JP2013101832A - Substrate for epitaxial growth and method for manufacturing the same, and substrate for superconducting wire rod - Google Patents

Substrate for epitaxial growth and method for manufacturing the same, and substrate for superconducting wire rod Download PDF

Info

Publication number
JP2013101832A
JP2013101832A JP2011244900A JP2011244900A JP2013101832A JP 2013101832 A JP2013101832 A JP 2013101832A JP 2011244900 A JP2011244900 A JP 2011244900A JP 2011244900 A JP2011244900 A JP 2011244900A JP 2013101832 A JP2013101832 A JP 2013101832A
Authority
JP
Japan
Prior art keywords
layer
plating
substrate
protective layer
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011244900A
Other languages
Japanese (ja)
Inventor
Koji Nanbu
光司 南部
Teppei Kurokawa
哲平 黒川
Takashi Kamishiro
貴史 神代
Hironao Okayama
浩直 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Toyo Kohan Co Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Toyo Kohan Co Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011244900A priority Critical patent/JP2013101832A/en
Publication of JP2013101832A publication Critical patent/JP2013101832A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that, while a method using plating is known as a method for depositing Ni or an Ni alloy on a biaxially crystal oriented Cu layer, plating at a low current density (1-4 A/dm) is generally required in order to form an Ni layer having high crystal orientation, but time required for plating treatment at a low current density is prolonged, so that productivity is reduced, specifically overheat may be caused in a metal substrate as a laminate material when a long metal substrate is produced by a reel-to-reel method, and therefor, it is desired to establish a manufacturing condition capable of improving production efficiency by increasing current density while maintaining crystal orientation.SOLUTION: In order to solve the problem, a substrate for epitaxial growth of the present invention includes a biaxially crystal oriented Cu layer, and a protective layer provided on the Cu layer. The protective layer has a plating distortion ε of 15×10or less.

Description

本発明は、エピタキシャル成長用基板及びその製造方法に関する。また、エピタキシャル成長用基板を用いた超電導線材用基板に関する。   The present invention relates to an epitaxial growth substrate and a method for manufacturing the same. The present invention also relates to a substrate for a superconducting wire using an epitaxial growth substrate.

従来、Y系酸化物超電導線材等の超電導線材は、金属基板上に、中間層として酸化セリウム(CeO)、ジルコニア添加酸化イットリウム(YSZ)、酸化イットリウム(Y)等の酸化物層をスパッタリング法等によってエピタキシャル成長させ、さらにその上に、超電導化合物層(RE123膜、RE:Y、Gd、Ho等)をレーザーアブレーション法等によりエピタキシャル成長させて製造している。 Conventionally, superconducting wires such as Y-based oxide superconducting wires have oxide layers such as cerium oxide (CeO 2 ), zirconia-added yttrium oxide (YSZ), and yttrium oxide (Y 2 O 3 ) as intermediate layers on a metal substrate. Is grown epitaxially by sputtering or the like, and a superconducting compound layer (RE123 film, RE: Y, Gd, Ho, etc.) is further epitaxially grown thereon by laser ablation or the like.

結晶配向した超電導化合物層を得るための技術として、ハステロイ等の無配向金属基板の上に配向中間層を成膜することで、超電導化合物層に結晶配向を引き継がせるイオン・アシスト・ビーム成膜法(IBAD法)や、2軸結晶配向した金属基板を用いることで、中間層、超電導化合物層と結晶配向を引き継がせて成膜する方法(RABiTS法等)が知られている。成膜速度等、将来の生産効率を考慮した場合、後者の方法が有利であるが、超電導特性を向上させるには、金属基板を高度に2軸結晶配向させることが必要となる。   As a technique for obtaining a crystallographically oriented superconducting compound layer, an ion-assisted beam deposition method that allows the superconducting compound layer to inherit crystal orientation by forming an oriented intermediate layer on a non-oriented metal substrate such as Hastelloy. (IBAD method) and methods (RABiTS method and the like) for forming a film by taking over the crystal orientation with the intermediate layer and the superconducting compound layer by using a biaxial crystal-oriented metal substrate are known. The latter method is advantageous in consideration of future production efficiency such as film formation speed, but in order to improve the superconducting characteristics, it is necessary to highly orient the metal substrate in biaxial crystal orientation.

このような金属基板(超電導線材用基板)として、ステンレス基板上に結晶配向した銅を積層させ、その上にさらにニッケルを積層させた基板が知られている。例えば、(特許文献1)には、少なくとも片面に銅箔等の配向化金属層を有するエピタキシャル膜形成用配向基板において、前記配向化金属層の表面上に、ニッケル等の金属薄膜からなり1〜5000nmの厚さの配向性改善層を備え、前記配向化金属層表面における配向度(Δφ及びΔω)と、前記配向性改善層表面における配向度(Δφ及びΔω)との差が、いずれも0.1〜3.0°であることを特徴とするエピタキシャル膜形成用配向基板が開示されている。   As such a metal substrate (superconducting wire substrate), a substrate is known in which crystal-oriented copper is laminated on a stainless steel substrate, and nickel is further laminated thereon. For example, in (Patent Document 1), in an oriented substrate for forming an epitaxial film having an oriented metal layer such as a copper foil on at least one surface, a metal thin film such as nickel is formed on the surface of the oriented metal layer. An orientation improving layer having a thickness of 5000 nm is provided, and the difference between the orientation degree (Δφ and Δω) on the surface of the oriented metal layer and the orientation degree (Δφ and Δω) on the surface of the orientation improving layer is 0. An alignment substrate for forming an epitaxial film characterized by an angle of 0.1 to 3.0 ° is disclosed.

また、2軸結晶配向した金属基板の製造方法として、(特許文献2)には、ステンレス等からなる非磁性の金属板と、高圧下率で冷間圧延されたCuもしくはCu合金からなる金属箔とを表面活性化接合にて積層し、積層後、熱処理により前記金属箔を2軸結晶配向させた後、前記金属箔側表面にNiもしくはNi合金のエピタキシャル成長膜を付与させる酸化物超電導線材用金属積層基板の製造方法が開示されている。   In addition, as a method for manufacturing a biaxially crystallized metal substrate (Patent Document 2), there are a nonmagnetic metal plate made of stainless steel and the like, and a metal foil made of Cu or a Cu alloy cold-rolled at a high pressure rate. Are laminated by surface activation bonding, and after the lamination, the metal foil is biaxially crystallized by heat treatment, and then an epitaxially grown film of Ni or Ni alloy is provided on the metal foil side surface. A method for manufacturing a laminated substrate is disclosed.

特開2009−46734号公報JP 2009-46734 A 特開2010−118246号公報JP 2010-118246 A

2軸結晶配向したCu層上にNi又はNi合金を成膜する方法として、めっきによる方法が知られている。結晶配向性の高いNi層を生成するには、一般に低電流密度(1〜4A/dm)でめっきを行う必要があるが、低電流密度ではめっき処理に要する時間が長くなって生産性が低下し、特に、長尺の金属基板をリールtoリールで生産する場合には、積層材である金属基板の過熱が起こり得るという問題点があった。そのため、結晶配向性を保持しつつ、電流密度を上げて生産効率を向上させることができる作製条件の確立が望まれていた。 As a method for forming a Ni or Ni alloy film on a biaxially crystallized Cu layer, a plating method is known. In order to produce a Ni layer with high crystal orientation, it is generally necessary to perform plating at a low current density (1 to 4 A / dm 2 ). In particular, when a long metal substrate is produced on a reel-to-reel basis, there is a problem that overheating of the metal substrate which is a laminated material may occur. Therefore, it has been desired to establish a production condition that can increase the current density and improve the production efficiency while maintaining the crystal orientation.

本発明者らは、上記課題を解決するため鋭意検討を行った結果、Cu層上に設けられるNi等のめっき皮膜(保護層)内に生ずる歪に着目し、このめっき歪の値が所定の範囲内になるよう制御した場合に高い結晶配向性を保持できることを見出し、発明を完成した。すなわち本発明の要旨は以下の通りである。   As a result of intensive studies to solve the above-mentioned problems, the present inventors pay attention to the strain generated in the plating film (protective layer) such as Ni provided on the Cu layer, and the value of this plating strain is a predetermined value. The inventors have found that high crystal orientation can be maintained when controlled to be within the range, and have completed the invention. That is, the gist of the present invention is as follows.

(1)2軸結晶配向したCu層と、前記Cu層上に設けられた保護層とを有するエピタキシャル成長用基板であって、前記保護層のめっき歪εが15×10−6以下である前記エピタキシャル成長用基板。
(2)保護層が、Ni又はNi合金からなる前記(1)に記載のエピタキシャル成長用基板。
(3)保護層の厚みが、1μm以上5μm以下である前記(1)又は(2)に記載のエピタキシャル成長用基板。
(4)2軸結晶配向したCu層上に、めっき歪εが15×10−6以下になるようにめっきを施して保護層を形成する工程を有するエピタキシャル成長用基板の製造方法。
(5)めっきが、スルファミン酸浴を用いて行われる前記(4)に記載のエピタキシャル成長用基板の製造方法。
(6)前記(1)〜(3)のいずれかに記載のエピタキシャル成長用基板が、非磁性の金属板上に積層されてなる超電導線材用基板。
(1) An epitaxial growth substrate having a biaxial crystal-oriented Cu layer and a protective layer provided on the Cu layer, wherein the protective layer has a plating strain ε of 15 × 10 −6 or less. Substrate.
(2) The epitaxial growth substrate according to (1), wherein the protective layer is made of Ni or a Ni alloy.
(3) The epitaxial growth substrate according to (1) or (2), wherein the thickness of the protective layer is 1 μm or more and 5 μm or less.
(4) A method for manufacturing a substrate for epitaxial growth, comprising a step of forming a protective layer by performing plating so that a plating strain ε is 15 × 10 −6 or less on a biaxially crystallized Cu layer.
(5) The method for producing a substrate for epitaxial growth according to (4), wherein the plating is performed using a sulfamic acid bath.
(6) A superconducting wire substrate in which the epitaxial growth substrate according to any one of (1) to (3) is laminated on a nonmagnetic metal plate.

本発明のエピタキシャル成長用基板及び超電導線材用基板は、結晶配向したCu層上に設けられる保護層のめっき歪εを15×10−6以下に規定したことにより、高い結晶配向性の保持と、電流密度を上げて生産効率を向上させることとの両立を可能にする。 The substrate for epitaxial growth and the substrate for superconducting wire according to the present invention has a high crystal orientation retention and a high current because the plating strain ε of the protective layer provided on the crystal oriented Cu layer is defined as 15 × 10 −6 or less. It is possible to increase the density and improve the production efficiency.

各実施例における保護層のめっき歪εと2軸結晶配向度Δφとの関係を示すグラフである。It is a graph which shows the relationship between the plating distortion (epsilon) of a protective layer in each Example, and biaxial crystal orientation degree (DELTA) phi.

以下、本発明を詳細に説明する。
本発明のエピタキシャル成長用基板は、Cu層と、そのCu層上に設けられた保護層とを有し、保護層のめっき歪εが15×10−6以下であることを特徴とする。ここで、めっき歪とは、金属板等の下地にめっき処理を施した場合に、めっき皮膜内に生ずる歪(ひずみ)の度合いを表し、下記式により定義される値である。
ε=ΔR/(R・K)
(式中、ΔR:伸縮による抵抗変化、R:ひずみゲージの元の抵抗値、K:ゲージ率、ε:めっき歪)
Hereinafter, the present invention will be described in detail.
The substrate for epitaxial growth of the present invention has a Cu layer and a protective layer provided on the Cu layer, and the plating strain ε of the protective layer is 15 × 10 −6 or less. Here, the plating strain represents the degree of strain (strain) generated in the plating film when a plating treatment is applied to a base such as a metal plate, and is a value defined by the following equation.
ε = ΔR / (R · K)
(Where, ΔR: resistance change due to expansion / contraction, R: original resistance value of strain gauge, K: gauge factor, ε: plating strain)

Cu層は、その上に保護層を設け、さらに中間層及び超電導化合物層をエピタキシャル成長によって積層させて超電導線材を製造するため、高度に2軸結晶配向している必要がある。具体的には、Cu層の結晶配向性は、X線回折による(111)極点図でのφスキャンピーク(α=35°)の半値幅(Δφ)を指標として、Δφ≦5.5°、好ましくはΔφ≦5.2°、さらに好ましくはΔφ≦5°であることが好ましい。   The Cu layer must be highly biaxially crystallized in order to produce a superconducting wire by providing a protective layer thereon and further laminating an intermediate layer and a superconducting compound layer by epitaxial growth. Specifically, the crystal orientation of the Cu layer is expressed as follows: Δφ ≦ 5.5 °, with the half width (Δφ) of the φ scan peak (α = 35 °) in the (111) pole figure by X-ray diffraction as an index, Preferably, Δφ ≦ 5.2 °, more preferably Δφ ≦ 5 °.

このようなCu層としては、Cu箔が好ましく用いられる。Cu層の厚さは、Cu層自体の強度を確保するとともに、後に超電導線材を加工する際の加工性を良好にするため、通常7μm以上50μm以下とすることが好ましい。   As such a Cu layer, a Cu foil is preferably used. The thickness of the Cu layer is usually preferably 7 μm or more and 50 μm or less in order to secure the strength of the Cu layer itself and improve the workability when processing the superconducting wire later.

Cu層を高度に2軸結晶配向させる方法としては、例えば、90%以上の高圧下率で冷間圧延を行ない、Cu層全体に均一な歪みを与えた後、熱処理により再結晶させる方法を用いることができる。圧下率が90%未満であると、後に行う熱処理によって十分な2軸結晶配向が得られない恐れがある。このような高圧下圧延Cu箔は、一般的にも入手可能であり、例えば、JX日鉱日石金属(株)製の高圧下圧延Cu箔(HA箔(商品名))や、日立電線(株)製の高圧下圧延Cu箔(HX箔(商品名))等がある。   As a method for highly biaxial crystal orientation of the Cu layer, for example, a method of performing cold rolling at a high pressure ratio of 90% or higher, giving uniform strain to the entire Cu layer, and then recrystallizing by heat treatment is used. be able to. If the rolling reduction is less than 90%, sufficient biaxial crystal orientation may not be obtained by a heat treatment performed later. Such a high-pressure under-rolled Cu foil is generally available, for example, high-pressure under-rolled Cu foil (HA foil (trade name)) manufactured by JX Nippon Mining & Metals, Hitachi Cable ) Made of high pressure under rolled Cu foil (HX foil (trade name)) and the like.

熱処理温度は、再結晶を完全に完了させるため、150℃以上の温度が必要である。熱処理温度が高過ぎると、Cu層が2次再結晶を起こしやすくなり、結晶配向性が悪化するため、通常1000℃以下とすることが好ましい。より好ましくは600℃〜900℃である。また、熱処理時間は、その他の条件によって異なるが、1〜10分程度とすることが適当である。このような熱処理は、後述するように、実際には、超電導線材用基板を製造する過程において、Cu層と非磁性の金属板とを表面活性化接合法等により貼り合わせた後に行うことが好ましい。   The heat treatment temperature needs to be 150 ° C. or higher in order to complete the recrystallization completely. If the heat treatment temperature is too high, the Cu layer tends to cause secondary recrystallization, and the crystal orientation deteriorates. More preferably, it is 600 to 900 degreeC. Moreover, although heat processing time changes with other conditions, it is appropriate to set it as about 1 to 10 minutes. As will be described later, such heat treatment is actually preferably performed after the Cu layer and the nonmagnetic metal plate are bonded together by a surface activated bonding method or the like in the process of manufacturing the substrate for a superconducting wire. .

また、Cu層には、熱処理によって2軸結晶配向性をより向上させるため、1%以下程度の微量の元素を含有させても良い。このような添加元素としては、Ag、Sn、Zn、Zr、O及びN等から選択される一種以上の元素が挙げられる。これらの添加元素とCuとは固溶体を形成するが、添加量が1%を超えると固溶体以外の酸化物等の不純物が増加してしまい、結晶配向性に悪影響を及ぼす恐れがある。   Moreover, in order to further improve the biaxial crystal orientation by heat treatment, the Cu layer may contain a trace amount of element of about 1% or less. Examples of such an additive element include one or more elements selected from Ag, Sn, Zn, Zr, O, N, and the like. These additive elements and Cu form a solid solution, but if the addition amount exceeds 1%, impurities such as oxides other than the solid solution increase, which may adversely affect the crystal orientation.

2軸結晶配向したCu層の上に、めっきにより保護層を形成して本発明のエピタキシャル成長用基板を得ることができる。このような保護層の材料としては、Ni又はNi合金から構成されるのが好ましい。Niを含む保護層はCu層よりも耐酸化性に優れ、また保護層が存在することによって、その上にCeO等の中間層を形成する際に、Cuの酸化膜が生成して結晶配向性が崩れることを防止することができる。Ni合金の含有元素としては、磁性が低減されるものが好ましく、例としてCu、Sn、W、Cr等の元素が挙げられる。また、結晶配向性に悪影響を及ぼさない範囲であれば、不純物を含んでいても良い。 An epitaxial growth substrate of the present invention can be obtained by forming a protective layer by plating on the biaxially crystallized Cu layer. Such a protective layer is preferably made of Ni or Ni alloy. The protective layer containing Ni has better oxidation resistance than the Cu layer, and the presence of the protective layer makes it possible to form a Cu oxide film and form crystal orientation when an intermediate layer such as CeO 2 is formed thereon. It is possible to prevent the characteristics from breaking. The element contained in the Ni alloy is preferably one that reduces magnetism, and examples thereof include elements such as Cu, Sn, W, and Cr. Further, impurities may be included as long as the crystal orientation is not adversely affected.

Ni又はNi合金等からなる保護層の厚さは、薄過ぎるとその上に中間層、超電導化合物層を積層する際にCuが拡散する可能性があり、また厚過ぎると保護層の結晶配向性が崩れ、めっき歪も増大するため、これらを考慮して適宜設定される。具体的には、1μm以上5μm以下とすることが好ましい。   If the thickness of the protective layer made of Ni or Ni alloy is too thin, Cu may diffuse when an intermediate layer or a superconducting compound layer is laminated thereon, and if it is too thick, the crystal orientation of the protective layer Is collapsed and the plating strain is increased, so that it is appropriately set in consideration of these. Specifically, it is preferably 1 μm or more and 5 μm or less.

めっき処理は、保護層のめっき歪εが15×10−6以下となるような条件を適宜採用して行うことができる。例えば、保護層としてNi層を形成する場合は、めっき浴として従来知られたワット浴やスルファミン酸浴を用いて行うことができる。特に、スルファミン酸浴は、保護層のめっき歪を小さくしやすいため好適に用いられる。めっき歪εを15×10−6以下にするための、めっき浴組成の好ましい範囲は以下の通りである。 The plating treatment can be performed by appropriately adopting conditions such that the plating strain ε of the protective layer is 15 × 10 −6 or less. For example, when forming a Ni layer as a protective layer, it can carry out using the Watt bath and sulfamic acid bath conventionally known as a plating bath. In particular, the sulfamic acid bath is preferably used because it easily reduces the plating strain of the protective layer. The preferable range of the plating bath composition for setting the plating strain ε to 15 × 10 −6 or less is as follows.

ワット浴
硫酸ニッケル 200〜300g/l
塩化ニッケル 30〜60g/l
ホウ酸 30〜40g/l
pH 4〜5
浴温 40〜60℃
Watt bath nickel sulfate 200-300 g / l
Nickel chloride 30-60g / l
Boric acid 30-40g / l
pH 4-5
Bath temperature 40-60 ° C

スルファミン酸浴
スルファミン酸ニッケル 200〜600g/l
塩化ニッケル 0〜15g/l
ホウ酸 30〜40g/l
添加剤 適量
pH 3.5〜4.5
浴温 40〜70℃
Sulfamic acid bath nickel sulfamate 200-600 g / l
Nickel chloride 0-15g / l
Boric acid 30-40g / l
Additive appropriate amount pH 3.5-4.5
Bath temperature 40-70 ° C

めっき処理を行う際の電流密度は、保護層のめっき歪εを15×10−6以下にすることができれば特に限定されるものではなく、めっき処理に要する時間とのバランスを考慮して適宜設定される。具体的には、例えば、保護層として2μm以上のめっき皮膜を形成する場合、低電流密度であるとめっき処理に要する時間が長くなり、その時間を確保するためにラインスピードが遅くなって、生産性が低下したり、めっきの制御が困難になる場合があるため、通常、電流密度を10A/dm以上とすることが好ましい。また、電流密度を高くするとそれに伴ってめっき歪が増大するが、保護層のめっき歪εを15×10−6以下に抑えるには、好適な電流密度の範囲はめっき浴の種類によって異なり、例えばワット浴であれば25A/dm以下、スルファミン酸浴であれば35A/dm以下とすることが好ましい。一般に、電流密度が35A/dmを超えると、所謂めっき焼けによって良好な結晶配向が得られない場合がある。 The current density during the plating process is not particularly limited as long as the plating strain ε of the protective layer can be 15 × 10 −6 or less, and is appropriately set in consideration of the balance with the time required for the plating process. Is done. Specifically, for example, when a plating film of 2 μm or more is formed as a protective layer, the time required for the plating process becomes long if the current density is low, and the line speed is slowed down in order to secure the time. In general, the current density is preferably set to 10 A / dm 2 or more because the properties may be lowered or the control of the plating may be difficult. Further, when the current density is increased, the plating strain is increased accordingly. However, in order to suppress the plating strain ε of the protective layer to 15 × 10 −6 or less, a suitable current density range varies depending on the type of the plating bath. It is preferably 25 A / dm 2 or less for a watt bath and 35 A / dm 2 or less for a sulfamic acid bath. Generally, when the current density exceeds 35 A / dm 2 , good crystal orientation may not be obtained due to so-called plating burn.

形成した保護層は、めっき条件等によって表面にマイクロピットが発生する場合がある。その場合、必要に応じて、めっき後にさらに熱処理による平均化を行ない、表面を平滑にすることができる。その際の熱処理温度は、例えば700〜1000℃とすることが好ましい。   The formed protective layer may generate micropits on the surface depending on plating conditions and the like. In that case, if necessary, the surface can be smoothed by further averaging after the plating. It is preferable that the heat processing temperature in that case shall be 700-1000 degreeC, for example.

以上のような、Cu層と保護層とを有するエピタキシャル成長用基板は、さらに非磁性の金属板と積層させることにより、超電導線材用基板を得ることができる。この超電導線材用基板を製造する際には、実際には、まず高圧下率で圧延したCu層を非磁性金属板と貼り合わせ、続いて熱処理を行いCu層の2軸結晶配向性を向上させた後に、めっきによりCu層上に保護層を形成して製造することが好ましい。   The substrate for epitaxial growth having the Cu layer and the protective layer as described above can be further laminated with a nonmagnetic metal plate to obtain a substrate for a superconducting wire. When manufacturing this substrate for superconducting wires, in practice, the Cu layer rolled at a high pressure rate is first bonded to a nonmagnetic metal plate, followed by heat treatment to improve the biaxial crystal orientation of the Cu layer. Then, it is preferable to manufacture by forming a protective layer on the Cu layer by plating.

非磁性とは、77K以上で強磁性体ではない、すなわちキュリー点やネール点が77K以下に存在し、77K以上の温度では常磁性体又は反強磁性体となる状態をいう。非磁性の金属板としては、ニッケル合金やオーステナイト系ステンレス鋼板が、強度に優れ補強材としての役割を有することから好ましく用いられる。   Non-magnetic means a state that is 77K or higher and is not a ferromagnetic material, that is, a Curie point or a Neel point exists at 77K or lower and becomes a paramagnetic material or an antiferromagnetic material at a temperature of 77K or higher. As the non-magnetic metal plate, a nickel alloy or an austenitic stainless steel plate is preferably used because of its strength and role as a reinforcing material.

一般に、オーステナイト系ステンレス鋼は、常温では非磁性の状態、すなわち金属組織が100%オーステナイト(γ)相であるが、強磁性体であるマルテンサイト(α’)相変態点(Ms点)が77K以上に位置している場合、液体窒素温度で強磁性体であるα’相が発現する可能性がある。そのため、液体窒素温度(77K)下で使用される超電導線材用基板としては、Ms点が77K以下に設計されているものが好ましく用いられる。   In general, austenitic stainless steel is non-magnetic at room temperature, that is, the metal structure is 100% austenite (γ) phase, but the martensite (α ′) phase transformation point (Ms point) which is a ferromagnetic material is 77K. When positioned above, the α ′ phase, which is a ferromagnetic substance, may develop at the liquid nitrogen temperature. Therefore, as a substrate for a superconducting wire used at a liquid nitrogen temperature (77K), a substrate whose Ms point is designed to be 77K or less is preferably used.

使用するγ系ステンレス鋼板としては、Ms点が77Kより十分に低く設計された安定なγ相を有し、且つ一般に普及し、比較的安価に入手できるという点から、SUS316やSUS316L、SUS310やSUS305等の板材が好ましく用いられる。これらの金属板の厚さは、通常20μm以上であれば適用可能であり、超電導線材の薄肉化及び強度を考慮すると、50μm以上100μm以下であることが好ましいが、この範囲に限定されるものではない。   As the γ-based stainless steel plate to be used, SUS316, SUS316L, SUS310, and SUS305 have a stable γ phase designed with a Ms point sufficiently lower than 77K, and are generally popular and available at a relatively low price. Etc. is preferably used. The thickness of these metal plates is usually applicable if it is 20 μm or more, and considering the thinning and strength of the superconducting wire, it is preferably 50 μm or more and 100 μm or less, but is not limited to this range. Absent.

上記非磁性の金属板とCu層とを積層させるに際しては、表面活性化接合法等の従来知られた手法を適宜用いて行うことができる。表面活性化接合法では、非磁性金属板及びCu層のそれぞれの表面を、例えば10〜1×10−2Pa程度の極低圧不活性ガス雰囲気中でスパッタエッチング処理を行なうことにより表面吸着層及び表面酸化膜を除去して活性化させ、その後、活性化した2つの面同士を例えば0.1〜5%の圧下率で冷間圧接することにより接合する。冷間圧接の際は、活性化処理された表面が再酸化されて密着性に悪影響を及ぼさないよう、1×10−2Pa以下の高真空下で行うことが好ましい。 When the nonmagnetic metal plate and the Cu layer are laminated, a conventionally known method such as a surface activated bonding method can be used as appropriate. In the surface activated bonding method, the surfaces of the nonmagnetic metal plate and the Cu layer are subjected to a sputter etching process in an extremely low pressure inert gas atmosphere of about 10 to 1 × 10 −2 Pa, for example, and thereby the surface adsorption layer and The surface oxide film is removed and activated, and then the two activated surfaces are bonded together by cold pressure welding, for example, at a rolling reduction of 0.1 to 5%. The cold pressure welding is preferably performed under a high vacuum of 1 × 10 −2 Pa or less so that the activated surface is reoxidized and does not adversely affect the adhesion.

また、保護層の上にさらにエピタキシャル成長によって積層させる中間層及び超電導化合物層の結晶配向性を良好に維持するため、必要に応じて、非磁性金属板とCu層とを接合させた後、Cu層の表面粗度Raを低減するための処理を行っても良い。具体的には、圧延ロールによる圧下、バフ研磨、電解研磨、電解砥粒研磨等の方法を用いることができ、これらの方法により、表面粗度Raを例えば40nm以下、好ましくは10nm以下にすることが望ましい。   Further, in order to maintain good crystal orientation of the intermediate layer and the superconducting compound layer that are further laminated by epitaxial growth on the protective layer, the Cu layer is bonded after joining the nonmagnetic metal plate and the Cu layer as necessary. You may perform the process for reducing the surface roughness Ra. Specifically, methods such as rolling with a rolling roll, buff polishing, electrolytic polishing, and electrolytic abrasive grain polishing can be used. By these methods, the surface roughness Ra is, for example, 40 nm or less, preferably 10 nm or less. Is desirable.

なお、2軸結晶配向したCu層及び保護層は、非磁性の金属板の片面のみに積層させても良く、あるいは金属板の両面に積層させても良い。   Note that the biaxially crystallized Cu layer and the protective layer may be laminated only on one side of the nonmagnetic metal plate, or may be laminated on both sides of the metal plate.

以上のような超電導線材用基板における保護層の上に、従来の方法に従って中間層及び超電導化合物層を順次積層することにより、超電導線材を製造することができる。具体的には、めっきにより形成した保護層の上に、CeO、YSZ、SrTiO、MgO、Y等の中間層をスパッタリング法等の手段を用いてエピタキシャル成膜し、さらにその上にY123系等の超電導化合物層をレーザーアブレーション法等により成膜することによって超電導線材を得ることができる。必要に応じて、超電導化合物層の上にさらにAg、Cu等からなる保護膜を設けても良い。 A superconducting wire can be manufactured by sequentially laminating an intermediate layer and a superconducting compound layer on the protective layer of the superconducting wire substrate as described above according to a conventional method. Specifically, an intermediate layer such as CeO 2 , YSZ, SrTiO 3 , MgO, and Y 2 O 3 is epitaxially formed on the protective layer formed by plating using means such as a sputtering method, and further thereon. A superconducting wire can be obtained by forming a superconducting compound layer such as Y123 based on a laser ablation method or the like. If necessary, a protective film made of Ag, Cu or the like may be further provided on the superconducting compound layer.

以下、実施例及び比較例に基づき本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example and a comparative example, this invention is not limited to these Examples.

(実施例1〜5及び比較例1)
まず、銅からなる標準試験片(株式会社山本鍍金試験器製、裏面はマスキングされ、歪ゲージが付いている)をカソードとして、表1に示すめっき条件にてニッケルめっきを施し、歪ゲージ式精密応力計(B−72−SG、株式会社山本鍍金試験器製)を用いて、めっき皮膜内のめっき歪εを測定した。なお、ニッケルめっき厚は2.5μmとし、めっき浴温はワット浴が60℃、スルファミン酸浴が70℃、めっき浴のpHはワット浴、スルファミン酸浴ともにpH4に設定した。また、各実施例及び比較例で用いたワット浴及びスルファミン酸浴の組成は下記の通りである。
(Examples 1-5 and Comparative Example 1)
First, using a standard test piece made of copper (manufactured by Yamamoto Metal Testing Co., Ltd., back side masked, with strain gauge) as the cathode, nickel plating was performed under the plating conditions shown in Table 1, and strain gauge precision The plating strain ε in the plating film was measured using a stress meter (B-72-SG, manufactured by Yamamoto Metal Testing Co., Ltd.). The nickel plating thickness was 2.5 μm, the plating bath temperature was 60 ° C. for the Watt bath, the sulfamic acid bath was 70 ° C., and the pH of the plating bath was set to pH 4 for both the Watt bath and the sulfamic acid bath. Moreover, the composition of the Watt bath and the sulfamic acid bath used in each Example and Comparative Example is as follows.

ワット浴
硫酸ニッケル 300g/l
塩化ニッケル 45g/l
ホウ酸 30g/l
Watt bath nickel sulfate 300g / l
Nickel chloride 45g / l
Boric acid 30g / l

スルファミン酸浴
スルファミン酸ニッケル 450g/l
塩化ニッケル 5g/l
ホウ酸 30g/l
添加剤(ピットレスS) 5ml/l
Sulfamic acid bath nickel sulfamate 450g / l
Nickel chloride 5g / l
Boric acid 30g / l
Additive (Pitless S) 5ml / l

次に、カソードの標準試験片を、非磁性金属板であるSUS316Lと高圧下率で冷間圧延したCu箔との積層材に変更した以外は、上記と全く同じ条件にてCu箔上にニッケルめっきを施した。すなわち、積層材と標準試験片の大きさを同一とし、Cu箔を設けないSUS316Lの裏面にはマスキングを行った。なお、SUS316LとCu箔とを積層させた後、850℃で5分間の熱処理を行ない、Cu箔を2軸結晶配向させた。Cu箔の2軸結晶配向度Δφは4.2°であった。   Next, except that the cathode standard test piece was changed to a laminate of SUS316L, which is a non-magnetic metal plate, and Cu foil cold-rolled at high pressure, nickel was deposited on the Cu foil under exactly the same conditions as above. Plating was applied. That is, masking was performed on the back surface of SUS316L where the size of the laminated material and the standard test piece were the same, and no Cu foil was provided. In addition, after laminating SUS316L and Cu foil, heat treatment was performed at 850 ° C. for 5 minutes, and the Cu foil was biaxially crystal-oriented. The biaxial crystal orientation degree Δφ of the Cu foil was 4.2 °.

ニッケルめっきを行った後、それぞれのめっき皮膜(保護層)の2軸結晶配向度ΔφをX線回折によりCu層と同様に測定した。その結果を表1及び図1に示す。   After nickel plating, the biaxial crystal orientation degree Δφ of each plating film (protective layer) was measured by X-ray diffraction in the same manner as the Cu layer. The results are shown in Table 1 and FIG.

Figure 2013101832
Figure 2013101832

表1及び図1から明らかなように、保護層のめっき歪εを15×10−6以下に制御することにより、Δφが6°以下のものが安定的に得られた。保護層のΔφを低く抑えることにより、その上にエピタキシャル成長によって中間層及び超電導化合物層を積層させたときに、高い臨界電流密度が期待できるため有利である。特に、めっき浴としてスルファミン酸浴を採用した場合(実施例3〜5)には、ワット浴の場合に比べて電流密度を高くしても低めっき歪となり、生産効率の観点から好ましい。 As is clear from Table 1 and FIG. 1, by controlling the plating strain ε of the protective layer to 15 × 10 −6 or less, Δφ of 6 ° or less was stably obtained. By keeping Δφ of the protective layer low, it is advantageous because a high critical current density can be expected when an intermediate layer and a superconducting compound layer are laminated thereon by epitaxial growth. In particular, when a sulfamic acid bath is employed as the plating bath (Examples 3 to 5), even if the current density is increased as compared with the watt bath, the plating strain is reduced, which is preferable from the viewpoint of production efficiency.

Claims (6)

2軸結晶配向したCu層と、前記Cu層上に設けられた保護層とを有するエピタキシャル成長用基板であって、前記保護層のめっき歪εが15×10−6以下である前記エピタキシャル成長用基板。 An epitaxial growth substrate having a biaxial crystal-oriented Cu layer and a protective layer provided on the Cu layer, wherein the protective layer has a plating strain ε of 15 × 10 −6 or less. 保護層が、Ni又はNi合金からなる請求項1に記載のエピタキシャル成長用基板。   The epitaxial growth substrate according to claim 1, wherein the protective layer is made of Ni or a Ni alloy. 保護層の厚みが、1μm以上5μm以下である請求項1又は2に記載のエピタキシャル成長用基板。   The substrate for epitaxial growth according to claim 1 or 2, wherein the thickness of the protective layer is 1 µm or more and 5 µm or less. 2軸結晶配向したCu層上に、めっき歪εが15×10−6以下になるようにめっきを施して保護層を形成する工程を有するエピタキシャル成長用基板の製造方法。 A method for manufacturing an epitaxial growth substrate, comprising: forming a protective layer by performing plating so that a plating strain ε is 15 × 10 −6 or less on a biaxially crystallized Cu layer. めっきが、スルファミン酸浴を用いて行われる請求項4に記載のエピタキシャル成長用基板の製造方法。   The method for producing a substrate for epitaxial growth according to claim 4, wherein the plating is performed using a sulfamic acid bath. 請求項1〜3のいずれかに記載のエピタキシャル成長用基板が、非磁性の金属板上に積層されてなる超電導線材用基板。   A substrate for superconducting wires, wherein the epitaxial growth substrate according to any one of claims 1 to 3 is laminated on a nonmagnetic metal plate.
JP2011244900A 2011-11-08 2011-11-08 Substrate for epitaxial growth and method for manufacturing the same, and substrate for superconducting wire rod Pending JP2013101832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011244900A JP2013101832A (en) 2011-11-08 2011-11-08 Substrate for epitaxial growth and method for manufacturing the same, and substrate for superconducting wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011244900A JP2013101832A (en) 2011-11-08 2011-11-08 Substrate for epitaxial growth and method for manufacturing the same, and substrate for superconducting wire rod

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016044171A Division JP6074527B2 (en) 2016-03-08 2016-03-08 Epitaxial growth substrate, manufacturing method thereof, and substrate for superconducting wire

Publications (1)

Publication Number Publication Date
JP2013101832A true JP2013101832A (en) 2013-05-23

Family

ID=48622277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011244900A Pending JP2013101832A (en) 2011-11-08 2011-11-08 Substrate for epitaxial growth and method for manufacturing the same, and substrate for superconducting wire rod

Country Status (1)

Country Link
JP (1) JP2013101832A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108592A (en) * 2009-11-20 2011-06-02 Toyo Kohan Co Ltd Substrate for superconductive compound, and its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108592A (en) * 2009-11-20 2011-06-02 Toyo Kohan Co Ltd Substrate for superconductive compound, and its manufacturing method

Similar Documents

Publication Publication Date Title
JP5382911B2 (en) Method for producing metal laminated substrate for oxide superconducting wire and oxide superconducting wire using the substrate
WO2016068046A1 (en) Superconducting wire material substrate and method for manufacturing same, and superconducting wire material
JPWO2011007527A1 (en) Manufacturing method of metal laminated substrate for oxide superconducting wire and metal laminated substrate for oxide superconducting wire
JP6244142B2 (en) Superconducting wire substrate, manufacturing method thereof, and superconducting wire
US10174420B2 (en) Method for forming oxide layer, laminated substrate for epitaxial growth, and method for producing the same
JP6250546B2 (en) Epitaxial growth substrate, manufacturing method thereof, and substrate for superconducting wire
JP6074527B2 (en) Epitaxial growth substrate, manufacturing method thereof, and substrate for superconducting wire
JP2013101832A (en) Substrate for epitaxial growth and method for manufacturing the same, and substrate for superconducting wire rod
JP5323444B2 (en) Composite substrate for oxide superconducting wire, manufacturing method thereof, and superconducting wire
JP6666655B2 (en) Manufacturing method of laminated substrate for epitaxial growth
WO2017069255A1 (en) Substrate for epitaxial growth and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151208