a low concentration of 1 ppm order.

【0002】[0002]

【従来技術】H2SやCH3SH等の硫化水素系ガスは毒
性が高く強い悪臭を有し、トイレの換気や脱臭の制御あ
るいは食品の鮮度検出のため、1ppm程度での検出が要
求されている。H2Sの検出用には主として金属酸化物
半導体ガスセンサが研究され、例えばSnO2を用いた
H2Sセンサが提案されている(山添他,センサーアン
ドアクチュエータB,9巻197頁,1992年,同第
2回ケミカルセンサーシンポジウム予講集287頁,ハ
ワイ,ホノルル,1993年)。しかながら金属酸化物
半導体ガスセンサでは1ppm以下のH2S検出には感度が
不足し、かつ応答性能も不十分である。
2. Description of the Related Art Hydrogen sulfide gas such as H2S and CH3SH is highly toxic and has a strong malodor, and it is required to be detected at about 1 ppm in order to control toilet ventilation and deodorization or to detect the freshness of food. For the detection of H2S, metal oxide semiconductor gas sensors have been mainly studied, and for example, H2S sensor using SnO2 has been proposed (Yamazoe et al., Sensor and Actuator B, vol. 9, p. 197, 1992, 2nd Chemical Preliminary Collection of Sensor Symposium 287 pages, Hawaii, Honolulu, 1993). However, the metal oxide semiconductor gas sensor has insufficient sensitivity for detecting H2S of 1 ppm or less and its response performance is insufficient.

【0003】[0003]

【発明の課題】この発明の課題は、固体電解質を用いた
新たな硫化水素系ガスのセンサを提供し、1ppm以下の
硫化水素系ガスを速やかに検出できるようにすることに
ある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a new hydrogen sulfide-based gas sensor using a solid electrolyte so that a hydrogen sulfide-based gas of 1 ppm or less can be quickly detected.

【0004】[0004]

【発明の構成と作用】この発明の硫化水素系ガスのセン
サは、ZrO2やCeO2等の酸素イオン導電性固体電解
質の表面に各々貴金属系の参照極と検出極とを設け、検
出極表面を金属酸化物半導体層で被覆したものである。
この発明の硫化水素系ガスのセンサはまた、酸素イオン
導電性固体電解質の表面に、貴金属系の参照極と、貴金
属と金属酸化物半導体の混合物を用いた検出極とを設け
たものである。ここで酸素イオン導電性固体電解質には
Y2O3やCaOで安定化したZrO2、あるいはCeO2
等を用い、形状はチューブ状でも平板状でも良い。検出
極や参照極は貴金属電極とし、検出極は酸素をイオン化
できる程度の電極活性を必要とするので、PtやRh,
Pd,Ir,Ru,Osやその合金を用いる。参照極は
低活性電極で良く、酸素のイオン化活性は特に必要とし
ないので、前記の貴金属以外にAuやAg電極でも良
い。検出極はWO3やSnO2,In2O3等の金属酸化物
半導体層で被覆し、特にWO3が好ましい。
The hydrogen sulfide gas sensor of the present invention is provided with a noble metal reference electrode and a detection electrode on the surface of an oxygen ion conductive solid electrolyte such as ZrO2 or CeO2, and the detection electrode surface is made of metal. It is covered with an oxide semiconductor layer.
The hydrogen sulfide-based gas sensor of the present invention is also provided with a noble metal-based reference electrode and a detection electrode using a mixture of a noble metal and a metal oxide semiconductor on the surface of the oxygen ion conductive solid electrolyte. Here, the oxygen ion conductive solid electrolyte is ZrO2 stabilized with Y2O3 or CaO, or CeO2.
The shape may be a tube shape or a flat plate shape. Since the detection electrode and the reference electrode are noble metal electrodes, and the detection electrode needs electrode activity sufficient to ionize oxygen, Pt, Rh,
Pd, Ir, Ru, Os or an alloy thereof is used. The reference electrode may be a low-activity electrode and does not particularly require oxygen ionization activity, and thus may be an Au or Ag electrode other than the above-mentioned noble metal. The detection electrode is covered with a metal oxide semiconductor layer of WO3, SnO2, In2O3 or the like, and WO3 is particularly preferable.

【0005】金属酸化物半導体層の役割は硫化水素系ガ
スの酸化にある。例えば検出極と参照極間のポテンシャ
ルを検出信号とするポテンシャル法では、貴金属電極に
よる酸素のイオン化反応による電位と、金属酸化物半導
体による硫化水素系ガスの酸化反応による電位との混成
電位で、硫化水素系ガスの濃度に依存したポテンシャル
が生じる。また例えば検出極と参照極を短絡し両者間の
電流を検出信号とする電流法では、参照極側から酸素イ
オンを輸送し、金属酸化物半導体層と固体電解質界面で
輸送された酸素イオンにより硫化水素系ガスを酸化す
る。そして酸素イオンの移動に伴う電流を検出し、検出
信号とする。実施例ではPt等の貴金属を金属酸化物半
導体層で被覆して検出極としたセンサを示すが、これら
を混合して検出極としても良い。例えばポテンシャル法
では、金属酸化物半導体と貴金属の混合物で、貴金属に
より酸素をイオン化し、金属酸化物半導体により酸素イ
オンを消費して硫化水素等を酸化すれば、両者の混成電
位が得られる。また電流法では、参照極から輸送された
酸素イオンを貴金属表面のスピルオーバー等を通じて金
属酸化物半導体へ輸送し、硫化水素等の酸化反応に消費
すれば良い。
The role of the metal oxide semiconductor layer is to oxidize hydrogen sulfide-based gas. For example, in the potential method in which the potential between the detection electrode and the reference electrode is used as the detection signal, the sulfide is generated by the mixed potential of the potential due to the ionization reaction of oxygen by the noble metal electrode and the potential due to the oxidation reaction of the hydrogen sulfide-based gas by the metal oxide semiconductor. A potential that depends on the concentration of the hydrogen-based gas is generated. Further, for example, in the current method in which the detection electrode and the reference electrode are short-circuited and the current between them is used as the detection signal, oxygen ions are transported from the reference electrode side and sulfurized by the oxygen ions transported at the interface between the metal oxide semiconductor layer and the solid electrolyte. Oxidize hydrogen gas. Then, the current associated with the movement of oxygen ions is detected and used as a detection signal. In the embodiment, a sensor is shown in which a noble metal such as Pt is coated with a metal oxide semiconductor layer to form a detection electrode, but these may be mixed to form a detection electrode. For example, in the potential method, when a mixture of a metal oxide semiconductor and a noble metal is used to ionize oxygen by the noble metal and oxygen ions are consumed by the metal oxide semiconductor to oxidize hydrogen sulfide or the like, a mixed potential of the two is obtained. In the current method, oxygen ions transported from the reference electrode may be transported to the metal oxide semiconductor through spillover of the surface of the noble metal and consumed for the oxidation reaction of hydrogen sulfide or the like.

【0006】ポテンシャル法と電流法を比較するとポテ
ンシャル法が好ましく、発明者は、電流法では検出信号
にオーバーシュートが生じ不安定であることや、信号の
ガス濃度依存性が低いことを見い出した。このため安定
でオーバーシュートがないポテンシャル法が好ましい。
この発明では1ppm以下のH2S等の硫化水素系ガスを検
出でき、応答時間は例えば90%応答で2〜3分程度と
短く、速やかに低濃度の硫化水素系ガスを検出できる。
Comparing the potential method and the current method, the potential method is preferable, and the inventor has found that the current method is unstable because an overshoot occurs in the detection signal and that the gas concentration dependency of the signal is low. Therefore, the potential method that is stable and has no overshoot is preferable.
In the present invention, hydrogen sulfide-based gas such as H2S of 1 ppm or less can be detected, the response time is 90%, for example, about 2 to 3 minutes, and the low concentration hydrogen sulfide-based gas can be detected quickly.

【0007】[0007]

【実施例】図1〜図6に、実施例の硫化水素系ガスのセ
ンサを示す。図1に実験に用いたガスセンサの構造を示
し、図において、2はY2O3(8mol%)で安定化し
たZrO2チューブで、CaOで安定化したZrO2やC
eO2等でも良い。ZrO2チューブ2の先端の内外両面
には多孔質のPtペースト4,4を塗布し、Pt金網
6,6をペースト4,4に部分的に埋設してPt線8,
8を接続し、出力を取り出せるようにする。Ptペース
ト4,4に替えてIrやRh,Pd,Ru等の貴金属ペ
ーストを用いてもよく、特にZrO2チューブ2の内面
の参照極側ではAuペースト等の活性の低いペーストを
用いても良い。同様にPt金網6,6に替えて、Irや
Rh,Pd等の金網を用いても良い。10は厚さ約0.
5mmの多孔質WO3層で、WO3に替えてSnO2やI
n2O3等の他の金属酸化物半導体を用いても良い。金属
酸化物半導体層10の役割はH2S等のガスの酸化にあ
り、しかも酸化に必要な酸素イオンをZrO22やPt
ペースト4等から受け取り、かつ酸化の結果生じる電子
をPtペースト4等へ輸送できることが必要である。こ
のため、金属酸化物半導体層10には硫化水素への酸化
活性が高く、しかも導電性を備えたものが好ましい。な
おWO3等の金属酸化物半導体を、検出極側のPtペー
スト4と混合し、貴金属/金属酸化物半導体の混合電極
としても良い。12は、ZrO2チューブ2を400℃
程度の動作温度に加熱するためのヒータである。
Embodiments FIGS. 1 to 6 show hydrogen sulfide-based gas sensors according to embodiments. Figure 1 shows the structure of the gas sensor used in the experiment. In the figure, 2 is a ZrO2 tube stabilized with Y2O3 (8mol%), and ZrO2 and C stabilized with CaO.
eO2 etc. may be used. Porous Pt pastes 4 and 4 are applied to both inner and outer surfaces of the tip of the ZrO 2 tube 2, and Pt wire nets 6 and 6 are partially embedded in the pastes 4 and 4 to form a Pt wire 8,
8 is connected so that the output can be taken out. A noble metal paste such as Ir, Rh, Pd, or Ru may be used instead of the Pt pastes 4 and 4, and a paste having a low activity such as Au paste may be used particularly on the reference electrode side of the inner surface of the ZrO2 tube 2. Similarly, wire meshes such as Ir, Rh, and Pd may be used instead of the Pt wire meshes 6 and 6. 10 is about 0.
5mm porous WO3 layer, SnO2 or I in place of WO3
Other metal oxide semiconductors such as n2O3 may be used. The role of the metal oxide semiconductor layer 10 is to oxidize a gas such as H2S, and the oxygen ions required for the oxidation are ZrO2 and Pt.
It is necessary to be able to receive the electrons from the paste 4 or the like and transport the electrons resulting from the oxidation to the Pt paste 4 or the like. Therefore, it is preferable that the metal oxide semiconductor layer 10 has a high oxidation activity to hydrogen sulfide and has conductivity. A metal oxide semiconductor such as WO3 may be mixed with the Pt paste 4 on the detection electrode side to form a noble metal / metal oxide semiconductor mixed electrode. 12 is ZrO2 tube 2 at 400 ℃
It is a heater for heating to a moderate operating temperature.

【0008】実施例のガスセンサは次のようにして製造
した。ZrO2チューブ2の先端の内外両面にPtペー
スト4,4を塗布し、Pt線8を予め取り付けたPt金
網6,6をペースト4,4に一部埋設し、空気中120
0℃で30分間焼結した。次いでパラタングステン酸ア
ンモニウムを空気中600℃で5時間焼成して得たWO
3を粉砕し、水を加えてペースト状にして、検出極側の
Pt金網6上に塗布し、空気中で600℃4時間焼成し
てWO3層10とした。
The gas sensor of the example was manufactured as follows. Pt pastes 4 and 4 are applied to both the inner and outer surfaces of the tip of the ZrO 2 tube 2, and Pt wire nets 6 and 6 to which Pt wires 8 are attached in advance are partially embedded in the pastes 4 and 4, and the air 120
Sintered for 30 minutes at 0 ° C. Then, WO obtained by baking ammonium paratungstate in air at 600 ° C. for 5 hours
3 was crushed, and water was added to form a paste, which was applied on the Pt wire net 6 on the detection electrode side and baked in air at 600 ° C. for 4 hours to form a WO 3 layer 10.

【0009】実施例のガスセンサは、参照極と検出極間
のポテンシャル、あるいは参照極と検出極とを短絡した
際の短絡電流の何れでもH2S等のガスを検出すること
ができる。またこのセンサは、例えば参照極側を清浄空
気等の基準雰囲気に接触させ、検出極側を被検雰囲気に
接触させて使用する。検出極での反応はポテンシャル法
の場合、酸素を酸素イオンへイオン化し、H2S等のガ
スをこの酸素イオンで酸化することである。そしてこれ
らの反応に伴う混成電位を、Pr線8,8間のポテンシ
ャルとして検出する。この場合参照極は反応に寄与せ
ず、単に参照電位を発生させるだけである。また電流法
の場合、検出極側でH2S等のガスを酸化し、これに必
要な酸素イオンを参照極側からZrO2チューブ2を介
して輸送する。この場合の参照極の役割は、酸素を酸素
イオンへイオン化することである。
The gas sensor of the embodiment can detect a gas such as H 2 S by either the potential between the reference electrode and the detection electrode or the short-circuit current when the reference electrode and the detection electrode are short-circuited. In addition, this sensor is used, for example, with the reference electrode side in contact with a standard atmosphere such as clean air and the detection electrode side in contact with the test atmosphere. In the case of the potential method, the reaction at the detection electrode is to ionize oxygen into oxygen ions and oxidize gas such as H2S with the oxygen ions. Then, the mixed potential associated with these reactions is detected as the potential between the Pr lines 8 and 8. In this case, the reference electrode does not contribute to the reaction but merely generates the reference potential. In the case of the current method, a gas such as H2S is oxidized on the detection electrode side, and oxygen ions necessary for this are transported from the reference electrode side through the ZrO2 tube 2. The role of the reference electrode in this case is to ionize oxygen into oxygen ions.

【0010】電極材料について検討すると、ポテンシャ
ル法の場合、参照極側の電極材料にはAuやAgを含む
全ての貴金属材料を用いることができ、検出極側には雰
囲気中の酸素を酸素イオンにイオン化できる程度の活性
を備えた貴金属材料を用い、AuとAgを除く全ての貴
金属材料を用いることができる。また電流法の場合、参
照極,検出極の何れもAuとAgを除く全ての貴金属材
料を用いることができる。
With respect to the electrode material, in the case of the potential method, all the noble metal materials including Au and Ag can be used as the electrode material on the reference electrode side, and oxygen in the atmosphere is converted to oxygen ions on the detection electrode side. It is possible to use a noble metal material having an activity such that it can be ionized, and all noble metal materials except Au and Ag can be used. In the case of the current method, all the noble metal materials except Au and Ag can be used for both the reference electrode and the detection electrode.

【0011】H2S等のガスの検出反応の大部分は検出
極側で生じ、参照極側は電流法の場合でも酸素をイオン
化する程度の反応しか必要としない。この結果、センサ
の構造を例えば図2のように単純化することができる。
図2のセンサでは、平板上のY2O3で安定化したZrO
2基板3の両面を多孔質のPtペースト4,4で被覆
し、検出極側ではPtペースト4上にWO3層10を被
覆する。参照極側ではPtペースト4の他にヒータ13
を設け、電圧計14で両極間のポテンシャルを検出し、
ヒータ電源16でヒータ13を駆動する。この場合、参
照極の電極電流はごく僅かで、参照極,検出極の双方を
被検雰囲気に接触させることができる。被検雰囲気中の
酸素は検出極側で酸素イオンに還元され、生じた酸素イ
オンによってH2S等のガスが酸化されて水蒸気やSO2
等として放出される。参照極では酸素のイオン化に伴う
解離平衡が生じ、H2S等への酸化活性は低く、被検雰
囲気に参照極をさらしても、検出の妨げとはならない。
Most of the detection reaction of gas such as H 2 S occurs on the detection electrode side, and the reference electrode side requires only a reaction to ionize oxygen even in the case of the current method. As a result, the structure of the sensor can be simplified as shown in FIG.
In the sensor of FIG. 2, ZrO stabilized with Y2O3 on a flat plate is used.
2 Both surfaces of the substrate 3 are coated with the porous Pt pastes 4 and 4, and the Pt paste 4 is coated with the WO3 layer 10 on the detection electrode side. On the reference electrode side, in addition to the Pt paste 4, the heater 13
Is provided, the voltmeter 14 detects the potential between both electrodes,
The heater power supply 16 drives the heater 13. In this case, the electrode current of the reference electrode is very small, and both the reference electrode and the detection electrode can be brought into contact with the test atmosphere. Oxygen in the atmosphere to be detected is reduced to oxygen ions on the detection electrode side, and the generated oxygen ions oxidize gas such as H2S to generate water vapor or SO2.
And so on. At the reference electrode, dissociation equilibrium occurs due to the ionization of oxygen, and the oxidizing activity to H2S and the like is low, and even if the reference electrode is exposed to the test atmosphere, it does not hinder the detection.

【0012】実施例のガスセンサの特性を説明する。図
3は、図1のガスセンサを用いて、ヒータ12により参
照極と検出極とを約400℃に加熱し、12ppmまでの
H2Sに接触させた際の検出極/参照極間の起電力の変
化を示す。12ppmのH2Sに対して80mV以上の出力
が得られ、0.6ppmのH2Sに対しても30mV程度の
出力が得られる。またH2Sに接触させた際の応答時間
は90%応答で2〜3分程度と短く、空気中に戻すと約
20分間で起電力は元の値に戻る。
The characteristics of the gas sensor of the embodiment will be described. FIG. 3 shows changes in electromotive force between the detection electrode and the reference electrode when the reference electrode and the detection electrode are heated to about 400 ° C. by the heater 12 and brought into contact with H 2 S up to 12 ppm using the gas sensor of FIG. Indicates. An output of 80 mV or more is obtained for 12 ppm of H2S, and an output of about 30 mV is obtained for 0.6 ppm of H2S. The response time when brought into contact with H2S is as short as about 2 to 3 minutes at 90% response, and the electromotive force returns to the original value in about 20 minutes when returned to the air.

【0013】H2S濃度と起電力の定常値との関係を図
4に示す。参照極に対する検出極の電位はH2S濃度が
10倍変化する毎に約40mV減少し、H2S0.6ppm
と空気中との間には30mV程度の起電力があり、0.
6ppm未満のH2Sも検出できる。妨害ガスとして20pp
mのSO2と1000ppmのCO2とを検討したが、同じ4
00℃でこれらのガスに対する起電力変化は、SO22
0ppmの場合で−15mV、CO21000ppmの場合で
−20mVであり、H2Sに比べると極めて低感度であ
る。従ってこのセンサはH2Sへの選択性が高く、また
CH3SHや(CH3)2S等のH2S誘導体に対してもH
2Sと同様の感度や応答特性が得られた。
FIG. 4 shows the relationship between the H2S concentration and the steady-state value of electromotive force. The potential of the detection electrode with respect to the reference electrode decreases by about 40 mV for every 10-fold change in H2S concentration, and H2S 0.6 ppm
There is an electromotive force of about 30 mV between air and the air, and
H2S less than 6 ppm can also be detected. 20 pp as interfering gas
I examined SO2 of m and CO2 of 1000ppm, but the same 4
The change in electromotive force for these gases at 00 ° C is SO2
It is -15 mV at 0 ppm and -20 mV at 1000 ppm CO2, which is extremely low sensitivity compared to H2S. Therefore, this sensor has a high selectivity to H2S, and also to H2S derivatives such as CH3SH and (CH3) 2S.
The same sensitivity and response characteristics as 2S were obtained.

【0014】H2Sの検出ではWO3層10が決定的な役
割を果たし、WO3層10を取り除くとセンサの特性は
一変し、図5の特性となる。WO3層10のないセンサ
では、H2S感度は小さく、応答時間は遅く、H2Sとの
接触後90分経過しても起電力が定常値に達しない。注
目すべきことに、実施例ではH2Sとの接触により検出
極の電位が低下するのに対して、WO3層10を取り除
いた比較例では逆に検出極の電位が増加する。これはW
O3層10が無い場合、検出極での反応が全く異なるこ
とを示している。
The WO3 layer 10 plays a decisive role in the detection of H2S. When the WO3 layer 10 is removed, the characteristics of the sensor are completely changed to the characteristics shown in FIG. In the sensor without the WO3 layer 10, the H2S sensitivity is small, the response time is slow, and the electromotive force does not reach the steady value even 90 minutes after the contact with H2S. Remarkably, in the example, the potential of the detection electrode is lowered by the contact with H2S, whereas in the comparative example from which the WO3 layer 10 is removed, the potential of the detection electrode is increased. This is W
It shows that in the absence of the O3 layer 10, the reaction at the detection electrode is completely different.

【0015】発明者は、H2Sの検出機構を以下のよう
に考察した。実施例のセンサは式(1)の電池とし表すこ
とができる。 この電池は、式(2)の電池と式(3)の電池とが混在したも
のと表現できる。 air,Pt|YSZ|Pt,H2S in air (2) air,Pt|YSZ|WO3(Pt),H2S in air (3) ここで参照極側のポテンシャルは、式(4)の酸素と酸素
イオン間の平衡反応で定まる。 O2+4e- = 2O2- (4) 一方検出極では、Ptペースト4やPt金網6で式(5)
の酸素のイオン化反応が進み、生じた酸素はWO3層1
0でのH2Sの酸化反応(式(6))で消費される。検出極
でのPtペースト4やPt金網6の役割は、WO3層1
0側に酸素イオンを供給し、酸化で生じた電子を受け取
ることにある。検出極のポテンシャルは式(5)の酸素の
イオン化反応と式(6)のH2Sの酸化反応との混成電位で
定まり、両者の反応電流は等しく、混成電位Mは図6の
機構で定まる。 O2+4e- → 2O2- (5) H2S+3O2- → H2O+SO2+6e- (6)
The inventor has considered the H2S detection mechanism as follows. The example sensor can be represented as a battery of formula (1). This battery can be expressed as a mixture of the battery of formula (2) and the battery of formula (3). air, Pt | YSZ | Pt, H2S in air (2) air, Pt | YSZ | WO3 (Pt), H2S in air (3) where the potential on the reference electrode side is between oxygen and oxygen ion in equation (4). It is determined by the equilibrium reaction of. O2 + 4e = 2O 2 (4) On the other hand, the Pt paste 4 and the Pt wire mesh 6 are used in the formula (5) for the detection electrode.
Ionization reaction of the oxygen in the mixture proceeds, and the generated oxygen is WO3 layer 1
It is consumed in the oxidation reaction of H2S at 0 (equation (6)). The role of the Pt paste 4 and the Pt wire mesh 6 at the detection electrode is WO3 layer 1
It is to supply oxygen ions to the 0 side and receive electrons generated by oxidation. The potential of the detection electrode is determined by the hybrid potential of the oxygen ionization reaction of equation (5) and the H2S oxidation reaction of equation (6), the reaction currents of both are equal, and the hybrid potential M is determined by the mechanism of FIG. O2 + 4e - → 2O 2- ( 5) H2S + 3O 2- → H2O + SO2 + 6e - (6)

【0016】図6の縦軸は検出極のポテンシャルを、横
軸は式(5)及び式(6)の反応電流を表す。式(5)の酸素の
イオン化と式(6)のH2Sの酸化は反応電流が等しいの
で、H2Sの分極曲線と酸素の還元曲線との交点で混成
電位が定まる。ここでC1やC2をH2Sや酸素の濃度
とし、 C2>C1 と仮定する。ppmオーダーのH2S
を検出するため酸素濃度の変化はごく僅かで、酸素のイ
オン化反応に付いてターフェルの式が成立し、混成電位
は酸素の還元電流の対数に対して直線的に変化する。一
方H2S濃度が極く低いため限界電流が生じ、電流値を
増加させるとポテンシャルは急激に変化する。そこで例
えば酸素濃度C1とし、H2S濃度をC1からC2に増
加させると、混成電位はH2S濃度の対数に比例して変
化する。このことは、H2S濃度が10倍増加する毎
に、ポテンシャルが40mV減少するとの結果に一致す
る。また酸素濃度を人為的に増加させると、ポテンシャ
ルはこれに応じて増加し、図6の検出機構と合致した。
The vertical axis of FIG. 6 represents the potential of the detection electrode, and the horizontal axis represents the reaction currents of equations (5) and (6). Since the reaction currents of the ionization of oxygen of the formula (5) and the oxidation of H2S of the formula (6) are equal, the hybrid potential is determined at the intersection of the polarization curve of H2S and the reduction curve of oxygen. Here, it is assumed that C1 and C2 are H2S and oxygen concentrations, and C2> C1. ppm order H2S
The oxygen concentration changes very little, and the Tafel equation holds for the ionization reaction of oxygen, and the hybrid potential changes linearly with the logarithm of the oxygen reduction current. On the other hand, since the H2S concentration is extremely low, a limiting current is generated, and when the current value is increased, the potential changes rapidly. Therefore, for example, when the oxygen concentration is set to C1 and the H2S concentration is increased from C1 to C2, the mixed potential changes in proportion to the logarithm of the H2S concentration. This is consistent with the result that the potential decreases by 40 mV for every 10-fold increase in H2S concentration. Also, when the oxygen concentration was artificially increased, the potential increased correspondingly, which was consistent with the detection mechanism of FIG.

【0017】既に示したように、WO3層10の役割は
H2Sの酸化であり、H2Sに対して選択的な酸化活性を
持つ金属酸化物半導体であれば、任意のものを用いるこ
とができる。そこでH2Sの検出材料として有効な金属
酸化物半導体ガスセンサの材料をWO3層10に替えて
用いることができ、例えばWO3に替えてSnO2でも良
い。また図5に示したように、WO3層10が無い場
合、H2Sに対するポテンシャルの変化はきわめて小さ
いので、図2のガスセンサのように、ZrO2基板3の
両面を被検雰囲気に接触させても良い。さらに図2で
は、ZrO2基板3の両面に参照極と検出極とを設けた
が、これらをZrO2基板3の同じ面上に集約しても良
い。
As already shown, the role of the WO3 layer 10 is to oxidize H2S, and any metal oxide semiconductor having a selective oxidation activity for H2S can be used. Therefore, the material of the metal oxide semiconductor gas sensor that is effective as the H2S detection material can be used in place of the WO3 layer 10, and SnO2 can be used instead of WO3, for example. Further, as shown in FIG. 5, when the WO3 layer 10 is not provided, the potential change with respect to H2S is extremely small. Therefore, both surfaces of the ZrO2 substrate 3 may be brought into contact with the test atmosphere as in the gas sensor of FIG. Further, in FIG. 2, the reference electrode and the detection electrode are provided on both surfaces of the ZrO 2 substrate 3, but they may be integrated on the same surface of the ZrO 2 substrate 3.

【0018】発明者はこれ以外に、図1のガスセンサの
参照極と検出極とを短絡し、その間の短絡電流からH2
Sを検出することを試みた。しかしながらこの場合、H
2S感度は低く、例えばH2S10ppmに対して40〜5
0μA程度で、H2Sに接触させるとオーバーシュート
がしばしば生じ、しかも得られる電流値は不安定であっ
た。このため電流法よりも、検出極と参照極間のポテン
シャルからH2S等のガスを検出する方が好ましい。
In addition to the above, the inventor short-circuits the reference electrode and the detection electrode of the gas sensor of FIG.
Attempted to detect S. However, in this case, H
2S sensitivity is low, for example 40 to 5 for 10 ppm of H2S
At about 0 μA, overshooting often occurred when contacted with H 2 S, and the obtained current value was unstable. Therefore, it is preferable to detect a gas such as H2S from the potential between the detection electrode and the reference electrode rather than the current method.

【0019】[0019]

【発明の効果】この発明では、1ppm以下の低濃度の硫
化水素系ガスを、例えば2〜3分程度の90%応答時間
で速やかに検出できる。
According to the present invention, a low-concentration hydrogen sulfide-based gas of 1 ppm or less can be rapidly detected with a 90% response time of, for example, about 2 to 3 minutes.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例のH2Sセンサの断面図FIG. 1 is a sectional view of an H2S sensor according to an embodiment.

【図2】 変形例のH2Sセンサの断面図FIG. 2 is a cross-sectional view of a modified H2S sensor.

【図3】 実施例の400℃での0.6〜12ppmのH2
Sへの応答特性を示す特性図
FIG. 3: 0.6-12 ppm H 2 at 400 ° C. of the Example
Characteristic diagram showing response characteristics to S

【図4】 実施例の400℃での起電力のH2S濃度依
存性を示す特性図
FIG. 4 is a characteristic diagram showing the H2S concentration dependence of the electromotive force at 400 ° C. in the example.

【図5】 WO3被覆を施さなかった従来例での、40
00℃での起電力とH2S濃度との関係を示す特性図
FIG. 5: 40 in the conventional example without WO3 coating
Characteristic diagram showing the relationship between electromotive force at 00 ° C and H2S concentration

【図6】 実施例でのH2S検出機構を示す特性図FIG. 6 is a characteristic diagram showing an H 2 S detection mechanism in an example.

【符号の説明】[Explanation of symbols]

2,3 Y2O3安定化ZrO2 4 Ptペースト 6 Pt金網 8 Pt線 10 WO3層 12,13 ヒータ 14 電圧計 16 ヒータ電源 2,3 Y2O3 stabilized ZrO2 4 Pt paste 6 Pt wire mesh 8 Pt wire 10 WO3 layer 12,13 Heater 14 Voltmeter 16 Heater power supply

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸素イオン導電性固体電解質の表面に各
々貴金属系の検出極と参照極とを設け、検出極表面を金
属酸化物半導体層で被覆した硫化水素系ガスのセンサ。
1. A hydrogen sulfide-based gas sensor in which a noble metal-based detection electrode and a reference electrode are provided on the surface of an oxygen ion conductive solid electrolyte, and the detection electrode surfaces are covered with a metal oxide semiconductor layer.
【請求項2】 酸素イオン導電性固体電解質の表面に、
貴金属系の参照極と、貴金属と金属酸化物半導体の混合
物を用いた検出極とを設けた硫化水素系ガスのセンサ。
2. On the surface of the oxygen ion conductive solid electrolyte,
A hydrogen sulfide-based gas sensor provided with a reference electrode of a noble metal type and a detection electrode using a mixture of a noble metal and a metal oxide semiconductor.
【請求項3】 前記金属酸化物半導体をWO3としたこ
とを特徴とする、請求項1または2の硫化水素系ガスの
センサ。
3. The hydrogen sulfide gas sensor according to claim 1, wherein the metal oxide semiconductor is WO3.
JP22892994A 1994-08-30 1994-08-30 Hydrogen sulfide gas sensor Expired - Fee Related JP3541968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22892994A JP3541968B2 (en) 1994-08-30 1994-08-30 Hydrogen sulfide gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22892994A JP3541968B2 (en) 1994-08-30 1994-08-30 Hydrogen sulfide gas sensor

Publications (2)

Publication Number Publication Date
JPH0868775A true JPH0868775A (en) 1996-03-12
JP3541968B2 JP3541968B2 (en) 2004-07-14

Family

ID=16884075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22892994A Expired - Fee Related JP3541968B2 (en) 1994-08-30 1994-08-30 Hydrogen sulfide gas sensor

Country Status (1)

Country Link
JP (1) JP3541968B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1367387A2 (en) * 2002-05-27 2003-12-03 Shinko Electric Industries Co. Ltd. Solid electrolyte sensor for detecting a sulfurous component in a gas stream
EP1431756A1 (en) * 2001-09-28 2004-06-23 Shinko Electric Industries Co. Ltd. Sulfur component sensor and sulfur component detector
JP2015102401A (en) * 2013-11-25 2015-06-04 株式会社日本自動車部品総合研究所 Gas sensor element and gas sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102866189B (en) * 2012-08-26 2014-03-19 吉林大学 NASICON-based H2S sensor using composite metallic oxide as sensitive electrode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1431756A1 (en) * 2001-09-28 2004-06-23 Shinko Electric Industries Co. Ltd. Sulfur component sensor and sulfur component detector
EP1431756A4 (en) * 2001-09-28 2005-06-22 Shinko Electric Ind Co Sulfur component sensor and sulfur component detector
EP1367387A2 (en) * 2002-05-27 2003-12-03 Shinko Electric Industries Co. Ltd. Solid electrolyte sensor for detecting a sulfurous component in a gas stream
EP1367387A3 (en) * 2002-05-27 2006-01-18 Shinko Electric Industries Co. Ltd. Solid electrolyte sensor for detecting a sulfurous component in a gas stream
JP2015102401A (en) * 2013-11-25 2015-06-04 株式会社日本自動車部品総合研究所 Gas sensor element and gas sensor

Also Published As

Publication number Publication date
JP3541968B2 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
JP3871497B2 (en) Gas sensor
JP3524980B2 (en) Nitrogen oxide sensor
US6051123A (en) Multi-functional and NOx sensor for combustion systems
JPH11223617A (en) Sulfur dioxide gas sensor
JPH11201942A (en) Nitrogen oxide sensor
EP0982586B1 (en) Carbon monoxide sensor, method for making the same, and method of using the same
US6143165A (en) Nox sensor
KR101052618B1 (en) Nitrogen oxide gas sensor with long term signal stability
JPS6126021B2 (en)
EP2330411A2 (en) Nitrogen-oxide gas sensor
JP3775704B2 (en) Solid electrolyte hydrogen sensor
JP3541968B2 (en) Hydrogen sulfide gas sensor
JPH1172476A (en) Nitrogen oxide gas sensor
JP2000019152A (en) Hydrogen gas sensor
JP4465677B2 (en) Hydrogen gas detector
Miyazaki et al. A new potential‐type humidity sensor using EMD‐based manganese oxides as a solid electrolyte
KR101133267B1 (en) NOx gas sensor
JP2002005883A (en) Nitrogen oxide gas sensor
JP3696494B2 (en) Nitrogen oxide sensor
KR20190074378A (en) Cu doped metal oxide having perovskite type structure, preparation method thereof, and a limiting current type gas sensor comprising the same
JPH08201340A (en) Gas sensor element
JP2003149195A (en) Gas sensor
JP2001221774A (en) Gas sensor
JP3850518B2 (en) Nitrogen oxide sensor
JP4912968B2 (en) Non-methane hydrocarbon gas detector

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040325

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees