ITBA20130066A1 - Metodo per migliorare le caratteristiche bio-chimico-fisiche e la reattivita' di molecole tossiche al fine di ridurne la pericolosita' per l'uomo e l'ambiente. - Google Patents

Metodo per migliorare le caratteristiche bio-chimico-fisiche e la reattivita' di molecole tossiche al fine di ridurne la pericolosita' per l'uomo e l'ambiente.

Info

Publication number
ITBA20130066A1
ITBA20130066A1 IT000066A ITBA20130066A ITBA20130066A1 IT BA20130066 A1 ITBA20130066 A1 IT BA20130066A1 IT 000066 A IT000066 A IT 000066A IT BA20130066 A ITBA20130066 A IT BA20130066A IT BA20130066 A1 ITBA20130066 A1 IT BA20130066A1
Authority
IT
Italy
Prior art keywords
contaminated
bio
operating conditions
ultramill
chemical
Prior art date
Application number
IT000066A
Other languages
English (en)
Inventor
Giovanni Cagnetta
Federico Cangialosi
Gianluca Intini
Lorenzo Liberti
Original Assignee
Liberti Lorenzo C O T & A Tecn E Amb Srl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liberti Lorenzo C O T & A Tecn E Amb Srl filed Critical Liberti Lorenzo C O T & A Tecn E Amb Srl
Priority to IT000066A priority Critical patent/ITBA20130066A1/it
Publication of ITBA20130066A1 publication Critical patent/ITBA20130066A1/it

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/004Sludge detoxification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/327Polyaromatic Hydrocarbons [PAH's]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • C02F2101/363PCB's; PCP's
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • C02F2101/366Dioxine; Furan
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/16Total nitrogen (tkN-N)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/18PO4-P
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/341Consortia of bacteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

DESCRIZIONE
La presente invenzione concerne un nuovo metodo e sistema per migliorare le caratteristiche bio-chimìcofisiche di molecole organiche tossiche, stabili e biopersistenti, aumentarne in modo considerevole la reattività ed attenuarne gli effetti negativi su fauna, fiora, esseri umani e ambiente in generale, eliminando ali<,>molecole da costanze e materiali che me sono contaminati. Dette molecole comprendono specie Chimiche come fenoli, idrocarburi leggeri (con C,n2) e pesanti (C^n), idrocarburi policiclici aromatici (IPA), frclorodibenzod tossine (PCDD), pofidoro-dibenzofurani (PCDF), potidoro-bifenili (PCB) e gli altri ktqufnoati Organici persistenti (POP) elencati nella Conferenza di Stoccolma {2001}, classificati cancerogeni accertati, probabili o possìbili e/o inquinanti prioritari dalle principali agenzie internazionali (tARC, U.S.EPA ecc.). -S^uficative {Coneentraaioni :di queste molecole, in forma gassosa, liquida, solida, eventualmente adsorbite su materiale particellare, si trovano nelle emissioni di lavorazioni industriali, in fenomeni naturali e in processi antropici, generando rifiuti classificati pericolosi (e non) secondo il Codice Europeo dei Rifiuti. rattamenti adeguati sono richiesti per. ovviare all'elevato impatto sanitario, ecologico ed economico della gestione di tali rifiuti, ad es., nella bonifica di suoli contaminati e per smaltire i conseguenti residui prodotti Diversi trattamenti biologici/chim ici/fisici sono stati proposti a tal fine nel tempo con alterno successo. Trattamenti biologici con batteri, funghì, alghe naturali (bioremediation) sono avvantaggiati da basso costo e scarsa produzione di rifiuti, ma sono penalizzati da basse velocità di reazione, che comportano tempi di trattamento anche di decenni [Focht and Brunner, 1985; Borja et al., 2005; Field and Sierra-Aìvarez, 2008]v Trattamenti chimici con reazioni redox [Pittman and Yang, 2001] e fisici dì tipo termico, fotocatalitico, elettrico, magnetico ecc. [Zhang et al., 2008; Alcantara et ab, 2010; Colacicco et al., 2010] comportano elevati costi e ferquente formazione di sottoprodotti tossici.
li trattamento biologico con idoneo pretrattamento può fornire la soluzione al problema [Gan et al., 2009). a'-ateccanochinwea (MC) à ̈ una tecnica nota dall'antichità (v. sfregamento di pietre per accendere il fuoco), in cui energiche forze meccaniche permettono di sviluppare reazioni chimiche allo stato solido e liquido. Sebbene investigata da tempo [ihissen et al 1967; Boldyrev and Meyer 1973], solo recentemente la<â– >comprensione teorica della MC ha compiuto progressi significativi [Friscic et al., 2013]. La MC à ̈ realizzatalo speciali ultramulinl ad alta energia (spiral-jet, roller, attritori, a biglie planetari, orbitali, nutazionali, ellittici ecc.) capaci di indurre alterazioni strutturali dei reagenti, che acquistano nuove proprietà chimiche, magnetiche, elettriche, meccaniche, catalitiche ecc.
Già applicata in settori quali metallurgia, ceramica, farmaceutica, catalisi, vernici ecc. come vìa semplice, efficace· ed economica per produrre materiali nuovi e/o costosi, ia MC à ̈ stata proposta con aiterni risultati ielie per-applicazioni ambientali come la detossificazione di rifiuti contenenti amianto o PCB [Piescia et al., 2003; Birke et al., 2004],
Esperimenti di laboratorio condotti dagli odierni inventori per il trattamento biologico diretto di sedimenti marini contaminati da iPA e PCB hanno mostrato una bassissima velocità di reazione, che aumentava in modo significativo dopo trattamento MC, ma in condizioni operative onerose [Cangialosi et al., 2007a,b}. Studi più recenti hanno consentito di individuare le condizioni operative opportune in cui il pretrattamento MC consente la degradazione biologica rapida, efficiente ed economica di rifiuti e materiali contaminati dalle citate molecole organiche tossiche stabili e biopersistenti [Cagnetta et al., 2013],
La presente invenzione riguarda un nuovo metodo e sistema che comprende i seguenti stadi principali, non necessariamente tutti né solo in questo ordine:
a) analisi chimico-fisico-biologica di materiali e rifiuti contaminati dai suddetti inquinanti, per stimarne la tossicità e l'assenza di inibitori al presente trattamento;
b) allontanamento con tradizionali pretrattamenti meccanici (grigliatura, setaccìatura, flottazione, idrociclonatura ecc.) delle frazioni poco/affatto contaminate eventualmente presenti;
c) breve trattamento meccanochimico dei suddetti materiali (o delle loro frazioni più contaminate), ad umido o a secco, in presenza di idonei reagenti, in condizioni operative tali da evitare la formazione di sottoprodotti indesiderati;
d) trattamento biologico dei materiali e rifiuti (o delle loro frazioni più contaminate) così ultramacinati in un bio-reattore (biopila, bioslurry, a colonna ecc.) dove, con aggiunta dei necessari reagenti (acqua, nutrienti, ossigeno, tensioattivi ecc.), in presenza di opportuni microrganismi (an)aerobici, in condizioni operative ottimali, la biodegradazione consente l'eliminazione rapida ed efficace delle molecole tossiche residue, riducendone la concentrazione nei limiti di legge.
La Fig.l rappresenta schematicamente apparato e procedura sperimentali necessari nel metodo in oggetto, l rifiuti (scorie industriali, terreni da bonifiche petrolchimiche, sedimenti portuali ecc.), caratterizzati sotto il profilo bio-chimico-fisico per stabilirne il livello di contaminazione, sono preliminarmente sottoposti a convenzionali trattamenti meccanici (grigliatura, setaccìatura, flottazione ecc.) per separarne le eventuali frazioni più contaminate; queste subiscono quindi un breve trattamento MC (alcuni minuti) in opportune condizioni strumentali ed operative, valutando con le tecniche consuete (superficie specifica, No. Iodio ecc.) le modifiche morfo-strutturali ottenute; il materiale ultramacinato viene quindi trattato per via biologica con apparecchiature e modalità opportune, ottenendone la decontaminazione al livello desiderato in tempi molto più brevi (settimane/mesi) di quanto di solito necessario (anni).
L'esempio seguente illustra i risultati di una applicazione sperimentale di questa invenzione,
i sedimenti marini che occorre dragare nel porto di Taranto presentano, a luoghi, elevata contaminazione da composti organici tossici (Tab.l), che ne comporta l'oneroso smaltimento in discariche per rifiuti speciali pericolosi (e non) ai sensi della vigente legislazione europea.
Tab i - Caratteristiche dei sedimenti del porto di Taranto negli "hot spot" A, B e C
T
ceno, probabile o possibile cancerogeno per gli umani secondo la classificazione IARC
Allo scopo di individuare alternative atte ad evitare l'insostenibile impatto socio-sanitario-economico dello smaltimento in discarica, campioni di sedimenti dragati negli "hot spot" A, B e C sono stati sottoposti al trattamento in oggetto. Dopo allontanamento del materiale più grossolano e meno contaminato mediante setacciatura a umido, il sedimento à ̈ stato ultramacinato (=lmin) con ultramulino nutazionale, in condizioni slurry (90% v/w d'acqua), rapporto massico 10:1 tra macinante (biglie di acciaio) e macinato (sedimenti), a velocità di ultramacinazione 975 rpm, previa aggiunta di CaO (30% w/w) come reagente declorante e di Acidi Umici (1,5% w/w) come tensioattivo per migliorarne la bio-disponibilità. Si à ̈ ottenuta in tal modo una degradazione spinta (80%) delle molecole organiche tossiche presenti. Per completare la decontaminazione, il campione ultramacinato e la sua soluzione sono stati trasferiti in un bioreattore slurry inoculato con ceppi di batterio aerobico B. xenovorans (3% v/v), mantenuto a 30°C, velocità di agitazione 500 rpm, pH 6,8 e O?al =50% saturazione, previa aggiunta di nutrienti in rapporto C:N:P = 100:5:1.
Con riferimento ai PCB (ma risultati simili sono stati ottenuti su sedimenti contaminati con IPA utilizzando il batterio N. pentaromativorans) si à ̈ ottenuto un livello di degradazione totale sorprendente (98% in =2 mesi contro =13 anni stimati necessari per la biodegradazione diretta dei sedimenti tal quali).
L'applicazione su larga scala della presente invenzione à ̈ facilitata dalla reperibilità delle apparecchiature industriali necessarie e dal basso rischio delle procedure operative (no esplosioni, emissioni gassose ecc.) per operatori adeguatamente addestrati.
L’analisi economica indica che il trattamento di decontaminazione di rifiuti pericolosi (e non) con il presente metodo à ̈ di gran lunga conveniente rispetto ai metodi attualmente in uso (discarica, incenerimento ecc.), mostrando prospettive di mercato molto incoraggianti per il suo sfruttamento industriale e commerciale.
Referenze
1) Alcantara M.T., Gómez J., Pazos M., Sanromàn M.A.. Electrokinetic remediation of PAH mixtures from kaolin, J. Haz. Mat., 179 (2010) 1156
2) Birke V., Mattik J., Runne D., Mechanochemical reductive dehalogenation of hazardous polyhalogenated contaminants, J, Mat. Sci. 39 (2004) 5111-5516
3) Boidyrev V.V., Meyer K., Festkòrperchemie, Beitrage aus Forschung und Praxis (1973) Grundstoffindustrie Verlag, Leipzig
4) Borja Taleon D.M., Auresenia J., Gailardo S., PCBs and their biodegradation, Process Biochem. 40 (2005) 1999-2013
5) Cagnetta G., A new process for rapid biodegradation of heavily contaminated marine sediments, Ph.D.
thesis, Technic University of Bari (I) 2013
6) Cangiatosi F., intini G., liberti L., Notarnicola M., Pastore T., Sasso S,, Mechanochemical treatment of contaminated marine sediments for PAH degradation, Chem. Sustaìn, Dev. 15 (2007a) 139-145 7) Cangiatosi F., Intini G., Liberti L., Lupo L., Notarnicola M., Pastore T., Mechanochemical treatment of contaminated marine sediments for PCB degradation, Chem. Sustain. Dev. 15 (2007b) 147-156 8) Colacicco A., De Gioannis G., Muntoni A., Pettinao E., Polettini A., Pomi R., Enhanced electrokinetic treatment of marine sediments contaminated by heavy metals and PAHs, Chemosphere, 81 (2010) 46 9) Field J.A., Sierra-Alvarez R., Microbial transformation and degradation of PCBs, Environ. Pollut. 155 (2008) 1 -12
10) Focht D., Brunner W., Kinetics of biphenyl and PCB metabolism in soil, Appi. Environ. Microbiol. 50 (1985) 1058-1063
11) Friscic T., Halasz I., Beldon P.J., Belenguer A.M., Adams F., Kimber S.A.J., Honkimaki V., Dinnieber R E., Real-time and in sity monitoring of mechanochemical milling reactions, Nat. Chem 5 (2013) 66-73 12} Gan S„ Lau E.V., Ng H.K., Remediation of soils contaminated with polycyclic aromatìc hydrocarbons J.
Haz. Mat. 172 (2009)532-549
13) Pittman C.U., Yang C, Dechlorination of PCBs using NaBH4 and NaBH4/LiCI at 120-310°C in glyme solvents, J. Haz. Mat. 82 (2001)299- 311
14) Plescia P,, Gizzi D., Benedetti S., Camillucci L., Canizza C, De Simone P., Paglietti F., Mechanochemical treatment to recycling asbestos-containing waste, Waste Manage. 23 (2003) 209-218
15) [Thissen P.A., Meyer K., Heinicke G., 1967, Grundlagen der Triebochemie, Akademie-Verlag, Berlin 16) Zhang L., Li P., Gong Z., Li X., Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using Ti02under UV light, J. Haz. Mat. 158 (2008) 478

Claims (1)

  1. Rivendicazioni 1. Un nuovo metodo e sistema per migliorare la reattività di molecole organiche biopersistenti, tossiche e non, come idrocarburi leggeri e pesanti, idrocarburi policiclici aromatici, policloro-dibenzodiossine, policloro-dibenzofurani, poli-clorobifenili e altri "inquinanti organici persistenti", utile per trattare rifiuti, terreni ecc. contaminati da dette molecole recalcitranti alla bio-degradazione, che comprende le seguenti operazioni (non necessariamente tutte né in questo ordine): a) analisi del materiale contaminato per valutarne l'idoneità al presente trattamento; b) pretrattamenti fisici convenzionali quali grigliatura (per rimuovere pietre/corpi grossolani), flottazione ed idrociclone (per separare olii, ghiaia, sabbia e argilla), setacciatura ecc., per allontanare le frazioni meno contaminate, se presenti; c) attivazione meccanochimica con ultramulino ad alta energia di tipo nutazionale nelle condizioni operative seguenti: slurry (H20:materiale contaminato <90:1), rapporto massico tra macinante (biglie di acciaio) e macinato (materiale contaminato) <20:1, riempimento ultramulino <50% v/v e velocità di macinazione <5000 rpm, previa aggiunta di CaO (≤50% w/w) ed acidi umici (<l,5%w/w); durata dell'ultramacinazione l÷60min in funzione delle caratteristiche qualitative del materiale da attivare; d ) degradazione biologica del materiale ultramacinato usando la tecnica del bioslurry, garantendo la correzione e il controllo di nutrienti (N e P), pH, T ed 02, previo inoculo con batteri aerobici selezionati tipo Burkholderia xenovorans o simile; durata dell'operazione di biodegradazione legata al livello di contaminazione residuo desiderato; 2) Metodo secondo la rivendicazione 1, in cui la fase b) à ̈ totalmente o parzialmente omessa; 3) Metodo secondo le rivendicazioni 1 e 2, in cui l’attivazione meccanochimica c) avviene in un ultramulino tipo spìral-jet, roller, attritore, a biglie, planetario o orbitale, assicurando condizioni di ultramacinazione equivalenti a quelle della rivendicazione 1; 4) Metodo secondo le rivendicazioni da 1 a 3, in cui la fase c) avviene a secco; 5) Metodo secondo le rivendicazioni da 1 a 4 , in cui in fase c) si usa NaOH o KOH al posto di CaO; 6) Metodo secondo le rivendicazioni da 1 a 5, in cui la fase d) à ̈ effettuata con sistema diverso dal bioslurry, come biopila o bioreattore, in condizioni operative equivalenti a quelle della rivendicazione 1; 7) Metodo secondo le rivendicazioni da 1 a 6, in cui la fase d) avviene in condizioni anaerobiche, utilizzando batteri o consorzi batterici anaerobi selezionati e condizioni di esercizio equivalenti a quelle della rivendicazione 1; 8) Metodo secondo le rivendicazioni 1-2-3-4-5 in cui la fase d) à ̈ omessa.
IT000066A 2013-10-03 2013-10-03 Metodo per migliorare le caratteristiche bio-chimico-fisiche e la reattivita' di molecole tossiche al fine di ridurne la pericolosita' per l'uomo e l'ambiente. ITBA20130066A1 (it)

Priority Applications (1)

Application Number Priority Date Filing Date Title
IT000066A ITBA20130066A1 (it) 2013-10-03 2013-10-03 Metodo per migliorare le caratteristiche bio-chimico-fisiche e la reattivita' di molecole tossiche al fine di ridurne la pericolosita' per l'uomo e l'ambiente.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT000066A ITBA20130066A1 (it) 2013-10-03 2013-10-03 Metodo per migliorare le caratteristiche bio-chimico-fisiche e la reattivita' di molecole tossiche al fine di ridurne la pericolosita' per l'uomo e l'ambiente.

Publications (1)

Publication Number Publication Date
ITBA20130066A1 true ITBA20130066A1 (it) 2015-04-04

Family

ID=50001077

Family Applications (1)

Application Number Title Priority Date Filing Date
IT000066A ITBA20130066A1 (it) 2013-10-03 2013-10-03 Metodo per migliorare le caratteristiche bio-chimico-fisiche e la reattivita' di molecole tossiche al fine di ridurne la pericolosita' per l'uomo e l'ambiente.

Country Status (1)

Country Link
IT (1) ITBA20130066A1 (it)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648591A (en) * 1992-12-18 1997-07-15 University Of Western Australia Toxic material disposal
JP2001047028A (ja) * 1999-08-10 2001-02-20 Sumitomo Metal Ind Ltd ダイオキシン類汚染物質の無害化処理方法
JP2003047945A (ja) * 2001-08-03 2003-02-18 Miyoshi Oil & Fat Co Ltd 固体状廃棄物の処理方法
JP2003117592A (ja) * 2001-10-18 2003-04-22 Sumitomo Heavy Ind Ltd 排水処理装置
US20060058566A1 (en) * 2002-11-27 2006-03-16 Shulgin Alexander I Humic mineral reagent and method for the production thereof, method for rehabilitating polluted soils, method for detoxification of wastes of extracted and processed mineral products and recultivating rock dumps and tailing storages, method for sewage water treatment and method for sludge utilisation
JP4572048B2 (ja) * 1999-08-10 2010-10-27 株式会社ラジカルプラネット研究機構 有機塩素系有害物に汚染された物質の無害化処理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648591A (en) * 1992-12-18 1997-07-15 University Of Western Australia Toxic material disposal
JP2001047028A (ja) * 1999-08-10 2001-02-20 Sumitomo Metal Ind Ltd ダイオキシン類汚染物質の無害化処理方法
JP4572048B2 (ja) * 1999-08-10 2010-10-27 株式会社ラジカルプラネット研究機構 有機塩素系有害物に汚染された物質の無害化処理方法
JP2003047945A (ja) * 2001-08-03 2003-02-18 Miyoshi Oil & Fat Co Ltd 固体状廃棄物の処理方法
JP2003117592A (ja) * 2001-10-18 2003-04-22 Sumitomo Heavy Ind Ltd 排水処理装置
US20060058566A1 (en) * 2002-11-27 2006-03-16 Shulgin Alexander I Humic mineral reagent and method for the production thereof, method for rehabilitating polluted soils, method for detoxification of wastes of extracted and processed mineral products and recultivating rock dumps and tailing storages, method for sewage water treatment and method for sludge utilisation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUNLUN ZHANG ET AL: "Destruction of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) by Ball Milling", ENVIRONMENTAL SCIENCE & TECHNOLOGY, vol. 47, no. 12, 15 May 2013 (2013-05-15), pages - 6477, XP055110133, ISSN: 0013-936X, DOI: 10.1021/es400346n *

Similar Documents

Publication Publication Date Title
Kour et al. Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges
Sakshi et al. Polycyclic aromatic hydrocarbons: soil pollution and remediation
Ma et al. Remediation of hydrocarbon–heavy metal co-contaminated soil by electrokinetics combined with biostimulation
Liu et al. Bioremediation of metal-contaminated soils by microbially-induced carbonate precipitation and its effects on ecotoxicity and long-term stability
Akcil et al. A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes
Usman et al. Fenton oxidation for soil remediation: A critical review of observations in historically contaminated soils
Thacharodi et al. Bioremediation of polycyclic aromatic hydrocarbons: An updated microbiological review
Gan et al. Current status and prospects of Fenton oxidation for the decontamination of persistent organic pollutants (POPs) in soils
Gharibzadeh et al. Reuse of polycyclic aromatic hydrocarbons (PAHs) contaminated soil washing effluent by bioaugmentation/biostimulation process
Chen et al. Chlorophenols in textile dyeing sludge: pollution characteristics and environmental risk control
US6623211B2 (en) Remediation of contaminates including low bioavailability hydrocarbons
Lu et al. Removal of residual contaminants in petroleum-contaminated soil by Fenton-like oxidation
Quantin et al. PAH dissipation in a contaminated river sediment under oxic and anoxic conditions
Šrédlová et al. Recent advances in PCB removal from historically contaminated environmental matrices
Ingle et al. Nanoremediation: a new and emerging technology for the removal of toxic contaminant from environment
Sun et al. Methyl-β-cyclodextrin enhanced biodegradation of polycyclic aromatic hydrocarbons and associated microbial activity in contaminated soil
Sun et al. Remediation of polycyclic aromatic hydrocarbon and metal-contaminated soil by successive methyl-β-cyclodextrin-enhanced soil washing–microbial augmentation: a laboratory evaluation
Tang et al. Simultaneous Cr (VI) removal and 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47) biodegradation by Pseudomonas aeruginosa in liquid medium
Dutta et al. A critical review of recent advances in the bio-remediation of chlorinated substances by microbial dechlorinators
Lookman et al. Batch-test study on the dechlorination of 1, 1, 1-trichloroethane in contaminated aquifer material by zero-valent iron
Mao et al. Feasibility of tea saponin-enhanced soil washing in a soybean oil-water solvent system to extract PAHs/Cd/Ni efficiently from a coking plant site
WO2015138848A1 (en) Treatment of contaminated soil and water
Huang et al. Efficient chlorinated alkanes degradation in soil by combining alkali hydrolysis with thermally activated persulfate
Honetschlägerová et al. Coupling in situ chemical oxidation with bioremediation of chloroethenes: a review
Cao et al. EDDS enhanced PCB degradation and heavy metals stabilization in co-contaminated soils by ZVI under aerobic condition