IN2012DN04891A - - Google Patents

Download PDF

Info

Publication number
IN2012DN04891A
IN2012DN04891A IN4891DEN2012A IN2012DN04891A IN 2012DN04891 A IN2012DN04891 A IN 2012DN04891A IN 4891DEN2012 A IN4891DEN2012 A IN 4891DEN2012A IN 2012DN04891 A IN2012DN04891 A IN 2012DN04891A
Authority
IN
India
Prior art keywords
copper
copper foil
metal sheet
substrate
applying
Prior art date
Application number
Inventor
Okayama Hironao
Nanbu Kouji
Kaneko Akira
Ota Hajime
Ohki Kotaro
Yamaguchi Takashi
Hayashi Kazuhiko
Ohmatsu Kazuya
Original Assignee
Toyo Kohan Co Ltd
Sumitomo Electric Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd, Sumitomo Electric Industries filed Critical Toyo Kohan Co Ltd
Publication of IN2012DN04891A publication Critical patent/IN2012DN04891A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • B32B15/015Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/007Ferrous alloys, e.g. steel alloys containing silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0576Processes for depositing or forming copper oxide superconductor layers characterised by the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • Y10T428/12917Next to Fe-base component
    • Y10T428/12924Fe-base has 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • Y10T428/12979Containing more than 10% nonferrous elements [e.g., high alloy, stainless]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are a substrate for a superconducting compound and a method for manufacturing the substrate which can realize the excellent adhesive strength simultaneously with high orientation of copper. An absorbed material on a surface of a copper foil to which rolling is applied at a draft of 90% or more is removed by applying sputter etching to the surface of the copper foil, sputter etching is applied to a nonmagnetic metal sheet, the copper foil and the metal sheet are bonded to each other by applying a pressure to the copper foil and the metal sheet using reduction rolls, crystals of the copper in the copper foil are oriented by heating a laminated body formed bysuchbonding, copper is diffused intothemetalsheet byheating with a copper diffusion distance of l0nm or more, and a protective layer is laminated to a surface of the copper foil of the laminated body.
IN4891DEN2012 2009-11-20 2010-11-12 IN2012DN04891A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009265285A JP5517196B2 (en) 2009-11-20 2009-11-20 Superconducting compound substrate and manufacturing method thereof
PCT/JP2010/006649 WO2011061909A1 (en) 2009-11-20 2010-11-12 Substrate for superconducting compound and method for manufacturing the substrate

Publications (1)

Publication Number Publication Date
IN2012DN04891A true IN2012DN04891A (en) 2015-09-25

Family

ID=44059396

Family Applications (1)

Application Number Title Priority Date Filing Date
IN4891DEN2012 IN2012DN04891A (en) 2009-11-20 2010-11-12

Country Status (8)

Country Link
US (1) US8993064B2 (en)
EP (1) EP2503560A4 (en)
JP (1) JP5517196B2 (en)
KR (2) KR101834356B1 (en)
CN (2) CN102667968B (en)
IN (1) IN2012DN04891A (en)
RU (1) RU2012125607A (en)
WO (1) WO2011061909A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110290380A1 (en) * 2008-11-12 2011-12-01 Toyo Kohan Co., Ltd. Method for manufacturing metal laminated substrate for semiconductor element formation and metal laminated substrate for semiconductor element formation
JP2013101832A (en) * 2011-11-08 2013-05-23 Toyo Kohan Co Ltd Substrate for epitaxial growth and method for manufacturing the same, and substrate for superconducting wire rod
JP5650099B2 (en) * 2011-11-22 2015-01-07 Jx日鉱日石金属株式会社 Rolled copper foil for superconducting film formation
JP5650098B2 (en) * 2011-11-22 2015-01-07 Jx日鉱日石金属株式会社 Rolled copper foil for superconducting film formation
CN103718256B (en) * 2012-04-16 2016-11-16 古河电气工业株式会社 Superconduction film forming base material and superconducting line and the manufacture method of superconducting line
JP6381944B2 (en) * 2014-04-01 2018-08-29 東洋鋼鈑株式会社 Method for producing metal laminate
JP6543439B2 (en) * 2014-04-01 2019-07-10 東洋鋼鈑株式会社 Method of manufacturing metal laminate
CN106716559B (en) * 2014-10-27 2018-07-10 东洋钢钣株式会社 Superconducting wire substrate and its manufacturing method and superconducting wire
US10832843B2 (en) * 2015-03-17 2020-11-10 The University Of Houston System Superconductor compositions
JP6074527B2 (en) * 2016-03-08 2017-02-01 東洋鋼鈑株式会社 Epitaxial growth substrate, manufacturing method thereof, and substrate for superconducting wire
KR102511594B1 (en) * 2017-03-29 2023-03-17 도요 고한 가부시키가이샤 rolled joints
JP7162960B2 (en) * 2018-08-06 2022-10-31 東洋鋼鈑株式会社 Rolled bonded body, manufacturing method thereof, and heat dissipation reinforcing member for electronic equipment
KR102174616B1 (en) * 2019-09-18 2020-11-05 황교찬 Payment system and payment method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193211A (en) * 2001-12-27 2003-07-09 Nippon Mining & Metals Co Ltd Rolled copper foil for copper-clad laminate
EP1640999A4 (en) * 2003-03-31 2010-01-27 Int Superconductivity Tech Metal base plate for oxide superconductive wire rod, oxide superconductive wire rod and process for producing the same
JP4155124B2 (en) * 2003-06-30 2008-09-24 住友金属工業株式会社 Metal clad plate and manufacturing method thereof
JP5123462B2 (en) * 2004-10-27 2013-01-23 住友電気工業株式会社 Film-forming alignment substrate, superconducting wire, and method for manufacturing film-forming alignment substrate
AU2006346993B8 (en) * 2005-07-29 2011-03-24 American Superconductor Corporation High temperature superconducting wires and coils
JP4800740B2 (en) * 2005-10-21 2011-10-26 財団法人国際超電導産業技術研究センター Rare earth tape-shaped oxide superconductor and method for producing the same
JP5074083B2 (en) * 2007-04-17 2012-11-14 中部電力株式会社 Clad-oriented metal substrate for epitaxial thin film formation and manufacturing method thereof
JP5203626B2 (en) 2007-04-17 2013-06-05 中部電力株式会社 Clad-oriented metal substrate for epitaxial thin film formation and manufacturing method thereof
JP5324763B2 (en) * 2007-08-21 2013-10-23 中部電力株式会社 Alignment substrate for epitaxial film formation and surface modification method for alignment substrate for epitaxial film formation
JP5382911B2 (en) * 2008-11-12 2014-01-08 東洋鋼鈑株式会社 Method for producing metal laminated substrate for oxide superconducting wire and oxide superconducting wire using the substrate

Also Published As

Publication number Publication date
KR101834356B1 (en) 2018-03-05
US20130040821A1 (en) 2013-02-14
RU2012125607A (en) 2013-12-27
EP2503560A4 (en) 2017-12-20
JP5517196B2 (en) 2014-06-11
WO2011061909A1 (en) 2011-05-26
KR20170026650A (en) 2017-03-08
CN102667968B (en) 2014-07-09
KR20120091206A (en) 2012-08-17
EP2503560A1 (en) 2012-09-26
CN102667968A (en) 2012-09-12
KR101763850B1 (en) 2017-08-01
JP2011108592A (en) 2011-06-02
CN104091647A (en) 2014-10-08
US8993064B2 (en) 2015-03-31
CN104091647B (en) 2017-10-24

Similar Documents

Publication Publication Date Title
IN2012DN04891A (en)
IN2012DN00632A (en)
PL2001424T3 (en) Adhesive laminates and applications thereof
SG11201807645SA (en) Supporting sheet and composite sheet for protective film formation
SG164353A1 (en) Single-sided perpendicular magnetic recording medium
EP2049942A4 (en) Manufacturing of curved electrochromic devices
WO2009137290A3 (en) 3-dimensional curved substrate lamination
WO2011056570A3 (en) Conductive metal oxide films and photovoltaic devices
EP1993128A3 (en) Method for manufacturing soi substrate
WO2010025047A3 (en) Layered body and method for manufacturing thin substrate using the layered body
MX2010010430A (en) Biolaminate composite assembly and related methods.
PH12015502250A1 (en) Release film for green sheet production
WO2010041815A3 (en) Method for preparing an abrasive sheet using an embossed substrate
IN2015DN03284A (en)
TW200704622A (en) Bonded body, wafer support member using the same, and wafer treatment method
WO2012015254A3 (en) Production method for a transparent conductive film and a transparent conductive film produced thereby
TW200739147A (en) Elliptically polarizing plate and method of producing the same
WO2011063089A3 (en) Surface-modified adhesives
WO2012021196A3 (en) Method for manufacturing electronic devices and electronic devices thereof
JP2011108592A5 (en)
TW200743906A (en) Roller module for microstructure thin film imprint
WO2009091923A3 (en) Substrate lamination system and method
WO2008102866A1 (en) Process for producing organic electroluminescence device and organic electroluminescence device
WO2011011251A3 (en) Method for forming an oxide layer on a brazed article
WO2008142538A3 (en) Transfer foil, method for manufacturing panels and panel obtained herewith