IN2015DN01885A - - Google Patents
Info
- Publication number
- IN2015DN01885A IN2015DN01885A IN1885DEN2015A IN2015DN01885A IN 2015DN01885 A IN2015DN01885 A IN 2015DN01885A IN 1885DEN2015 A IN1885DEN2015 A IN 1885DEN2015A IN 2015DN01885 A IN2015DN01885 A IN 2015DN01885A
- Authority
- IN
- India
- Prior art keywords
- path
- particles
- crystalline structure
- engineered
- path engineered
- Prior art date
Links
- 239000002245 particle Substances 0.000 abstract 6
- 239000011159 matrix material Substances 0.000 abstract 5
- 239000013078 crystal Substances 0.000 abstract 2
- 229910021525 ceramic electrolyte Inorganic materials 0.000 abstract 1
- 239000002131 composite material Substances 0.000 abstract 1
- 239000003792 electrolyte Substances 0.000 abstract 1
- 239000007787 solid Substances 0.000 abstract 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1058—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B13/00—Diaphragms; Spacing elements
- C25B13/04—Diaphragms; Spacing elements characterised by the material
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B13/00—Diaphragms; Spacing elements
- C25B13/04—Diaphragms; Spacing elements characterised by the material
- C25B13/08—Diaphragms; Spacing elements characterised by the material based on organic materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/40—Semi-permeable membranes or partitions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/56—Solid electrolytes, e.g. gels; Additives therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
- H01M50/434—Ceramics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/497—Ionic conductivity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/18—Cells with non-aqueous electrolyte with solid electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/30—Deferred-action cells
- H01M6/36—Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1041—Polymer electrolyte composites, mixtures or blends
- H01M8/1046—Mixtures of at least one polymer and at least one additive
- H01M8/1048—Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/165—Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
- H01M2300/0091—Composites in the form of mixtures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Metallurgy (AREA)
- Power Engineering (AREA)
- Composite Materials (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Conductive Materials (AREA)
- Fuel Cell (AREA)
- Secondary Cells (AREA)
- Cell Separators (AREA)
Abstract
An ion conducting composite electrolyte is provided comprising path engineered ion conducting ceramic electrolyte particles and a solid polymeric matrix. The path engineered particles are characterized by an anisotropic crystalline structure and the ionic conductivity of the crystalline structure in a preferred conductivity direction H associated with one of the crystal planes of the path engineered particle is larger than the ionic conductivity of the crystalline structure in a reduced conductivity direction L associated with another of the crystal planes of the path engineered particle. The path engineered particles are sized and positioned in the polymeric matrix such that a majority of the path engineered particles breach both of the opposite major faces of the matrix body and are oriented in the polymeric matrix such that the preferred conductivity direction H is more closely aligned with a minimum path length spanning a thickness of the matrix body than is the reduced conductivity direction L.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/597,871 US9502729B2 (en) | 2012-08-29 | 2012-08-29 | Ion-conducting composite electrolyte comprising path-engineered particles |
PCT/US2013/055943 WO2014035753A1 (en) | 2012-08-29 | 2013-08-21 | Ion-conducting composite electrolyte |
Publications (1)
Publication Number | Publication Date |
---|---|
IN2015DN01885A true IN2015DN01885A (en) | 2015-08-07 |
Family
ID=49115580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
IN1885DEN2015 IN2015DN01885A (en) | 2012-08-29 | 2013-08-21 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9502729B2 (en) |
EP (2) | EP2891199B1 (en) |
JP (2) | JP2015527722A (en) |
CN (1) | CN104995764B (en) |
IN (1) | IN2015DN01885A (en) |
TW (1) | TWI578349B (en) |
WO (1) | WO2014035753A1 (en) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9905883B2 (en) * | 2013-03-28 | 2018-02-27 | Corning Incorporated | Ceramic electrolyte material comprising a modified polycrystalline lithium metal phosphate |
WO2014186634A2 (en) | 2013-05-15 | 2014-11-20 | Quantumscape Corporation | Solid state catholyte or electrolyte for battery using liampbsc (m = si, ge, and/or sn) |
US9595399B2 (en) * | 2013-05-20 | 2017-03-14 | Tdk Corporation | Solid-state ion capacitor |
WO2015086759A1 (en) * | 2013-12-13 | 2015-06-18 | Basf Se | Alkali-ion conducting composite membranes for electronic applications |
WO2015110333A1 (en) * | 2014-01-23 | 2015-07-30 | Basf Se | Electrochemical cells comprising alkali-ion conducting composite membranes |
US9520627B2 (en) * | 2014-03-06 | 2016-12-13 | International Business Machines Corporation | Ion conducting hybrid membranes |
US9666852B2 (en) * | 2014-10-02 | 2017-05-30 | Ford Global Technologies, Llc | Composite separator with aligned particles |
EP3012885B1 (en) * | 2014-10-23 | 2018-08-08 | Sion Power Corporation | Ion-conductive composite for electrochemical cells |
WO2016064949A1 (en) * | 2014-10-23 | 2016-04-28 | Sion Power Corporation | Ion-conductive composite for electrochemical cells |
US10381625B2 (en) | 2014-12-19 | 2019-08-13 | Samsung Electronics Co., Ltd. | Composite membrane, preparation method thereof, anode structure including the composite membrane, and lithium secondary battery including the anode structure |
JP6956641B2 (en) | 2015-06-24 | 2021-11-02 | クアンタムスケイプ バテリー, インク. | Composite electrolyte |
JP2019503037A (en) | 2015-11-24 | 2019-01-31 | シオン・パワー・コーポレーション | Ion conductive compounds and related uses |
WO2017096088A1 (en) | 2015-12-04 | 2017-06-08 | Quantumscape Corporation | Lithium, phosphorus, sulfur, and iodine including electrolyte and catholyte compositions, electrolyte membranes for electrochemical devices, and annealing methods of making these electrolytes and catholytes |
JP2017183111A (en) * | 2016-03-30 | 2017-10-05 | 旭化成株式会社 | Separator and method of manufacturing the same |
JP6804221B2 (en) * | 2016-05-30 | 2020-12-23 | 旭化成株式会社 | Solid electrolyte particles |
US11342630B2 (en) | 2016-08-29 | 2022-05-24 | Quantumscape Battery, Inc. | Catholytes for solid state rechargeable batteries, battery architectures suitable for use with these catholytes, and methods of making and using the same |
CN107968219A (en) * | 2016-10-19 | 2018-04-27 | 东莞新能源科技有限公司 | Inorganic solid electrolyte film and preparation method thereof and inorganic full-solid battery |
JP7068309B2 (en) | 2016-12-21 | 2022-05-16 | コーニング インコーポレイテッド | Sintering system and sintered articles |
US20180277909A1 (en) * | 2017-03-22 | 2018-09-27 | Kabushiki Kaisha Toshiba | Composite electrolyte, secondary battery, battery pack and vehicle |
JP6659639B2 (en) * | 2017-03-22 | 2020-03-04 | 株式会社東芝 | Composite electrolyte, secondary battery, battery pack and vehicle |
US10559398B2 (en) | 2017-05-15 | 2020-02-11 | International Business Machines Corporation | Composite solid electrolytes for rechargeable energy storage devices |
CN110785885B (en) | 2017-05-24 | 2023-10-24 | 锡安能量公司 | Ion-conducting compounds and related uses |
DE102017118310B4 (en) | 2017-08-11 | 2023-07-27 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Fiber composite component designed as an electrochemical storage device and method for its production |
US11456481B2 (en) | 2017-10-12 | 2022-09-27 | Robert Bosch Gmbh | Ceramic-polymer composite single ion conducting thin film electrolyte |
JP7184509B2 (en) * | 2017-10-25 | 2022-12-06 | トヨタ自動車株式会社 | Separator and non-aqueous electrolyte secondary battery |
CN108123158B (en) * | 2017-12-29 | 2020-02-21 | 成都新柯力化工科技有限公司 | Low-temperature ceramic electrolyte membrane for solid oxide fuel cell and preparation method thereof |
US11515556B1 (en) | 2018-01-22 | 2022-11-29 | North Carolina Agricultural And Technical State University | Solid electrolyte membrane and use thereof in batteries |
US10971708B2 (en) | 2018-04-23 | 2021-04-06 | International Business Machines Corporation | Release layer for preparation of ion conducting membranes |
CN108493480A (en) * | 2018-04-28 | 2018-09-04 | 哈尔滨工业大学 | A kind of compound individual particle layer solid electrolyte and preparation method thereof |
CN109167080B (en) * | 2018-09-12 | 2022-06-14 | 哈尔滨工业大学(威海) | High-voltage lithium thermal battery |
KR102608245B1 (en) | 2019-01-21 | 2023-11-29 | 삼성전자주식회사 | Elctrically conductive hybrid membrane, making method thereof, secondary battery and electronic device comprising the same |
KR20200092099A (en) * | 2019-01-24 | 2020-08-03 | 삼성전자주식회사 | Composite membrane, and lithium secondary battery including the composite membrane |
CN114514645B (en) * | 2019-10-30 | 2024-10-15 | 富士胶片株式会社 | Lithium ion secondary battery and method for producing same, and solid electrolyte membrane for lithium ion secondary battery and method for producing same |
JP7451247B2 (en) * | 2020-03-17 | 2024-03-18 | 本田技研工業株式会社 | How to collect lithium ions |
FR3110028B1 (en) * | 2020-05-07 | 2022-10-14 | Accumulateurs Fixes | Coated sparse particle and its use as an electrolyte in batteries |
JP7016392B2 (en) * | 2020-08-18 | 2022-02-04 | 旭化成株式会社 | Separator and its manufacturing method |
CN113488635B (en) * | 2021-05-24 | 2023-01-13 | 长沙矿冶研究院有限责任公司 | Isotropic heat treatment negative electrode material coating method and preparation method of long-cycle negative electrode material |
JP7050203B1 (en) * | 2021-07-14 | 2022-04-07 | 日本碍子株式会社 | Electrolyte membrane for electrochemical cell, its manufacturing method, and electrochemical cell |
CN114050313B (en) * | 2021-09-24 | 2022-10-18 | 南京大学 | Inorganic/polymer composite lithium ion sieve membrane and preparation method and application thereof |
JP7525759B1 (en) | 2023-01-31 | 2024-07-30 | 京セラ株式会社 | Solid electrolyte layer, electrochemical cell, electrochemical cell device, module, and module housing device |
WO2024162413A1 (en) * | 2023-01-31 | 2024-08-08 | 京セラ株式会社 | Solid electrolyte layer, electrochemical cell, electrochemical cell device, module, and module storage device |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE339374B (en) | 1966-01-24 | 1971-10-04 | C Forestek | |
NL6713531A (en) | 1967-10-05 | 1969-04-09 | ||
US3615841A (en) | 1968-07-31 | 1971-10-26 | Leesona Corp | Electrochemical cell |
US4183988A (en) | 1978-11-16 | 1980-01-15 | General Electric Company | Solid ion-conductive electrolyte |
US4247499A (en) | 1979-05-18 | 1981-01-27 | General Electric Company | Methods of forming a solid ion-conductive electrolyte |
US4977007A (en) | 1986-09-19 | 1990-12-11 | Matsushita Electrical Indust. Co. | Solid electrochemical element and production process therefor |
JPS6378405A (en) * | 1986-09-19 | 1988-04-08 | 松下電器産業株式会社 | Anisotropic ion conductor |
US5491039A (en) | 1994-02-04 | 1996-02-13 | Shackle; Dale R. | Solid electrolytes including organometallic ion salts and electrolytic cells produced therefrom |
JP3655443B2 (en) | 1997-09-03 | 2005-06-02 | 松下電器産業株式会社 | Lithium battery |
JPH11345629A (en) | 1998-03-31 | 1999-12-14 | Canon Inc | Secondary battery and production of the same |
JP3788308B2 (en) * | 2001-10-22 | 2006-06-21 | トヨタ自動車株式会社 | ELECTROLYTE MEMBRANE FOR FUEL CELL AND FUEL CELL HAVING THE SAME |
JP4664626B2 (en) | 2004-07-05 | 2011-04-06 | ポリマテック株式会社 | Ion conductive polymer electrolyte membrane and method for producing the same |
CN101040401A (en) * | 2004-08-17 | 2007-09-19 | 株式会社小原 | Lithium ion secondary battery and a solid electrolyte thereof |
KR20070034104A (en) * | 2004-08-18 | 2007-03-27 | 자이단호징 덴료쿠추오켄큐쇼 | Polymer Solid Electrolyte Battery and Manufacturing Method of Positive Electrode Sheet Used in the Same |
KR101130123B1 (en) * | 2004-12-02 | 2012-03-28 | 가부시키가이샤 오하라 | All solid lithium ion secondary battery and a solid electrolyte therefor |
US7820022B2 (en) | 2005-11-28 | 2010-10-26 | General Electric Company | Photoelectrochemical cell and method of manufacture |
JP2008021416A (en) * | 2006-07-10 | 2008-01-31 | Idemitsu Kosan Co Ltd | Solid electrolyte sheet |
CN105655519B (en) * | 2007-06-01 | 2020-10-02 | 达拉米克有限责任公司 | Lead acid battery separator with enhanced stiffness |
US8216722B2 (en) * | 2007-11-27 | 2012-07-10 | Ceramatec, Inc. | Solid electrolyte for alkali-metal-ion batteries |
JP2009181807A (en) * | 2008-01-30 | 2009-08-13 | Sony Corp | Solid electrolyte, solid electrolyte battery, manufacturing method of lithium ion conductor, manufacturing method of solid electrolyte, and manufacturing method of solid electrolyte battery |
US7943269B2 (en) * | 2008-02-26 | 2011-05-17 | University Of Rochester | Ion-/proton-conducting apparatus and method |
DE102011003746B4 (en) * | 2011-02-08 | 2017-12-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Ion-conducting solid-state separator and its production and use |
US9287540B2 (en) * | 2011-05-31 | 2016-03-15 | GM Global Technology Operations LLC | Separators for a lithium ion battery |
US20130052509A1 (en) * | 2011-08-25 | 2013-02-28 | GM Global Technology Operations LLC | Lithium ion battery with electrolyte-embedded separator particles |
-
2012
- 2012-08-29 US US13/597,871 patent/US9502729B2/en active Active
-
2013
- 2013-08-21 EP EP13756962.0A patent/EP2891199B1/en not_active Not-in-force
- 2013-08-21 JP JP2015529864A patent/JP2015527722A/en active Pending
- 2013-08-21 IN IN1885DEN2015 patent/IN2015DN01885A/en unknown
- 2013-08-21 EP EP18211516.2A patent/EP3496183B1/en active Active
- 2013-08-21 CN CN201380053856.9A patent/CN104995764B/en not_active Expired - Fee Related
- 2013-08-21 WO PCT/US2013/055943 patent/WO2014035753A1/en unknown
- 2013-08-28 TW TW102130870A patent/TWI578349B/en not_active IP Right Cessation
-
2018
- 2018-01-05 JP JP2018000614A patent/JP6496048B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
WO2014035753A1 (en) | 2014-03-06 |
TW201411667A (en) | 2014-03-16 |
JP6496048B2 (en) | 2019-04-03 |
EP3496183B1 (en) | 2021-07-21 |
JP2018085343A (en) | 2018-05-31 |
EP2891199B1 (en) | 2019-01-23 |
TWI578349B (en) | 2017-04-11 |
EP3496183A1 (en) | 2019-06-12 |
US9502729B2 (en) | 2016-11-22 |
CN104995764B (en) | 2017-03-01 |
EP2891199A1 (en) | 2015-07-08 |
JP2015527722A (en) | 2015-09-17 |
US20140065513A1 (en) | 2014-03-06 |
CN104995764A (en) | 2015-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
IN2015DN01885A (en) | ||
EP2950374A4 (en) | Positive electrode active material/graphene composite particles, positive electrode material for lithium ion cell, and method for manufacturing positive electrode active material/graphene composite particles | |
EP2950373A4 (en) | Positive electrode active material/graphene composite particles, and positive electrode material for lithium ion battery | |
WO2014116335A3 (en) | Self-healing composites and applications thereof | |
WO2014110136A8 (en) | Passivation of electrodes in electrochemical cells | |
CA2868986C (en) | Electrical, mechanical, computing, and/or other devices formed of extremely low resistance materials | |
MX2020002220A (en) | Particle systems and methods. | |
HK1183561A1 (en) | A graphene composite ion exchange membrane used in the redox flow battery and the preparation method thereof | |
JP2015527722A5 (en) | ||
MX2016007703A (en) | Composite materials with electrically conductive and delamination resistant properties. | |
EP3007254A4 (en) | Transition metal composite hydroxide particles, method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery | |
WO2011100361A3 (en) | Low temperature electrolytes for solid oxide cells having high ionic conductivity | |
IL215768A0 (en) | Electrode (anode and cathode) performance enhancement by composite formation with graphene oxide | |
EP3041072A4 (en) | Electrode material for fuel electrode, solid electrolyte-electrode laminate, method for producing solid electrolyte-electrode laminate, and fuel cell | |
IN2015DN02799A (en) | ||
EP2736104A4 (en) | Lithium-rich solid solution positive electrode composite material and method for preparing same, lithium ion battery positive electrode plate and lithium ion battery | |
GB2490912B (en) | Electrode assembly and an electrochemical cell comprising the same | |
EP2960975A4 (en) | Polymer electrolyte membrane, membrane electrode assembly including polymer electrolyte membrane, and fuel cell including membrane electrode assembly | |
EP3080855A4 (en) | Electrochemical cells and components thereof | |
EP2325138A3 (en) | Conductive nanoparticle, conductive nanoparticle powder, and lithium battery comprising the powder | |
EP3076466A4 (en) | Polymer electrolyte membrane, membrane electrode assembly comprising polymer electrolyte membrane, and fuel cell comprising membrane electrode assembly | |
EP3178785A4 (en) | METHOD FOR MANUFACTURING BASE POWDER HAVING CARBON NANO-COATING LAYER, MgB2 SUPERCONDUCTOR AND METHOD FOR MANUFACTURING MgB2 SUPERCONDUCTOR IN WHICH SAID METHOD FOR MANUFACTURING BASE POWDER IS USED, LITHIUM ION BATTERY AND METHOD FOR MANUFACTURING LITHIUM ION BATTERY POSITIVE ELECTRODE MATERIAL, AND METHOD FOR MANUFACTURING PHOTOCATALYST | |
WO2015067474A3 (en) | Electrochemical cell and method for the production thereof | |
EP3032626A4 (en) | Membrane electrode assembly with frame, fuel cell unit cell, and fuel cell stack | |
EP3262179A4 (en) | Electrochemical bioreactor module and engineered metabolic pathways for 1- butanol production with high carbon efficiency |